

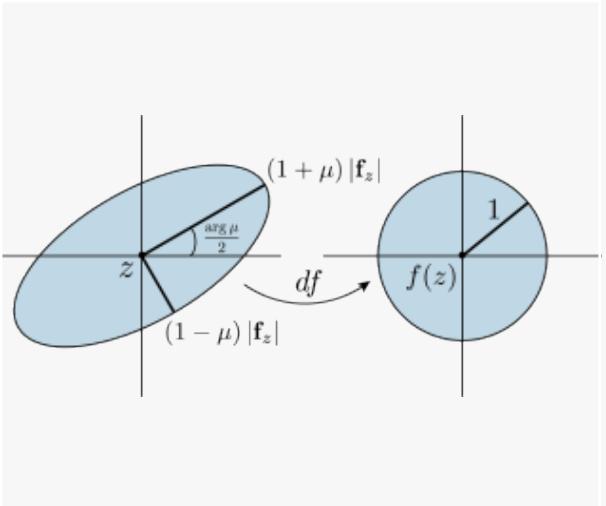
Computing Quasiconformal Mappings from Immersed Surfaces

Anthony Gruber

Center for Computing Research, Sandia National Laboratories, Albuquerque, NM

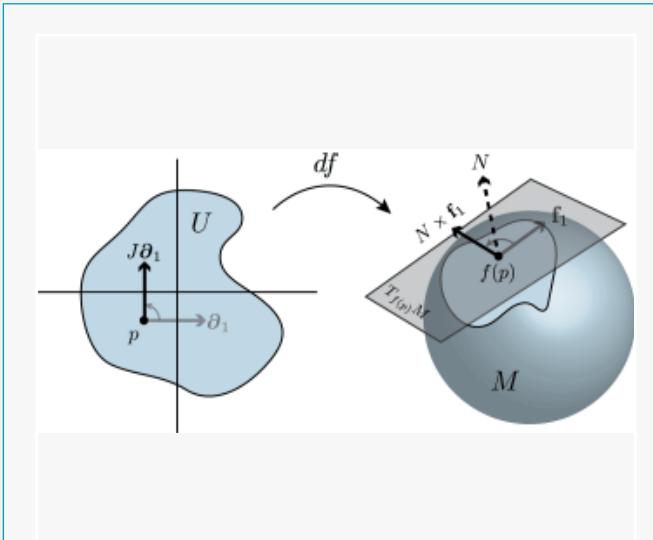
AMS Fall Central Sectional 09/17/2022

Outline



1

Classical Quasiconformality



2

Quaternionic
Quasiconformality

3

Algorithm and Results

* Joint work with [Eugenio Aulisa](#) at TTU

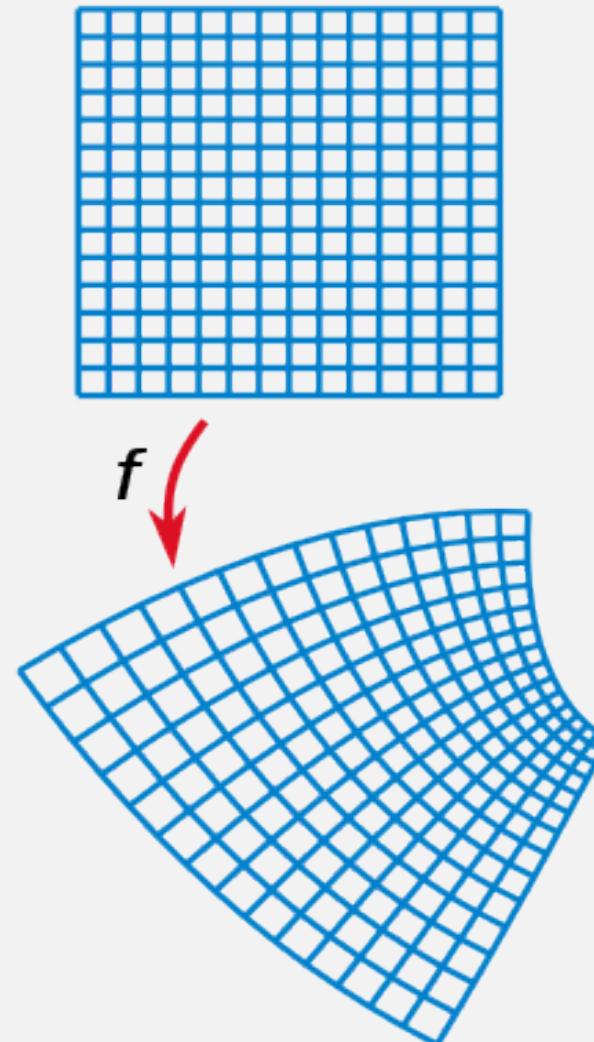
* Preprint at <https://agrubertx.github.io>

