
P R E S E N T E D B Y

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

Performant coherent control:
bridging the gap between high-
and low-level operations on
hardware

Danie l Lobser , Jay Van Der Wal l , and Joshua
Goldberg

SAND2022-12341CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Requirements For A Self-Contained Control System2

Requirements Challenges

Complex pulse shaping Can result in a lot of data.
Classical computing resources to calculate pulse shapes.

Long gate sequences Even more data.

Conditional sequences Fast response based on mid-circuit measurements.

Tight-loop feedback on
control parameters

Tight loop = low latency, must take network transfers out of the loop.
Pulse-level gate definitions must be calculated and compiled on chip.

Approaches Benefits Drawbacks

Arbitrary waveform
generator (AWG)

Maximum control over pulse shapes. Requires lots of data, long upload times &
limited circuit depth.
Waveforms must be calculated externally

FPGA + Direct Digital
Synthesizers (DDSs) or
Digital-to-Analog
Converters (DACs)

Highly customizable.
Deterministic timing.
Soft-core CPUs or state machines can
be used for advanced control flow.

Soft-core CPUs have limited processing
power and eat into FPGA resources.
Design complexity.

System-on-Chip (SoC) Hard-core CPUs and FPGA fabric.
Some SoCs have real-time processors.

Design complexity.

Our Approach For A Self-Contained Control System3

 Xilinx RadioFrequency System on Chip
(RFSoC)

 Quad-core ARM application processing unit
(APU)

◦ Runs Linux
◦ Non-deterministic timing

 Dual-core ARM real-time processing unit
(RPU)

◦ Runs bare-metal or real-time operating systems
(RTOS)

◦ Deterministic timing (mostly)

 APU and RPU can be independently operated
via asymmetric multiprocessing (AMP)

 Large FPGA fabric

 Integrated 6.5 GSPS 14-bit DACs (8x) and 4
GSPS 12-bit ADCs (8x)

Our Approach For A Self-Contained Control System4

 Custom gateware design (called “Octet”),
tailored for target system

◦ Developed for QSCOUT
(https://qscout.sandia.gov)

◦ Integrated cubic-spline interpolators (based on
work from NIST)

◦ Custom DDS and gate sequencer modules
◦ Low-level error mitigation features for

frequency stabilization and crosstalk
compensation

 Software interface written in Go, runs on
APU

◦ Communication over ethernet (gRPC/Protobuf)

 Circuits compiled on-chip from Jaqal (“Just
another quantum assembly language”)

 Pulse-level gate definitions both on-chip
(using Julia), and off-chip (using JaqalPaw,
“Jaqal Pulses and Waveforms”)

https://qscout.sandia.gov

Realizing Quantum Gates5

 Gates specified in Jaqal must be converted to a form that is experimentally realizable

 The internal quantum states of individually-addressed ions are manipulated via laser light passed
through a acousto-optic modulators (AOMs)

 Each AOM is modulated with an rf waveform to precisely tune the frequency, phase, and amplitude
of the light

 These waveforms are specified using JaqalPaw (“Jaqal Pulses and Waveforms”)

Classical
“Textbook input”

(Jaqal)
rf Waveform
(JaqalPaw) Output Photon

(QSCOUT Hardware)
Resulting
Quantum

State

AOM

Target System6

 171Yb+ qubit, clock state 12.6
GHz

Counter-propagating

GLOBAL AOM
AO

M
AO

M
AO

M
AO

M
AO

M

Co-propagating

AO
M

AO
M

AO
M

AO
M

AO
M

Sideband
cooling

Single-qubit
gate

Two-qubit gate

Individual
beams

Global
beam

 12.6 GHz driven via
optical Raman transitions

for individual qubit
addressing

 We use two beam
configurations

 Co-propagating is robust against
phase uncertainty

 Counter-propagating used for
driving motional transitions

 Need two tones per output

 Different frequencies used
in each configuration

Target System7

 171Yb+ qubit, clock state 12.6
GHz

Counter-propagating

GLOBAL AOM
AO

M
AO

M
AO

M
AO

M
AO

M

Co-propagating

AO
M

AO
M

AO
M

AO
M

AO
M

Sideband
cooling

Single-qubit
gate

Two-qubit gate

Individual
beams

Global
beam

 12.6 GHz driven via
optical Raman transitions

for individual qubit
addressing

 We use two beam
configurations

 Co-propagating is robust against
phase uncertainty

 Counter-propagating used for
driving motional transitions

 Need two tones per output

 Different frequencies used
in each configuration

Each configuration requires different frequencies

Phase of beat note produced by red- and blue-sideband
tones determines global phase of the two-qubit Mølmer-

Sørensen gate

Phase control is imperative!

