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Introduction / Motivation

Gaussian process regression is a machine learning strategy of increasing
popularity because of its ability to consolidate prior knowledge and
observed data in a Bayesian manner. Calibrated Gaussian process models
are able to capture unmodeled phenomena in physics-based predictive
modeling and simulation. However, much like most machine learning
algorithms, Gaussian process regression can become limited in
applicability due to its requirement of large training data volume and
computational resources. We propose to leverage a novel probabilistic
transfer learning strategy whereby knowledge gained through Gaussian
process modeling on similar source tasks is transferred to a novel task of
interest. This learning scheme will assess the similarity of the source and
target tasks, both for the priors and posteriors, and determine the optimal
amount of knowledge transfer. We will apply the methodology to a vehicle
control problem, whereby Gaussian process regression is employed to learn
unmodeled nonlinear effects and transfer learning is utilized to alleviate
the data sparsity and computational complexity challenges across vehicles
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In Gaussian process regression, a prior probability distribution is combined with observed data to Prior
generate a posterior distribution. The methodology supports assimilation of “noisy” data, and we use FCO~GP(m(x), k(x,x))

the observation noise as a channel to diffuse knowledge from the source data. We utilize “tempering
transformations” as a mechanism to control the amount of information transferred. The transferred
information from available source data is then combined with that obtained from target data to make a k(x,x") = E[(f (x) — m(x))
prediction. Bayes’ law yields a posterior distribution over the unknown state of interest, from which we (FG0) = m@))"
can extract probabilistic predictions in addition to point estimates (e.g. mean process). Usually, the
variance is larger near source data points than target data points, indicating less reliance on the source Bayesian Update
data. To evaluate the quality of the prediction, we evaluate the posterior predictive at the ground p(@Ip(f)
j \truth, loosely representing the likelihood that the truth could be generated from the calibrated model.

m(x) = E[f(x)]

p(fID) =
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Current Status / Results
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Problem Statement

We have obtained 8 observations from a source function
f(x) = (6x — 2)%sin(12x — 4). We would like to use
Gaussian process regression and transfer learning to
predict a target function f'(x) = (6x — 2)%sin(12ax — 4),
but with sparse data of only 3 observations. The
tempering transformation is applied via a parameter, g,
which scales the source observation noise matrix. g and
the length scale hyperparameter of the GP, ¢, are
optimized simultaneously to determine optimal transfer.
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Results

The optimal parameters g and ¢ produce a
solution for which the true function lies
within the confidence interval, despite a
biased mean prediction. No transfer results
in poor prediction with large variance and
bias. Full transfer causes an overly confident
prediction with small uncertainty that does
not predict the true response with any

practical level of confidence. /
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Challenges Next Steps / Future Work
+ Computational challenges with non- + Explore methods for dealing with poorly
invertible matrices. When there are two conditioned GP matrices.
observations at the same point and g is + Compare alternative solutions to log
relatively small, the GP kernel matrix is posterior, including marginal log
rank deficient. Similarly, noiseless likelihood and leave-one-out cross
observations lead to a non-invertible validation.
covariance matrix for the posterior » Consider other approaches for
distribution. This affects log posterior hyperparameter optimization.
calculations for optimization tasks. Determine whether optimization should
* In practice, we will need to evaluate the occur before transfer, i.e. optimized for
quality of the prediction using only sparse source data, or during transfer.
observation data, as we will not have » Use Gaussian process regression to learn
knowledge of the true function. Data unmodeled vehicle dynamics. Then,
sparsity prohibits division of the employ transfer learning with a vehicle
observations into training and testing with similar dynamics. Evaluate changes
sets, so other methods need to be in performance and safety metrics.
explored.
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