Classical Conformality

- Mapping $f: \mathbb{C} \rightarrow \mathbb{C}$.
- Write the differential

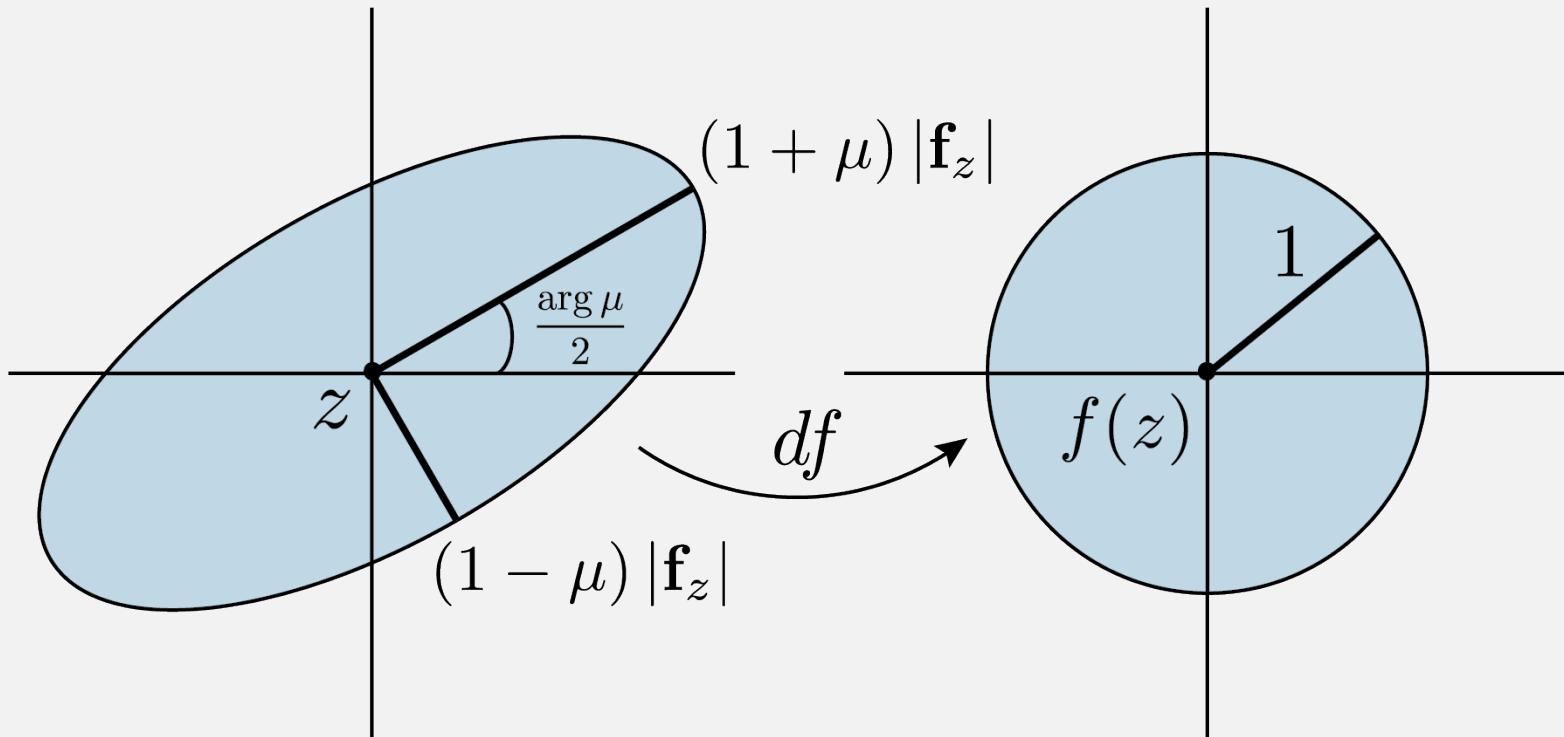
$$\begin{aligned} df &= f_x \, dx + f_y \, dy \\ &= \frac{1}{2} (f_x + i f_y)(dx - idy) \\ &\quad + \frac{1}{2} (f_x - i f_y)(dx + idy) \\ &:= f_z \, dz + f_{\bar{z}} \, d\bar{z} . \end{aligned}$$

- f is conformal if and only if $f_{\bar{z}} \equiv 0$.