Quantum Gates8

 Gates must be defined as discrete “pulses” with precise timing and characteristics to achieve the
desired results State of the art gate designs

require discrete or continuous
modulation of frequency,
phase, and amplitude.

 Gates must be synchronous
across all channels and tones,
with the ability to run all
modulation types
simultaneously

 Long sequences can be
necessary, so a compact
representation is needed.

 Gate times (1-200 us) are typically much slower than the period (5 ns) of the natural frequencies
(200 MHz) needed to drive the AOMs

 Instead of writing raw waveform data like an arbitrary waveform generator (AWG) we can take
advantage of more compact representations

 Gates must be defined as discrete “pulses” with precise timing and characteristics to achieve the
desired results

Compression, Compression, Compression Compression39

1. Minimizing samples: baseband frequencies of ~200 MHz can be generated by DDSs

Changing Frequency in a Direct Digital Synthesizer (DDS)10

 Conventional DDS consists of a
phase accumulator and lookup
table (LUT)

 Changes to frequency are
continuous
◦ Good for frequency modulation
◦ Bad for phase reproducibility

 Multiple independent sources  Doesn’t scale

 Manual phase bookkeeping
◦ Context-dependent gate definitions
◦ Requires more data if conditionally-executed gates

are used
◦ Not robust against timing variation (e.g. missed

clocked edges for triggers) for conditionally-
executed gates

Hardware-Native Phase Bookkeeping: Global Phase
Synchronization11

 Dedicated multiplier calculates global phase,
, which optionally overwrites accumulator when a
synchronization trigger is applied

 No manual bookkeeping required

 Global counter fanned out to all channels: cross-
channel synchronization built in

 Robust against timing variation, e.g. missed
clock edges when operating with hardware on
multiple clock domains for, among other things,
mid-circuit measurements

Compression, Compression, Compression Compression312

1. Minimizing samples: baseband frequencies of ~200 MHz can be generated by DDSs

2. Hardware-native phase bookkeeping
- Global phase synchronization handled by custom DDS

 Only X and Y gates are directly driven

 Z gates can be implemented as a virtual phase
offset

 This phase is persistent in order to affect all
following gates  takes care of context-
dependency

Hardware-Native Phase Bookkeeping: Virtual Z Gates aka “Frame
Rotations”13

 *Actual model slightly more complex:
optional forwarding/inversion used to
handle differential, or (anti)symmetric

phase offsets needed for different
configurations for single- and two-qubit

gates

Compression, Compression, Compression Compression314

1. Minimizing samples: baseband frequencies of ~200 MHz can be generated by DDSs

2. Hardware-native phase bookkeeping
- Global phase synchronization handled by custom DDS
- Dedicated phase accumulators track virtual phase, eliminating issues with context

dependency

Cubic Splines15

 Piecewise Cubic
Polynomial Segments

 Parameter modulation described with cubic spline coefficients

 Gateware interpolators use a lightweight model (developed by NIST) that relies only on
addition

 Provides compact representation for modulation waveforms

 Fitting natural cubic splines requires inverting a symmetric tridiagonal matrix

 Can be represented with two arrays (memory efficient)
 Mapping for gateware

interpolators uses a
custom floating point

scheme and
asymmetric register

sizes to maintain
resolution for slow

modulation

Compression, Compression, Compression Compression316

1. Minimizing samples: baseband frequencies of ~200 MHz can be generated by DDSs

2. Hardware-native phase bookkeeping: cuts down on amount of unique data needed
- Global phase synchronization handled by custom DDS
- Dedicated phase accumulators track virtual phase, eliminating issues with context

dependency

3. Cubic spline interpolators offer 102 to 104 reduction in data on average

Sequencing Spline-Modulated Data17

 Each spline segment is routed to the appropriate spline engine for subsequent control of a dual
-tone DDS

