SAND2022-12341C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressediin
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

erformant coherent contro
bridging the gap between high-

and low-level operations on

A
. - " v -
T ‘!_ - e - & 1
. o) o N |
. ja..ui'-'-pq .
T, |
@ s & s -_?I-'\-,‘_JLN_‘
iy il o | W
L g, B W
= e)l o x = ¥
i e --‘\—‘F — - — - — i
s sl =L ‘ i L L e
L, 5 i
i -

PRESENTED BY
Daniel Lobser, Jay Van Der Wall, and Joshua
- — @ENERGY NISA

Gotdberg -
Sandia National Laboratories is a multimission

laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly.owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration/under contract' DE-NA0003525.

2 | Requirements For A Self-Contained Control System o

Challenges

Complex pulse shaping Can result in a lot of data.
Classical computing resources to calculate pulse shapes.

Long gate sequences Even more data.
Conditional sequences Fast response based on mid-circuit measurements. I
Tight-loop feedback on Tight loop = low latency, must take network transfers out of the loop.]
control parameters Pulse-level gate definitions must be calculated and compiled on chip.
Approaches
Arbitrary waveform Maximum control over pulse shapes. Requires lots of data, long upload times &
generator (AWG) limited circuit depth.

Waveforms must be calculated externally
FPGA + Direct Digital Highly customizable. Soft-core CPUs have limited processing]
Synthesizers (DDSs) or Deterministic timing. power and eat into FPGA resources.
Digital-to-Analog Soft-core CPUs or state machines can Design complexity.
Converters (DACs) be used for advanced control flow. ‘
System-on-Chip (50C) Hard-core CPUs and FPGA fabric. Design complexity.

Some SoCs have real-time processors.

"%wng’

"ﬁ f?‘«\.

Our Approach For A Self-Contained Control System QscouT

Xilinx RadioFrequency System on Chip
(RFSoC)

Quad-core ARM application processing unit
(APU)

> Runs Linux
> Non-deterministic timing

RFSoC

./

Dual-core ARM real-time processing unit
(RPU)

> Runs bare-metal or real-time operating systems
(RTOS)

o Deterministic timing (mostly)

<

APU and RPU can be independently operated
via asymmetric multiprocessing (AMP)

Large FPGA fabric

Integrated 6.5 GSPS 14-bit DACs (8x) and 4
GSPS 12-bit ADCs (8X) Deterministic Timing, Programming Difficulty

I I Em B

4 I Our Approach For A Self-Contained Control System

Custom gateware design (called “Octet”),
tailored for target system

> Developed for QSCOUT
(https://gscout.sandia.gov)

o Integrated cubic-spline interpolators (based on
work from NIST)

o Custom DDS and gate sequencer modules

> Low-level error mitigation features for
frequency stabilization and crosstalk
compensation

Software interface written in Go, runs on
APU

o Communication over ethernet (QRPC/Protobuf)

Circuits compiled on-chip from Jaqal (“Just
another quantum assembly language”)

Pulse-level gate definitions both on-chip
(using Julia), and off-chip (using JagalPaw,
“‘Jaqgal Pulses and Waveforms”)

https://qscout.sandia.gov

s I
|

i e) T o O
i

5 I Realizing Quantum Gates
QSE(;UT
Gates specified in Jagal must be converted to a form that is experimentally realizable

The internal quantum states of individually-addressed ions are manipulated via laser light passed ‘
through a acousto-optic modulators (AOMs)

Each AOM is modulated with an rf waveform to precisely tune the frequency, phase, and amplitude |
of the light

These waveforms are specified using JagalPaw (“Jagal Pulses and Waveforms”)

—— 1 - e . ._&'lll
Classical 0) I
“Textbook input” \ /-
(Jagal) o
rf Waveform .
(JagalPaw) Output Photon Resulting

(QSCOUT Hardware) Quantum
State

6 I Target System

171Yb* qubit, clock state 12.6

GHz
Py /s

355 nm
28, /9 — | 12.6 GHz

12.6 GHz driven via
optical Raman transitions
for individual qubit
addressing

We use two beam

configurations |
Co-propagating Counter-propagating

GLOBAL AOM

Co-propagating is robust against
phase uncertainty

Counter-propagating used for
driving motional transitions

B
QSCOUT
Individual Global
beams beam
oo m e
! Sideband
| oli
|
L o
SIoIDIooIoIoooIozzs