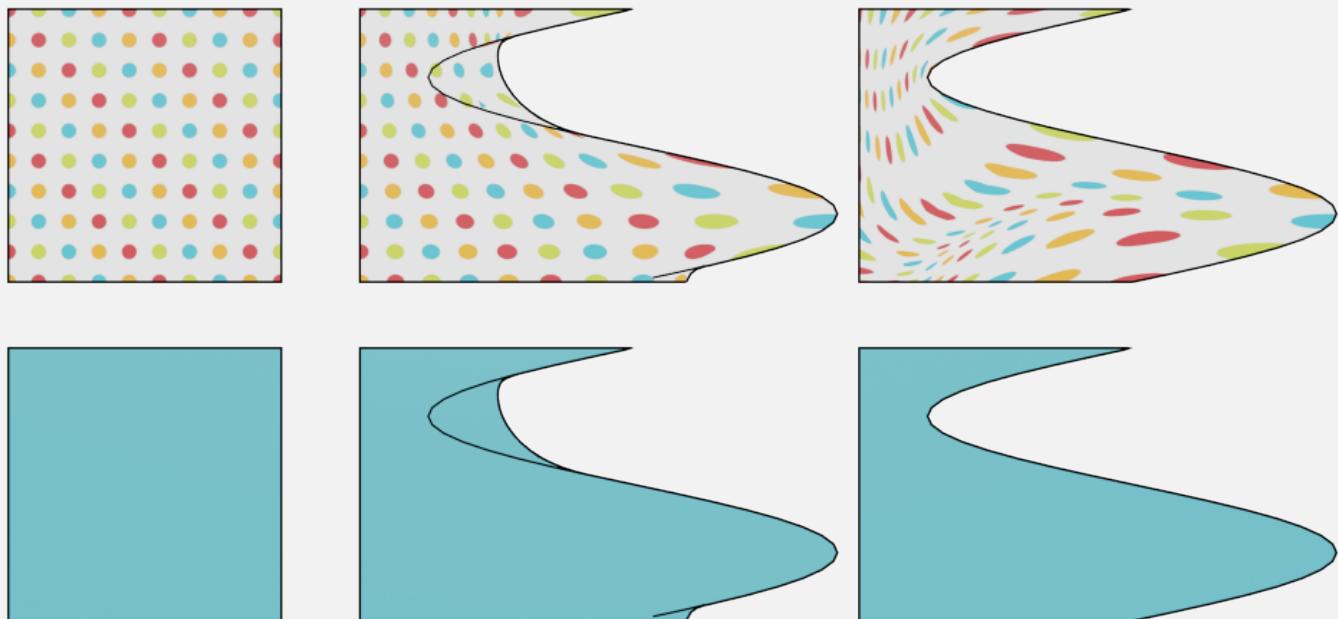
Classical Quasiconformality

- Mapping $f: \mathbb{C} \rightarrow \mathbb{C}$.
 - Conformal if $f_{\bar{z}} = 0$.
- Quasiconformal:
$$f_{\bar{z}} = \mu f_z, \quad |\mu| < 1.$$
- Allows bounded shearing.
- $\text{Jac}(f) = |f_z|^2 - |f_{\bar{z}}|^2$
$$= |f_z|^2(1 - |\mu|^2)$$



Why quasiconformality?

- Consider least-squares conformal mapping:
 - Minimize $\int_M |f_{\bar{z}}|^2 i dz \wedge d\bar{z}$
- *May not interpolate boundary!*
 - Not enough conformal maps*
- Quasiconformal *always* will.
 - Consequence of $\text{Jac}(f) > 0$.



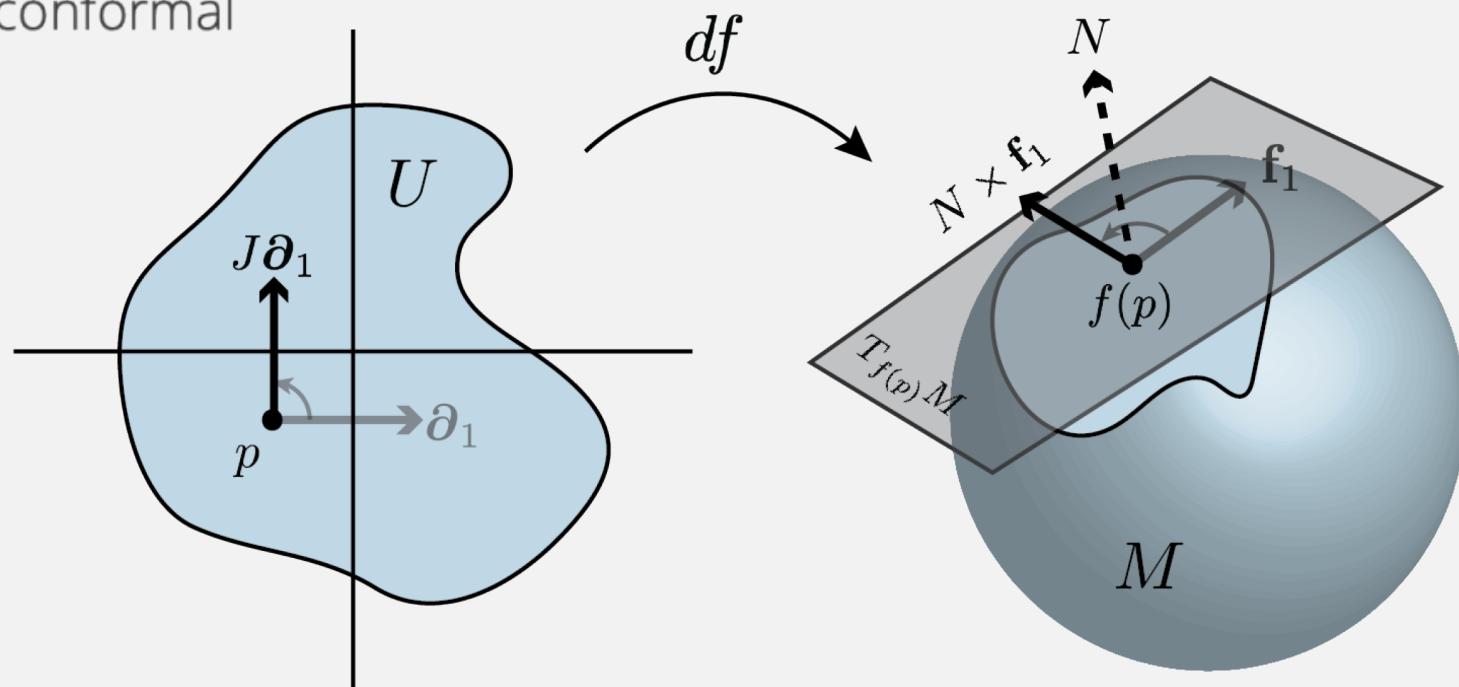
*preserving a discrete boundary correspondence!

What about Riemann surfaces?

- How to remove coordinate dependence?
- Consider $f: M \rightarrow P$, $df = df^+ + df^-$.
- $df^- = \mu df^+$ won't work without modification.
 - Left side \mathbb{C} -antilinear, right side \mathbb{C} -linear!
- $df^- = df^+ \circ \mu$ makes sense. ("Classical version")
 - $\mu: TM \rightarrow TM$ is now \mathbb{C} -antilinear.
 - But we compose instead of multiply!