 Input words are really 256 bits and extra metadata is truncated during routing

 Minimum gate size is 8 words, or 2Kb

 Spline Engine
FIFOs

 Time

 P
ar

am
et

er
 ty

pe

Amplitude Tone 0 Spline Engine
Amplitude Tone 1 Spline Engine
Frequency Tone 0 Spline Engine
Frequency Tone 1 Spline Engine

Phase Tone 0 Spline Engine
Phase Tone 1 Spline Engine

Frame Rotation Tone 0 Spline
EngineFrame Rotation Tone 1 Spline
Engine

DDS

Data Handling for Concurrent Execution18

 All 64 spline engines must be run concurrently

 Spline engines are fed by First-In-First-Out (FIFO) buffers

 Unused channels are padded with NOPs to preserve timing downstream

Amplitude Tone 0 Spline Engine
Amplitude Tone 1 Spline Engine
Frequency Tone 0 Spline Engine
Frequency Tone 1 Spline Engine

Phase Tone 0 Spline Engine
Phase Tone 1 Spline Engine

Frame Rotation Tone 0 Spline
EngineFrame Rotation Tone 1 Spline
Engine

DDS

Amplitude Tone 0 Spline Engine
Amplitude Tone 1 Spline Engine
Frequency Tone 0 Spline Engine
Frequency Tone 1 Spline Engine

Phase Tone 0 Spline Engine
Phase Tone 1 Spline Engine

Frame Rotation Tone 0 Spline
EngineFrame Rotation Tone 1 Spline
Engine

DDS

Amplitude Tone 0 Spline Engine
Amplitude Tone 1 Spline Engine
Frequency Tone 0 Spline Engine
Frequency Tone 1 Spline Engine

Phase Tone 0 Spline Engine
Phase Tone 1 Spline Engine

Frame Rotation Tone 0 Spline
EngineFrame Rotation Tone 1 Spline
Engine

DDS

Amplitude Tone 0 Spline Engine
Amplitude Tone 1 Spline Engine
Frequency Tone 0 Spline Engine
Frequency Tone 1 Spline Engine

Phase Tone 0 Spline Engine
Phase Tone 1 Spline Engine

Frame Rotation Tone 0 Spline
EngineFrame Rotation Tone 1 Spline
Engine

DDS

Amplitude Tone 0 Spline Engine
Amplitude Tone 1 Spline Engine
Frequency Tone 0 Spline Engine
Frequency Tone 1 Spline Engine

Phase Tone 0 Spline Engine
Phase Tone 1 Spline Engine

Frame Rotation Tone 0 Spline
EngineFrame Rotation Tone 1 Spline
Engine

DDS

Amplitude Tone 0 Spline Engine
Amplitude Tone 1 Spline Engine
Frequency Tone 0 Spline Engine
Frequency Tone 1 Spline Engine

Phase Tone 0 Spline Engine
Phase Tone 1 Spline Engine

Frame Rotation Tone 0 Spline
EngineFrame Rotation Tone 1 Spline
Engine

DDS

Amplitude Tone 0 Spline Engine
Amplitude Tone 1 Spline Engine
Frequency Tone 0 Spline Engine
Frequency Tone 1 Spline Engine

Phase Tone 0 Spline Engine
Phase Tone 1 Spline Engine

Frame Rotation Tone 0 Spline
EngineFrame Rotation Tone 1 Spline
Engine

DDS

Amplitude Tone 0 Spline Engine
Amplitude Tone 1 Spline Engine
Frequency Tone 0 Spline Engine
Frequency Tone 1 Spline Engine

Phase Tone 0 Spline Engine
Phase Tone 1 Spline Engine

Frame Rotation Tone 0 Spline
EngineFrame Rotation Tone 1 Spline
Engine

DDS

Abstracting Pulse Information: Gate Slices19

 Jaqal (Just Another Quantum Assembly
Language)

 def gate_G(self, qubit, theta, phi):
 phase = (phi < 0) * 180 + theta / np.pi * 180
 duration = self.duration_from_rabi_angle(phi, qubit)
 return [PulseData(
 GLOBAL_BEAM,
 duration,
 amp0=self.gaussian(phi, qubit),
 freq0=self.upper_carrier_frequency,
 sync_mask=0b01,
 ...),
 PulseData(
 self.qubit_mapping[qubit],
 duration,
 amp0=self.gaussian(phi, qubit),
 freq0=self.lower_carrier_frequency,
 phase0=phase,
 sync_mask=0b01,
 ...),
]