Need two tones per output

Different frequencies used
in each configuration

7 I Target System
QSESUT
Phase control is imperative! Individual | Global
beams beam
It
Each configuration requires different frequencies Sideband

i oli
Phase of beat note produced by red- and blue-sideband ﬂ h

tones determines global phase of the two-qubit Mglmer- ~ «__________________
Sgrensen gate

0
-]
Q
P
0
C
o
~—

Need two tones per output

Different frequencies used
in each configuration

Quantum Gates QscouT
Gates must be defined as discrete “pulses” with precise timing and characteristics to achieve the
@ﬁg’(reegfrﬁ%‘g?t gate designs Gates must be synchronous Long sequences can be
require discrete or continuous across all channels and tones, necessary, so a compact
modulation of frequency, with the ability to run all representation is needed.

phase, and amplitude. modulatlon types

. . . | il it |-. Pt — . ‘ | i | : i
- :[‘“ , [. | - ' I — i | » : '
L . i| | | ’ M AY
L. it ¥’ |I i B A R ——_—
", | J I|| H s ﬂ|
5‘ A .j.._'!:,' l1'.'.'hw"|ll*|l II|Il| ,_l,i_ "|| I ol AR A ["al.hf! T mm 1 n;u I th :
[N - f! T i '
I - 1[4 A | 1 v TV \ }__{ g
il il L UGGl T | | 1Y Fn)mnumuu” }_— _
- | | | \"HH"‘\ mm llﬁ .
| | .il:ll | . . | | i | i | _ LI LLLLILL, |

Gate times (1-200 us) are typically much slower than the period (5 ns) of the natural frequencies
(200 MHz) needed to drive the AOMs

Instead of writing raw waveform data like an arbitrary waveform generator (AWG) we can take
advantage of more compact representations

Compression,—Compression,-Compression Compression?

1. Minimizing samples: baseband frequencies of ~200 MHz can be generated by DDSs

b5 ' &
\ %

B g s
b e e

10 I Changing Frequency in a Direct Digital Synthesizer (DDS)
QSE(;UT
Conventional DDS consists of a Multiple independent sources = Doesn't scale
hase accumulator and looku .
P P Manual phase bookkeeping
table (LUT) 9
> Context-dependent gate definitions
Changes to frequency are > Requires more data if conditionally-executed gates
continuous are used
> Good for frequency modulation > Not robust against timing variation (e.g. missed
- Bad for phase reproducibility clocked edges for triggers) for conditionally-

Wexeodted gate's — wo
I

e »
NP

AV,
LUT

Hardware-Native Phase Bookkeeping: Global Phase
Synchronization
QSCOUT

11

Dedicated multiplier calculates global phéise,wt No manual bookkeeping required
, Which optionally overwrites accumulator when a

synchronization trigger is applied
Robust against timing variation, e.g. missed
! f clock edges when operating with hardware on

synci | multiple clock domains for, among other things,
_/ ‘ mid-circuit measurements
WXDP

Global counter fanned out to all channels: cross-
channel synchronization built in

\/ Wy — Wi w1 — Wo, sync 1

7 1) 1A
U1

_—>

12

Compression-Compression-GCompression Compression3

i
QSCOuUT

1. Minimizing samples: baseband frequencies of ~200 MHz can be generated by DDSs

2. Hardware-native phase bookkeeping
- Global phase synchronization handled by custom DDS

13

Hardware-Native Phase Bookkeeping: Virtual Z Gates aka “Frame /.
Rotations” LEK
.
. . QSCOUT
Only X and Y gates are directly driven
*Actual model slightly more complex:

Z gates can be implemented as a virtual phase optional forwarding/inversion used to

offset handle differential, or (anti)symmetric
This phase is persistent in order to affect all phase offsets needed for different
following gates - takes care of context- configurations for single- and two-qubit

gates

eplen ?) sync f| @
5

@ > CIN TN

NN

)
0

Riighet

L [\L/]

CIN TN

14 Compression,—-Compression-Compression Compression3

A
QSCOuUT

1. Minimizing samples: baseband frequencies of ~200 MHz can be generated by DDSs

2. Hardware-native phase bookkeeping
- Global phase synchronization handled by custom DDS

- Dedicated phase accumulators track virtual phase, eliminating issues with context
dependency

15 I Cubic Splines

Parameter modulation described with cubic spline coefficients

Gateware interpolators use a lightweight model (developed by NIST) that relies only on

addition

Piecewise Cubic

Polynomial Segments Si(t) = Z Un,z’(t —t;)"