Quaternionic Conformality

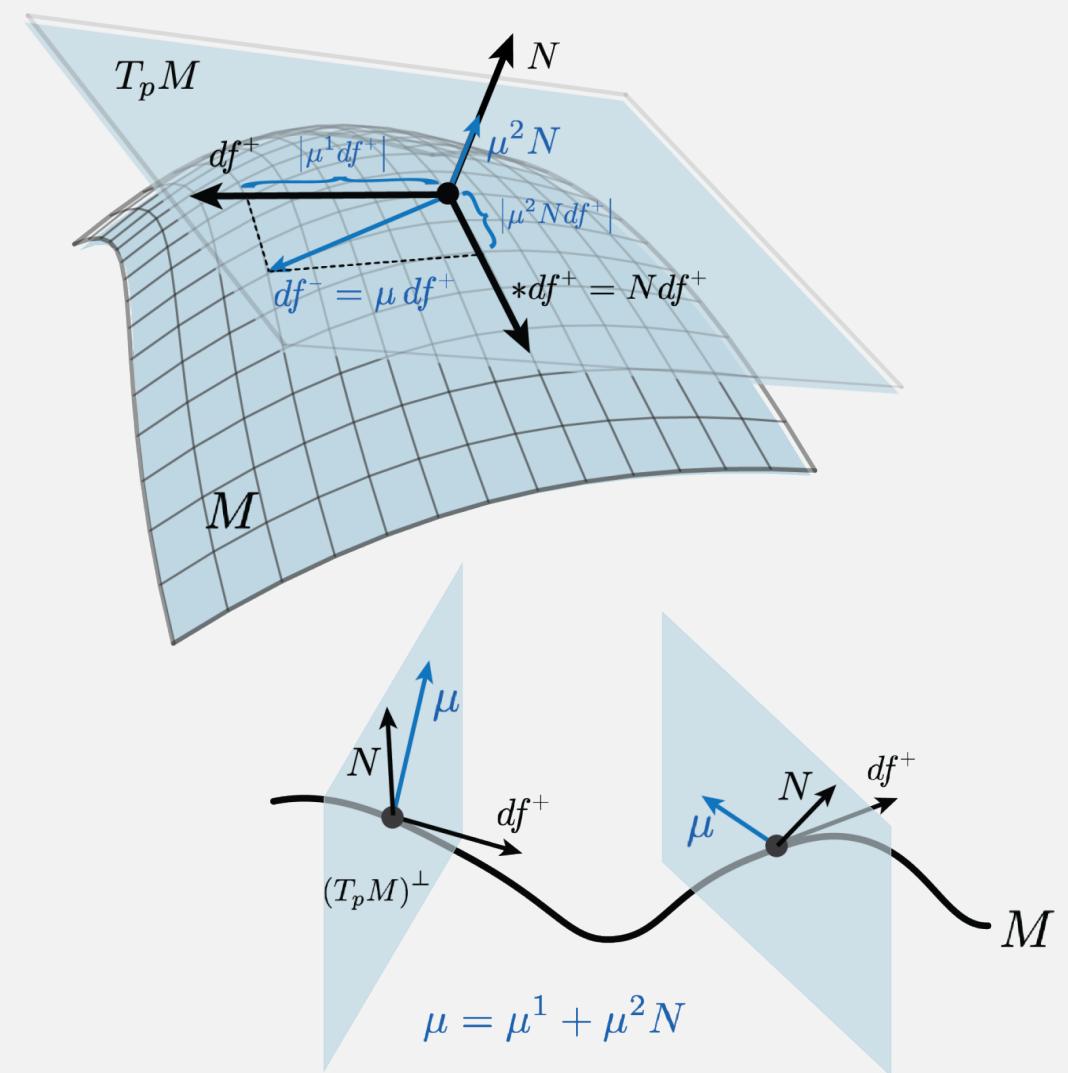
- Suppose $M, P \subset \mathbb{R}^3$ immersed.
- (Kamberov et al. 1992) $f: M \rightarrow \mathbb{R}^3$ is conformal iff $* df = N df$.
- $J^2 = I_{TM}$ is complex structure and $* df = df \circ J$.
- Connects *intrinsic* notion with *extrinsic* representation!