G q[1] 0 phi1
G q[3] pi2 phi2

G q[1] 0 phi1

 Ch
0:

 Ch
1:

 Ch
2:

 Ch
3:

 Ch
4:

G q[3] pi2 phi2

 JaqalPaw (Jaqal Pulses and
Waveforms)

 Gate data is broken up into “gate slices”, based on individual steps in a circuit

 Gate slices separate data based on rf output channel

 Gates can differ based on target channel and input values

 Gate uniqueness determined by names and inputs

 Gate Slices

Maintaining Scheduling on Unused Channels: Padded Gate Slices20

 Gate slices are given a unique tag based on their call signature

 Ch
0:

 Ch
1:

 Ch
2:

 Ch
3:

 Ch
4:

G1 q[1] 0 phi1

G2 q[3] pi2 phi2
 Unused channels are padded with NOPs to preserve
scheduling of later gate calls, and stored as “padded
gate slices”

 Padded gate slices are concatenated for readout

 Ch
0:

 Ch
1:

 Ch
2:

 Ch
3:

 Ch
4:

Handling Parallel Gate Execution21

 Jaqal (Just Another Quantum Assembly
Language)

G q[1] 0 phi1

 Ch
0:

 Ch
1:

 Ch
2:

 Ch
3:

 Ch
4:

 Jaqal supports parallel execution of gates:

 Must ensure compatibility of pulse information on shared channels

G q[3] pi2 phi2

< G q[1] 0 phi1 | G q[3] pi2 phi2 >

Breaking Up Data By Parameter22

 Each gate consists of a sequence of pulses, determined by a series of parameters:
amplitude, frequency, phase, and frame rotation, for two tones per channel.

 Each parameter supports modulation using spline interpolators.

 Individual sequences of parameters are called pulselets

PulseletPulse

Gate

Data Ordering23

 Data is fed to spline engines via DMA through a single bus and a
switch network

 Blocking conditions can lead to FIFO starvation, especially in cases
of highly asymmetric data

 Data need to be sorted based on time needed

DMA

Reducing Overhead: Compressing Gate Data24

 In many cases, data can be reused, such as for X and Y gates

 Only 2.25 Kb of raw data is needed to describe
comparable X/Y gates (only one phase word differs)

  Locally store data on chip and read out as
necessary

 Raw data stored in Pulse Lookup Table
(PLUT)

◦ Gives a fixed factor of 12/216 in
compression for raw data Would be nice to iterate through address

space, then only address boundaries are
needed

◦ Data is not contiguous if more than 2 gates
rely on the same spline segments

◦ Introduce a Mapping LUT (MLUT) to remap
addresses so they are linearly ordered for
each gate

◦ Iterator module is added to automatically
step through addresses

 Define gates with numeric ids and store in a Gate LUT
(GLUT)

◦ Allows gates to be compressed to (currently) 11 bits, for a
compression ratio < 0.00625

◦ Compression ratio is better for gates with a lot of modulation
◦ Restricts time ordering requirements to individual channels
◦ More gates can be packed into a smaller memory

footprint
◦ Allows for fast, measurement-based sequences (e.g. for

error correction)

Compression, Compression, Compression Compression325

1. Minimizing samples: baseband frequencies of ~200 MHz can be generated by DDSs

2. Hardware-native phase bookkeeping: cuts down on amount of unique data needed
- Global phase synchronization handled by custom DDS
- Dedicated phase accumulators track virtual phase, eliminating issues with context

dependency

3. Cubic spline interpolators offer 102 to 104 reduction in data on average

4. Gate sequencer LUTs for storing pulse information locally

Data Flow26

 Initial programming data is uploaded
before gates are sequenced

 If a gate is called once, overhead is
3 extra words when compared to
direct streaming

 Subsequent gate calls are cheap,
up to 20 gates per word

 Partial programming data can be interleaved with
sequence data for circuits with a lot of unique gates

 This is more efficient than direct streaming if fewer than
N-1 parameters are updated for an N-parameter gate

