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Classical Quasiconformality

nggiige{%mgmy Algorithm and Results

* Joint work with Eugenio Aulisa at TTU

* Preprint at https://agrubertx.github.io




Classical Conformality

= Mapping f:C- C.
= Write the differential
df = fydx+ f, dy
= ~(f¢ +ify)(dx — idy)
+ 2 (fe — ify)(dx + idy)
= f, dz + f,dZ .

= fisconformalifand onlyif fz=0.




Classical Quasiconformality

Mapping f:C- C.

= Conformalif f; = 0.

= Quasiconformal.

fe=uf lul<1l 2
= Allows bounded shearing.
Jac(f) = Ifz1* — |fzl?

= 121 = |ul?)




Why quasiconformality?

= (Consider least-squares conformal mapping:

= Minimize [, |fz|*idzAdz

= May not interpolate boundary!

=  Not enough conformal maps*

= Quasiconformal always will.

= Consequence of Jac(f) > 0.

*preserving a discrete boundary correspondence!




What about Riemann surfaces?

= How to remove coordinate dependence?
= Consider f:M - P, df =df* +df".

= df~ =udf* won't work without modification.

= Left side C-antilinear, right side C-linear!

= df~ =df*ou makessense. (“Classical version”)
* u:TM - TM is now C-antilinear.

= But we compose instead of multiply!




Quaternionic Conformality

= Suppose M,P c R? immersed.

= (Kamberovetal. 1992) f:M - R3 is conformal

iff xdf = Ndf.

= ]2 = Ipy is complex structure J 8,

and *df =df o]. pb——h‘?l
= Connects intrinsic notion with
extrinsic representation!

* Burstall, Ferus, Kamberov, Leschke, Pedit, Pinkall




Quaternionic Quasiconformality

= With quaternionic algebra:

= fitM->PcR3 df =dft+df".
* dft= Z(df ¥N*df)

= Conformal/anticonformal parts.

= df~ =udf™ is now possible!

= |f i:TM - (TM)* is normal-valued!




Quaternionic Quasiconformality

= f:M - R3is quasiconformal iff
df~ =updf*, |ul <Ll
= Proof: write u(v) = pt(v)v + u?(wv)Jv,
df* op() =df* (v + p*w)jv)
= (W) + p?*W)N)df*(v)
= u@)df*(v).

Quaternionic algebra converts composition
to multiplication!




Aside: whatis u ?

= Write the induced metric
18 = |df 2 = |df*|> + |df ~|? + 2 Re(df *df - )

= The (2,0)-part is the Hopf differential, Q = df*tdf-.

= Expandingyields 4Q = |df|* — |*df|* — (df,* df )N .

= Qisnormal-valued!

= For quasiconformal f, can show u = Q .




Least-squares QC Map

= (Consider the quasiconformal
distortion

1
QC.() =7 | laf~—uar*i? ds,

= \Want to solve;

argfrg&?] QC.(f), flam = folam -

= fo:M - R given, defines
homotopy class and boundary
data.




Least-squares QC Map

= Fix g,N, and write f = f, + te for some ¢: M - R?, then

5QC, (fo)g = fM<dfo- —pdfi,do™ — ude*)ds,

= Solving 6QC,(fo)e = 0 yields LSQC map matching initial data.

= |n practice, we discretize with p.w. linear finite elements.

= (an also enforce constraints through Lagrange multipliers.




How do we get u?

= Developed quaternionic

version of QC Iteration (Lui
et. al. 2014).

Computes optimal
Teichmuller (TM) map

between planar domains.

TM maps minimize the
maximal dilatation K =

1+| ¢l o
1-|pleo '




QC Iteration

|dea is
alternating

minimization.

(3) involves heat
flow on
norm/argument

separately.

Algorithm 2 Overview of the quaternionic QC Iteration

Require: Surface M C R> and homotopy class [f’]. Beltrami coef-

LA O A e

ficient pg = 0. Stopping tolerance ¢ > 0 and maximum iteration
number n; > 0.
while 0 < k < n; and QCy, (fx) > e do
(1) Given p, Minimize QC , for fi : M — R>.
(2) Compute .1 algebraically given fj.
(3) Post-process p,1 to bring it closer to Teichmiiller form.
(4) Minimize QC ,(f) for y on the line between p and 44,

generating pj.,.1 < M.
end while

7: return (f,p)
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Application: mesh editing

= (Canfix "bad” triangulations of M (determined by g).

= Compute optimal TM map (M, grer) = (M, g).
= Metric gref IS N0t necessary, only need [gresl.

= Conformal class specified by target interior angles.

= Minimize QC, W.r.t. gres-.

= |nclude constraint on extrinsic geometry.
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Thank you!

Contact: adgrube@sandia.gov