* Burstall, Ferus, Kamberov, Leschke, Pedit, Pinkall

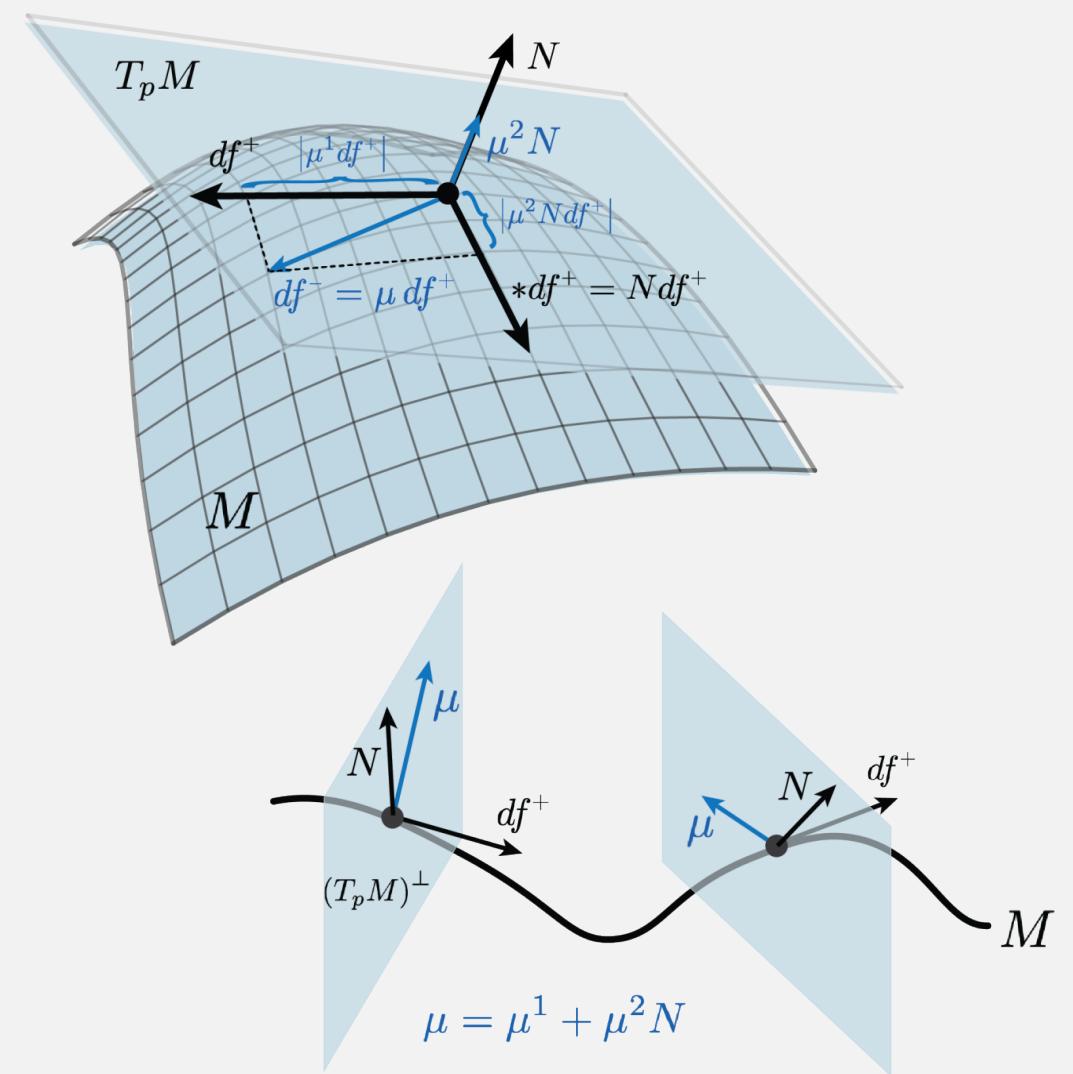
Quaternionic Quasiconformality

- With quaternionic algebra:
 - $f: M \rightarrow P \subset \mathbb{R}^3, df = df^+ + df^-.$
- $df^\pm = \frac{1}{2}(df \mp N * df)$
 - Conformal/anticonformal parts.
- $df^- = \mu df^+ \text{ is now possible!}$
 - If $\mu: TM \rightarrow (TM)^\perp$ is normal-valued!



Quaternionic Quasiconformality

- $f: M \rightarrow \mathbb{R}^3$ is quasiconformal iff $df^- = \mu df^+$, $|\mu| < 1$.
- *Proof:* write $\mu(v) = \mu^1(v)v + \mu^2(v)Jv$,
$$\begin{aligned} df^+ \circ \mu(v) &= df^+(\mu^1(v)v + \mu^2(v)Jv) \\ &= (\mu^1(v) + \mu^2(v)N)df^+(v) \\ &= \mu(v)df^+(v). \end{aligned}$$
- Quaternionic algebra converts *composition* to *multiplication*!



Aside: what is μ ?

- Write the induced metric

$$f^* \delta = |df|^2 = |df^+|^2 + |df^-|^2 + 2 \operatorname{Re}(df^+ \overline{df^-})$$

- The (2,0)-part is the *Hopf differential*, $Q = df^+ \overline{df^-}$.
- Expanding yields $4Q = |df|^2 - |* df|^2 - \langle df, * df \rangle N$.
 - Q is normal-valued!
- For quasiconformal f , can show $\mu = * \bar{Q}$.

Least-squares QC Map

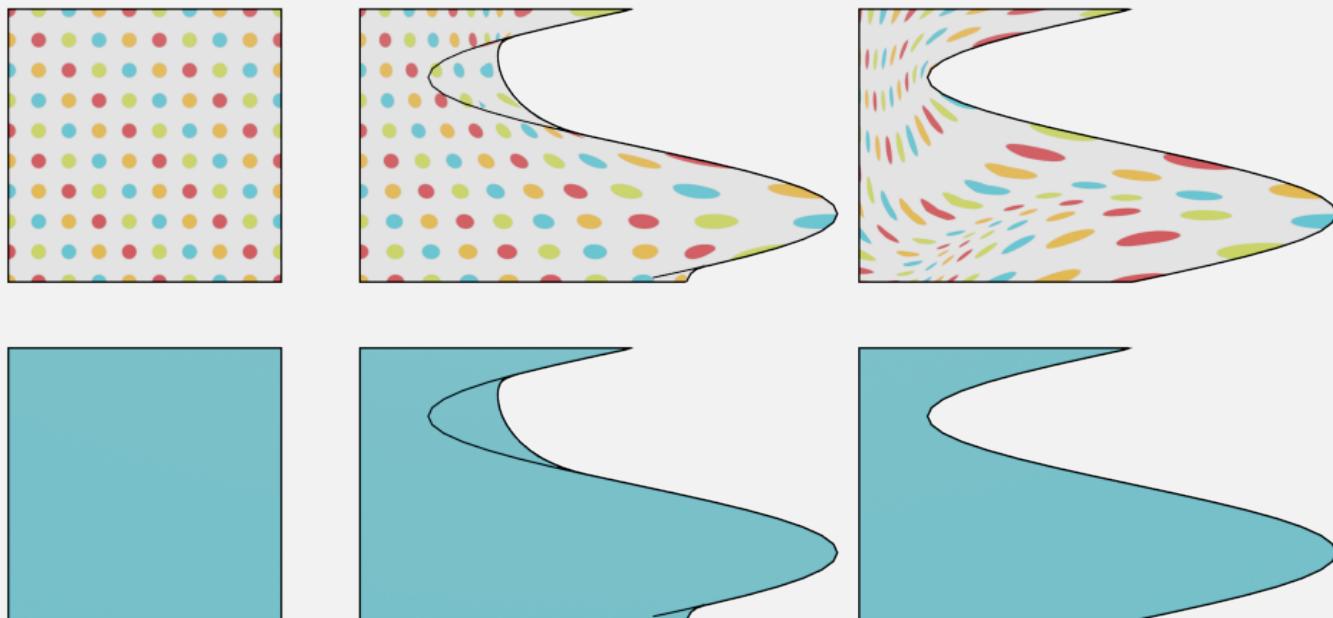
- Consider the *quasiconformal distortion*

$$QC_\mu(f) = \frac{1}{2} \int_M |df^- - \mu df^+|^2 dS_g$$

- Want to solve:

$$\arg \min_{f \in [f_0]} QC_\mu(f), \quad f|_{\partial M} = f_0|_{\partial M} .$$

- $f_0: M \rightarrow \mathbb{R}^3$ given, defines homotopy class and boundary data.