Fast Branching For Conditional Gate Sequences27

 When mid-circuit measurements require a conditional sequence of
gates to be run, the hardware must be able to react quickly

 For situations where these gates are known in advance, they can be
passed to the hardware with a partial gate identifier (i.e. address for
the gate LUT)

 Given a gate identifier of 0b001010 and a measurement result of 0b0011, the lookup value of the
gate address is converted to 0b0011001010 using a matrix-style bitmask

 Once a measurement result is complete, a secondary trigger is sent to the gate sequencer
such that the additional latency only depends on the latency imposed by the measurement
process and extra trigger

0 0 1 1 0 0 1 0 1 0

1 1 0 0 0 0 1 0 1 0

1 1 0 0 0 0 1 0 1 0 Moreover, depending on how the gate
LUT is programmed, one can optionally
and dynamically configure the aspect
ratio of the matrix lookup, since
measurement result masks are simply
OR’d with the input gate identifier

1 1 0 0 0 0 1 0 1 0

 Since gate identifiers are packed into 256-bit words, multiple gates can be applied based on a
single measurement result and chained together across multiple 256-bit words to realize long
measurement-based sequences

Pulse Managers28

 The compiler has a dedicated Pulse Manager for each rf channel

 Pulse Managers are responsible for organizing spline data associated with different gates

 They mirror the structure of the gate sequencer LUTs for tracking associated data across gates

 Extra tables are used for memoization of spline inputs to avoid refitting

 Makes use of Array of Structs (AoS) and Struct of Array (SoA) schemes for fast lookup

 Pulses: [0: {P[0], P[1], P[4], P[9], …}, 1: {P[12], P[1], P[4], P[9], …}]

 Pulselets: [0: {Spl[5], Spl[6], Spl[7], …}, 1: {Spl[0]}, …}]

 Spline Segments: [0: {Ch: 1, Type: Amplitude, Duration(clk): 132, U0: 235125, U1: 23523..}, …]

Feedback on Gate Definitions29

 Feedback that requires complex algorithms or advanced gate designs
is not always as trivial as incrementing/decrementing a parameter

 Example: Gaussian amplitude modulation in the presence of AOM
distortion

◦ Gaussian needs to be calculated and mapped to account for the distortion
profile

◦ Splines need to be recalculated/encoded for the gate sequencers

 Approach: Use in-situ mutations of gate data to minimize
reprogramming

 Mutated data can be shared among different “classes” of
gates

 Optional “mutation ids” can strictly tag similar classes of
gates to avoid undesired overlap among gates

Compiler Performance Case Study: On-Chip Gate Mutations30

 Gates tested dominantly for
Gaussian amplitude modulation,
symmetric across tones

 All parameters updated during
mutation

 Times are shorter than the 1 ms
Doppler cooling stage used for
repreparing ions after detection

 Off-chip fetch times are ~1 ms, with
~170-200 us for Protobuf
serialization alone

 On-chip mutation is faster than off-
chip mutation when accounting for
upload times

Parser Performance31

 Recursive-descent parser
◦ Well-suited to Jaqal due to its lack of

left-branching grammar rules

 Parsed outputs are recast into a set
of tables, referred to as a
“tabulated” intermediate
representation (TIR)

 The TIR stores unique gate calls
(gate name and inputs), macros,
loops, and other elements into
distinct tables once, and
subsequently refers to them by
index, thus removing redundancies

 This provides the first stage of
compression for the final
representation of gates on
hardware

Tabulated Intermediate Representation32

 Jaqal
from qscout.v1.std usepulses *

let pi 3.141592653589793
let pi2 1.5707963267948966
let phi1 1.234
let phi2 2.456

register q[8]

prepare_all
G q[1] 0 phi1
G q[3] pi2 phi2
< G q[1] 0 phi1 | G q[3] pi2 phi2 >
loop 10 {
 G q[1] 0 phi1
 < G q[1] 0 phi1 | G q[3] pi2 phi2 >
}
G q[3] pi2 phi2
measure_all

 Tabulated Intermediate
Representationcircuit {
 constants [{ name: "pi" value: 3.141592653589793 }
 { name: "pi2" value: 1.5707963267948966 }
 { name: "phi1" value: 1.234 }
 { name: "phi2" value: 2.456 }]
 registers { name: "q" size: 8 }
 imports { source: "qscout.v1.std" }
 gate_table [{ index: 0
 name: "G"
 args [{ type: QUBIT string_value: "q" arguments { value: 1 } }
 { type: INTEGER value: 0}
 { type: CONSTANT string_value: "phi1" }]
 { index: 1
 name: "G"
 args [{ type: QUBIT string_value: "q" arguments { value: 3 } }
 { type: CONSTANT string_value: "pi2" }
 { type: CONSTANT string_value: "phi2" }] }]
 block_table [{ index: 2
 block_type: PARALLEL
 statements: [0 1] }
 { index: 3
 block_type: LOOP
 argument { typ: INTEGER value: 10 }
 statements: [1 2] }
 { index: 4
 block_type: SUBCIRCUIT
 statements: [0 1 2 3 1] }]
 body: 4
}

 Jaqal

Tabulated Intermediate Representation33

circuit {
 constants [{ name: "pi" value: 3.141592653589793 }
 { name: "pi2" value: 1.5707963267948966 }
 { name: "phi1" value: 1.234 }
 { name: "phi2" value: 2.456 }]
 registers { name: "q" size: 8 }
 imports { source: "qscout.v1.std" }
 gate_table [{ index: 0
 name: "G"
 args [{ type: QUBIT string_value: "q" arguments { value: 1 } }
 { type: INTEGER value: 0}
 { type: CONSTANT string_value: "phi1" }]
 { index: 1
 name: "G"
 args [{ type: QUBIT string_value: "q" arguments { value: 3 } }
 { type: CONSTANT string_value: "pi2" }
 { type: CONSTANT string_value: "phi2" }] }]
 block_table [{ index: 2
 block_type: PARALLEL
 statements: [0 1] }
 { index: 3
 block_type: LOOP
 argument { typ: INTEGER value: 10 }
 statements: [1 2] }
 { index: 4
 block_type: SUBCIRCUIT
 statements: [0 1 2 3 1 1 0 1 2 1 0 2 0 0 2 2 0 2 0] }]
 body: 4
}

from qscout.v1.std usepulses *

let pi 3.141592653589793
let pi2 1.5707963267948966
let phi1 1.234
let phi2 2.456

register q[8]

prepare_all
G q[1] 0 phi1
G q[3] pi2 phi2
< G q[1] 0 phi1 | G q[3] pi2 phi2 >
loop 10 {
 G q[1] 0 phi1
 < G q[1] 0 phi1 | G q[3] pi2 phi2 >
}
G q[3] pi2 phi2
G q[3] pi2 phi2
G q[1] 0 phi1
G q[3] pi2 phi2
< G q[1] 0 phi1 | G q[3] pi2 phi2 >
G q[3] pi2 phi2
G q[1] 0 phi1
< G q[1] 0 phi1 | G q[3] pi2 phi2 >
G q[1] 0 phi1
G q[1] 0 phi1
< G q[1] 0 phi1 | G q[3] pi2 phi2 >
< G q[1] 0 phi1 | G q[3] pi2 phi2 >
G q[1] 0 phi1
< G q[1] 0 phi1 | G q[3] pi2 phi2 >
G q[1] 0 phi1
measure_all

 Jaqal Tabulated Intermediate
Representation

Compression, Compression, Compression Compression334

1. Minimizing samples: baseband frequencies of ~200 MHz can be generated by DDSs

2. Hardware-native phase bookkeeping: cuts down on amount of unique data needed
- Global phase synchronization handled by custom DDS
- Dedicated phase accumulators track virtual phase, eliminating issues with context

dependency

3. Cubic spline interpolators offer 102 to 104 reduction in data on average

4. Gate sequencer LUTs store unique pulse information locally

5. Parser distills unique gate calls resulting in a compressed intermediate
representation

Non-local Gate Definitions35

 Jaqal is first parsed, then converted to a compressed intermediate representation (IR)

Parser

Jaqal

Non-local Gate Definitions36

 Jaqal is first parsed, then converted to a compressed intermediate representation (IR)

 The IR is sent to the pulse compiler, which looks for existing gate definitions

Parser Pulse Compiler

Tabulated
Intermediate

Representation
(IR)

Jaqal

Non-local Gate Definitions37

 Jaqal is first parsed, then converted to a compressed intermediate representation (IR)