Least-squares QC Map

- Fix g, N , and write $f = f_0 + t\varphi$ for some $\varphi: M \rightarrow \mathbb{R}^3$, then

$$\delta QC_\mu(f_0)\varphi = \int_M \langle df_0^- - \mu df_0^+, d\varphi^- - \mu d\varphi^+ \rangle dS_g$$

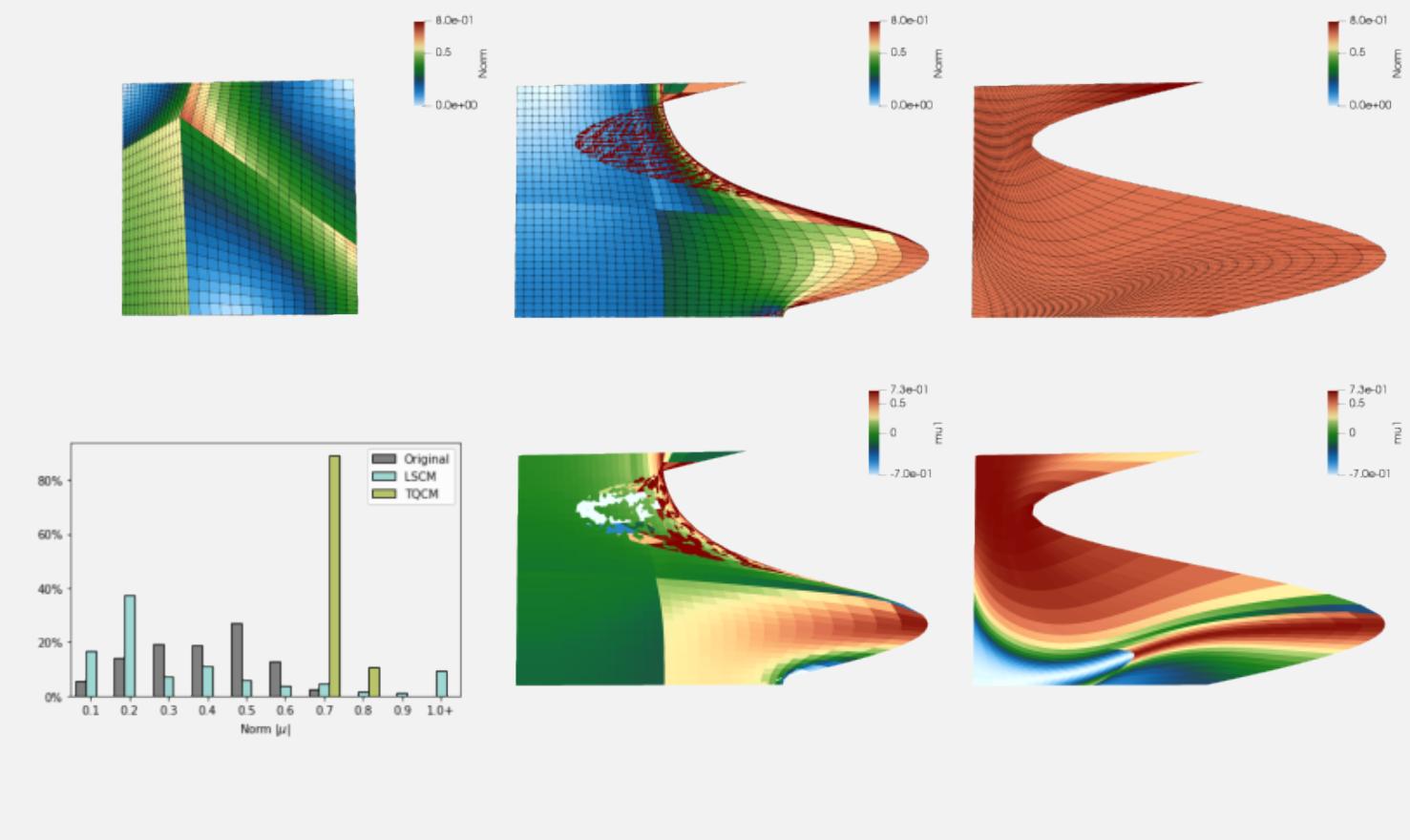
- Solving $\delta QC_\mu(f_0)\varphi = \mathbf{0}$ yields LSQC map matching initial data.
- In practice, we discretize with p.w. linear finite elements.
 - Can also enforce constraints through Lagrange multipliers.

How do we get μ ?

- Developed quaternionic version of QC Iteration (Lui et. al. 2014).