 The IR is sent to the pulse compiler, which looks for existing gate definitions

 If a gate isn’t defined, or needs an updated definition, the compiler requests a new one from a JaqalPaw
server

Parser Pulse Compiler JaqalPaw
Server

Tabulated
Intermediate

Representation
(IR)

Gate
Definition
Request

Gate Definition Response

Jaqal
JaqalPaw

Non-local Gate Definitions38

 Jaqal is first parsed, then converted to a compressed intermediate representation (IR)

 The IR is sent to the pulse compiler, which looks for existing gate definitions

 If a gate isn’t defined, or needs an updated definition, the compiler requests a new one from a JaqalPaw
server

 The pulse compiler uses the resulting definition(s)
 to construct the compiled data for hardware

Parser Pulse Compiler

Octet Gate
Sequencers

JaqalPaw
Server

Tabulated
Intermediate

Representation
(IR)

Gate
Definition
Request

Gate Definition Response

Programming and
Sequence Data

Jaqal
JaqalPaw

On-Chip Gate Definition Performance39

 Protobuf serialization time on an external machine is longer than generating on-chip
gates (left)

 Taking upload times into account, the on-chip speedup is ~10-15x

A)

Compiler Topologies40

 A) Parser and Pulse Compiler
are on one machine, JaqalPaw
Server is (optionally) on another
machine. Octet Gate Sequencer
handling is on chip.

Parser

Pulse Compiler

Octet Gate
Sequencers

JaqalPaw
Server

A)

B)

Compiler Topologies41

 A) Parser and Pulse Compiler
are on one machine, JaqalPaw
Server is (optionally) on another
machine. Octet Gate Sequencer
handling is on chip.

 B) Parser is on one machine,
JaqalPaw Server is (optionally)
on another machine. Pulse
Compiler and Octet Gate
Sequencer handling is on chip.

Parser

Pulse Compiler

Octet Gate
Sequencers

JaqalPaw
Server

Parser

Pulse Compiler

Octet Gate
Sequencers

JaqalPaw
Server

A)

B)

Compiler Topologies42

 A) Parser and Pulse Compiler
are on one machine, JaqalPaw
Server is (optionally) on another
machine. Octet Gate Sequencer
handling is on chip.

 B) Parser is on one machine,
JaqalPaw Server is (optionally)
on another machine. Pulse
Compiler and Octet Gate
Sequencer handling is on chip.

 C) JaqalPaw Server is on one
machine. Parser, Pulse
Compiler, and Octet Gate
Sequencer handling is on chip.

Parser

Pulse Compiler

Octet Gate
Sequencers

JaqalPaw
Server

Parser

Pulse Compiler

Octet Gate
Sequencers

JaqalPaw
Server

Parser

Pulse Compiler

Octet Gate
Sequencers

JaqalPaw
Server

C)

A)

B)

Compiler Topologies43

 A) Parser and Pulse Compiler
are on one machine, JaqalPaw
Server is (optionally) on another
machine. Octet Gate Sequencer
handling is on chip.

 B) Parser is on one machine,
JaqalPaw Server is (optionally)
on another machine. Pulse
Compiler and Octet Gate
Sequencer handling is on chip.

 C) JaqalPaw Server is on one
machine. Parser, Pulse
Compiler, and Octet Gate
Sequencer handling is on chip.

 D) (Not shown). Everything on
chip, but still need to send
relevant calibration data

Parser

Pulse Compiler

Octet Gate
Sequencers

JaqalPaw
Server

Parser

Pulse Compiler

Octet Gate
Sequencers

JaqalPaw
Server

Parser

Pulse Compiler

Octet Gate
Sequencers

JaqalPaw
Server

C)

Simultaneous Support for All Topologies44

 We can run all topologies simultaneously.

Parser

Pulse Compiler

Octet Gate
Sequencers

JaqalPaw
ServerParser

Parser

Pulse Compiler

Simultaneous Support for All Topologies45

 We can run all topologies simultaneously.
 Can use the configuration that makes the most sense on a case-by-case basis. For example,
massive Jaqal files will parse more efficiently on a normal PC, but smaller files and mutative
algorithms are better suited for running on chip.

Parser

Pulse Compiler

Octet Gate
Sequencers

JaqalPaw
ServerParser

Parser

Pulse Compiler

Experimental
Control Computer

Jaqal Application
Framework

46

Email: qscout@sandia.gov (mailing list)
Web: https://qscout.sandia.gov
Jaqal: https://gitlab.com/jaqal/jaqalpaq

Experimental
Susan Clark, PI
Christopher Yale
Dan Lobser
Melissa Revelle
Matt Chow
Ashlyn Burch
Megan Ivory
Theala Redhouse
Josh Wilson
Craig Hogle
Dan Stick

Trap Fabrication
and Packaging
Becky Loviza
Ed Heller
Chris Nordquist
Ray Haltli
Tipp Jennings
Ben Thurston
John Rembetski
Eric Ou
Matt Delaney
Zach Meinelt
Nick Jimenez

Theory & Software
Andrew Landahl
Ben Morrison
Kenny Rudinger
Antonio Russo
Brandon Ruzic
Jay Van Der Wall
Josh Goldberg
Tim Proctor
Kevin Young

Mechanical &
Optical
Engineering
Brad Salzbrenner
Madelyn Kosednar
Ted Winrow
Bill Sweatt
Dave Bossert

Collaborators

Collaborators
Alan Bell (AOSense)
Ken Brown (Duke)
Marko Cetina (Duke)
Nafis Irtija (UNM)
Jungsang Kim (Duke)
Chris Monroe (Duke)
Jim Plusquellic (UNM)
Eirini Tsiropolou (UNM)

Embedded
Dan Lobser
Jay Van Der Wall
Josh Goldberg

Collaborators (UNM)
Nafis Irtija
Jim Plusquellic
Eirini Tsiropolou

Funding
US Department of Energy, Office of Science, Office of Advanced
Scientific
Computing Research Quantum Testbed Program and National
Quantum
Information Science Research Centers, Quantum Systems Accelerator

mailto:qscout@sandia.gov
https://qscout.sandia.gov
https://gitlab.com/jaqal/jaqalpaq

Gate Mutations47

 Gates are broken up into low level pulse information and duplicate information is shared
across gates

 If a gate needs to be updated, adding new
information to the lookup tables can cause
fragmentation and eats up precious memory in
firmware lookup tables

 Instead, gate data can be overwritten in place by
mutating pulse information at the lowest level

 Mutated data can affect other gates!

SySx

am
p0

0

am
p1

0

fr
eq

0 0
fr

eq
1 0

ph
s0

0

ph
s1

0

zr
ot

0 0
zr

ot
1 0

Ph
s0

1

Sxuid=1

am
p0

0

am
p1

0

fr
eq

0 0
fr

eq
1 0

ph
s0

0

ph
s1

0

zr
ot

0 0
zr

ot
1 0

am
p0

1

am
p1

1

fr
eq

0 1
fr

eq
1 1

ph
s0

1

ph
s1

1

zr
ot

0 1
zr

ot
1 1

Syuid=2

 Gates can be assigned a “uniqueness” identifier,
that can be used to prevent data de-duplication for
a single gate, or a class of gates which are
expected to share common data

Non-local Gate Mutations48

 Gates typically rely on calibration
parameters, and mutations typically
target these parameters

 Gates can call other functions, including
from external libraries, as well as other
gates, all of which can rely on calibration
parameters

 We back out a dependency graph for all
calibration parameters and all affected
gates

 The gate requests from the gate compiler
are collected for a particular circuit to re-
construct gate definitions for each gate
and the associated inputs

Sx R Gauss
Helper

Calibrated
Amplitude

Calibrated
DurationSy

Sx Sy

Calibrated
Amplitude

Calibrated
Duration

R

Full dependency graph

Inverted calibration/gate dependency graph

Sx q[1]
Sx q[2]

Sy q[2] R q[1] 0 pi
R q[1] pi/4 pi/8Affected gate calls

Drift Control49

 Experimental result is intercepted and used to modify
one or more calibration parameters based on a user-
defined function

 The updated parameters trigger necessary mutations
for the affected gates used in the current circuit to
generate the next point

Data Ordering50

RPU-Driven Sequences51

 Subcircuits cherry picked based on results of Collatz
sequences calculated with the RPU

 Static registers used to update overall amplitude scaling
before each circuit, amplitudes determined from trig
functions on the RPU