- Computes optimal Teichmuller (TM) map between planar domains.
- TM maps *minimize* the *maximal dilatation* $K =$

$$\frac{1+|\mu|_\infty}{1-|\mu|_\infty}.$$



QC Iteration

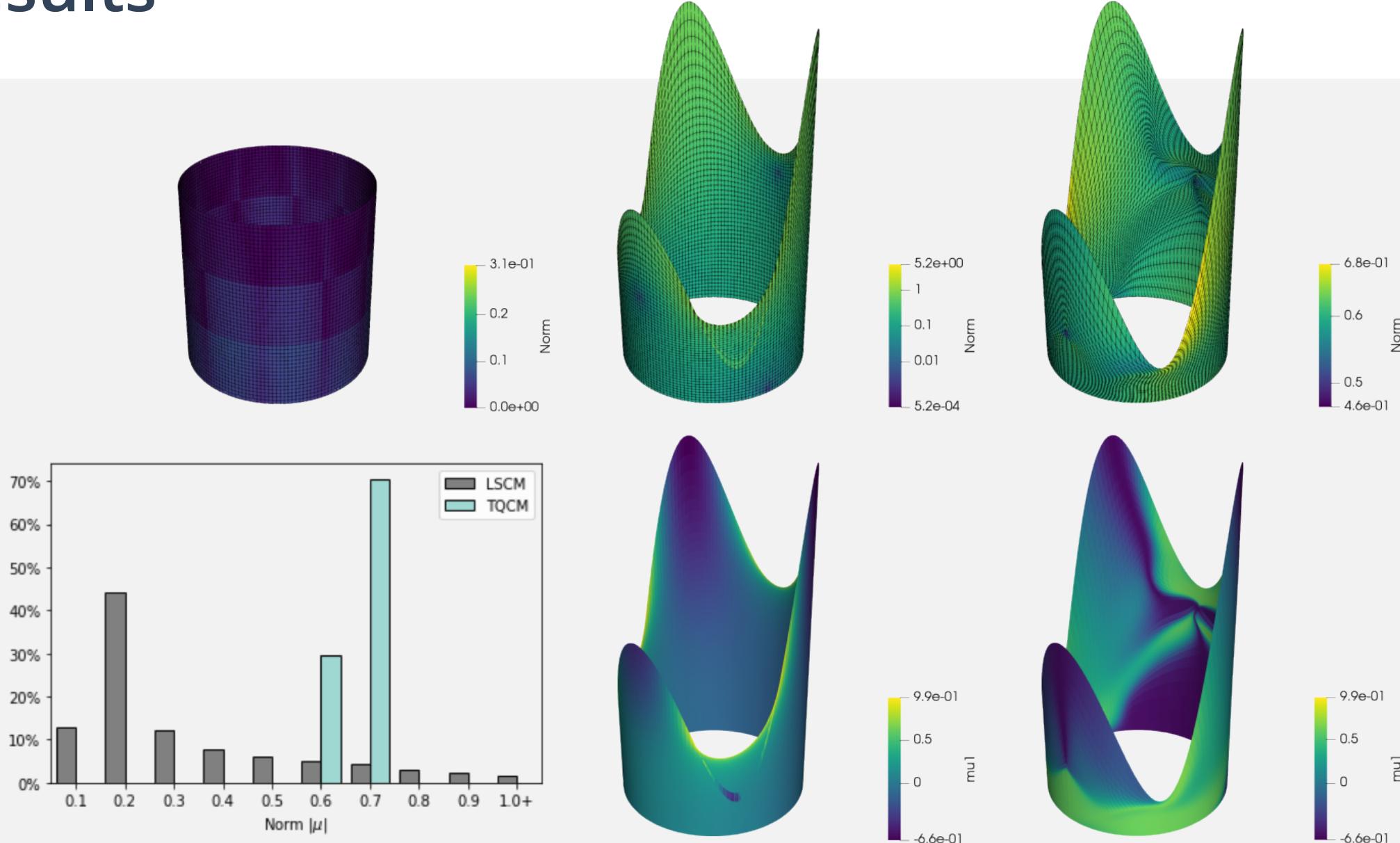
- Idea is alternating minimization.
- (3) involves heat flow on norm/argument separately.

Algorithm 2 Overview of the quaternionic QC Iteration

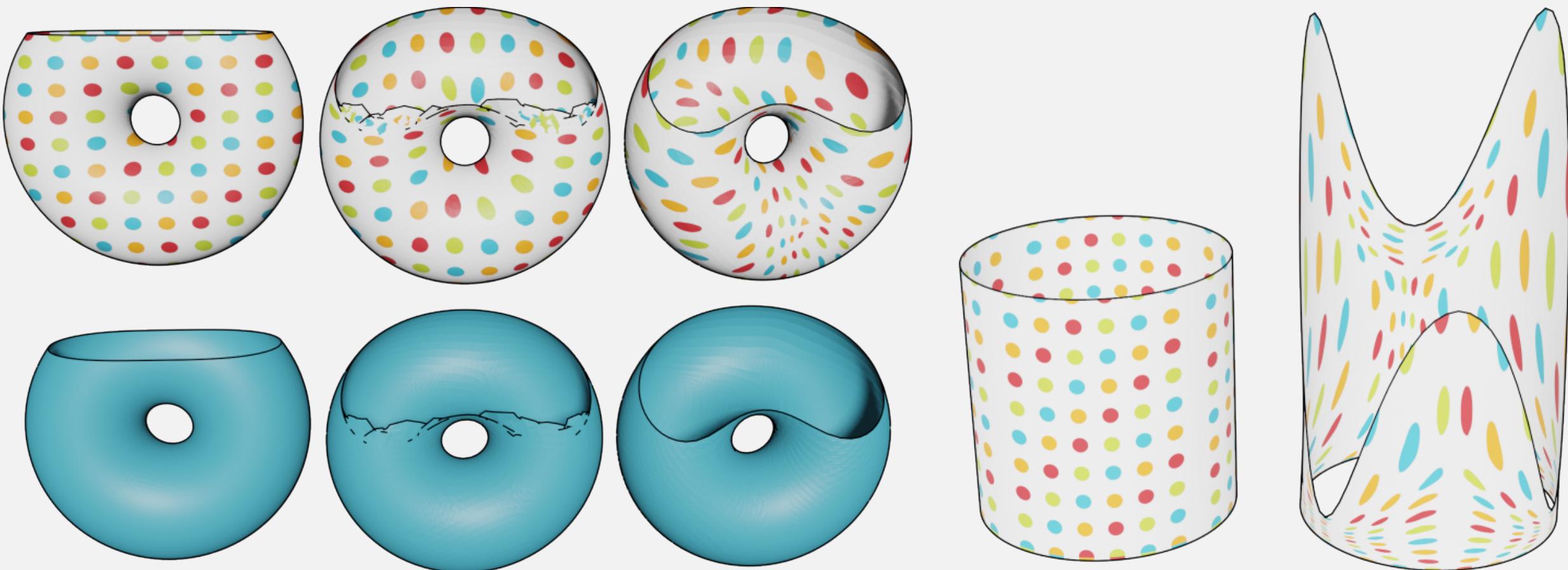
Require: Surface $M \subset \mathbb{R}^3$ and homotopy class $[f']$. Beltrami coefficient $\mu_0 = 0$. Stopping tolerance $\varepsilon > 0$ and maximum iteration number $n_t > 0$.

- 1: **while** $0 \leq k \leq n_t$ and $QC_{\mu_k}(f_k) > \varepsilon$ **do**
- 2: (1) Given μ_k , Minimize QC_{μ_k} for $f_k : M \rightarrow \mathbb{R}^3$.
- 3: (2) Compute μ_{k+1} algebraically given f_k .
- 4: (3) Post-process μ_{k+1} to bring it closer to Teichmüller form.
- 5: (4) Minimize $QC_{\mu}(f_k)$ for μ on the line between μ_k and μ_{k+1} , generating $\mu_{k+1} \leftarrow \mu$.
- 6: **end while**
- 7: **return** (f, μ)

Results



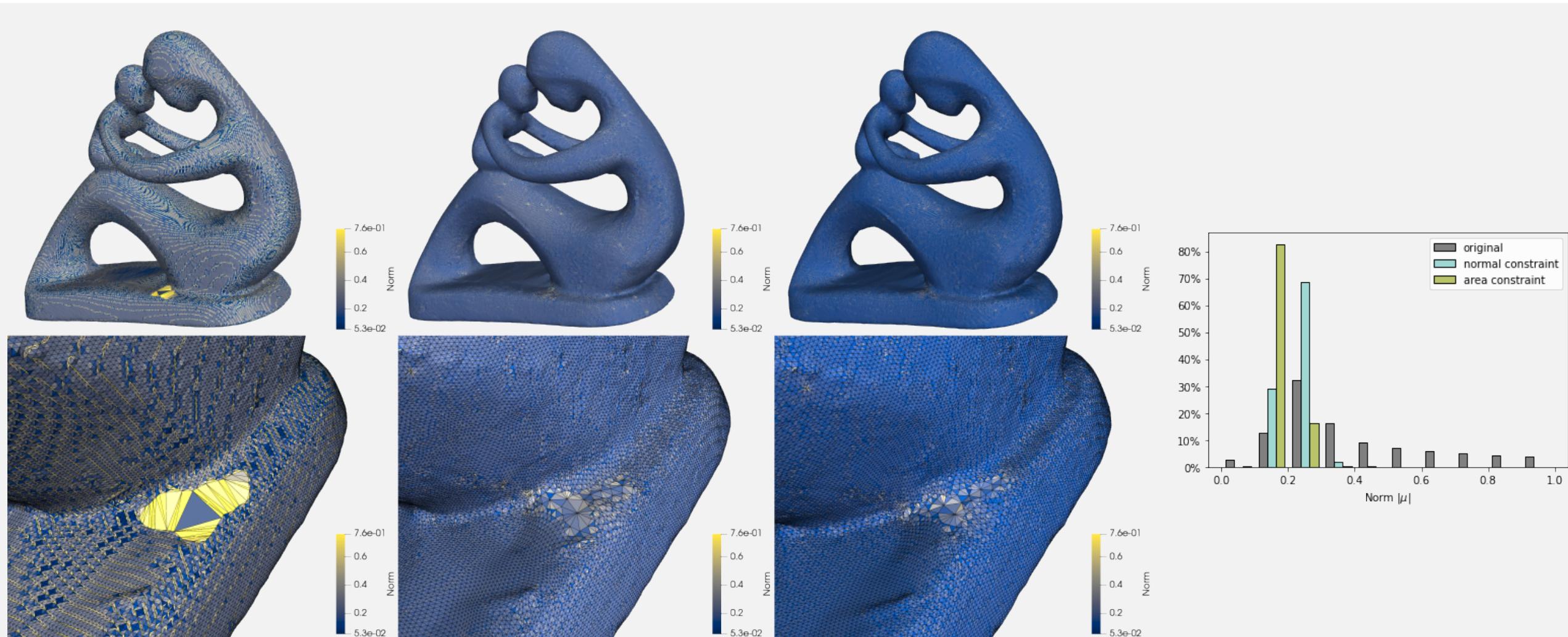
Results



Application: mesh editing

- Can fix “bad” triangulations of M (determined by g).
- Compute optimal TM map $(M, g_{\text{ref}}) \rightarrow (M, g)$.
 - Metric g_{ref} is not necessary, only need $[g_{\text{ref}}]$.
 - Conformal class specified by target interior angles.
- Minimize QC_μ w.r.t. g_{ref} .
 - Include constraint on extrinsic geometry.

Results



Results



Thank you!

Contact: adgrube@sandia.gov