Fitting natural cubic splines requires inverting a symmetric tridiagonal matrix

- ~—~—
- ~
- -

So(t)

Can be represented with two arrays (memory efficient)

¥

o

=

—_

[S

a

b —
S—

[90)
g1
g2

(

\

3(k1 — ko)
3(ke — ko)
3(ks — k1)

S(kn—l - kn—S)
3(kn — kn—2)
3(kn o kn—l)

)

Mapping for gateware
interpolators uses a
custom floating point

scheme and
asymmetric register
sizes to maintain
resolution for slow
modulation

~~
~
S~
~

~

——
vo — 01001101
40 bits 16 bits

—P—
v1 — 00010011 . 0101

40 bits 32 bits
v9 — 00000100.11010101
40 bits 48 bits

vs — 00000001 .001101010100

‘?».-f;i::f."

16 Compression,—-Compression-Compression Compression3 ""

i
QSCOUT

1. Minimizing samples: baseband frequencies of ~200 MHz can be generated by DDSs

2. Hardware-native phase bookkeeping: cuts down on amount of unique data needed
- Global phase synchronization handled by custom DDS

- Dedicated phase accumulators track virtual phase, eliminating issues with context
dependency

3. Cubic spline interpolators offer 102 to 104 reduction in data on average

7 | Sequencing Spline-Modulated Data

QsCoUT I
Each spline segment is routed to the appropriate spline engine for subsequent control of a dual
-tone DDS ‘
Input words are really 256 bits and extra metadata is truncated during routing

metadata duration V3 Va \%1 Vo

N 7N N N\

’_/H -~ -~ -~ -~ -~ N\ -~ AN -~ I
001011 101...010 000...100 010...111 O11...001 110...000 O11...111
N s NG 7 N 7 Ny 7 N v NG ~ 7 N ~~ 7

vV

40 bits

exponent

Minimum gate size is 8 words, or 2Kb

5 bits 11 bits 40 bits 40 bits 40 bits 40 bits

A o

Spline Engine } 216 bits
AMP? | AMP? | AMPS [ARPY | AMP? |AMPY. |AMPY, Amplitude Tone 0 Spline Engine
o AMP} | AMP} | AMPL | AMP; | AMPy AMP] » Amplitude Tone 1 Spline Engine
2 FRQJ FRQY FRQY FRQ} » Frequency Tone 0 Spline Engine ‘
| -
% FRQ, FRQIs FRQ; » Frequency Tone 1 Spline Engine ——* -
= PHSY PHS? » Phase Tone 0 Spline Engine
© : :
§ PHS} PHS] PHS; PHS} » Phase Tone 1 Spline Engine :
FRMS | FRMS | FRMY | FRM; |FRM? |FRMg | FRMg — Frame Rotation Tone 0 Spline
FRMj FRM} » Frame Rotation Tone 1 Spline
< Engine

Time

18 I Data Handling for Concurrent Execution

All 64 spline engines must be run concurrently
Spline engines are fed by First-In-First-Out (FIFO) buffers

Unused channels are padded with NOPs to preserve timing downstream

Ampg | amP) | amPg [AP | amP) [amPY, [aMPY, [AMPY, [Amplitude Tone 0 Spline Engine |
9 . . . N
AMP; | AMPg | AMP; | AMPg | AMPg AMP; — Amplitude Tone 1 Spline Engine |
, , Il
FRQ) ‘ FRQY | FRQ3 FRQgQ — Frequency Tone 0 Spline Engine —t o "'” | |'|
FRQL, | FRQl FRQ} | Frequency Tone 1 Spline Engine (8 | |
: . i > 1| |
PHS; PHS; —*] Phase Tone 0 Spline Engine Hi- > i i |"|
PHS} PHS] PHS; | PHS, [Phase Tone 1 Spline Engine > “%ﬁn“m u""
4 : _ | ’ | 4
FRMS | FRMS | FRMY | FRMY | FRMS | FRMS | FRMS [Frame Rotation Tone 0 Spline [|1 o | ||| .
N , , i — [tk
FRM FRMj —* Frame Rotation Tone 1 Spline [il |
I TTIVIVI | LTITIVLqg i FTdaime XO I B
l TIVIVIg | T ILVI = he orie 1 Spirie o
l " IVIVI | I IVIVI @Fﬂ]é orie 1 SpImne

Engine

19 I Abstracting Pulse Information: Gate Slices
Gate data is broken up into “gate slices”, based on individual steps in a circuit QscouT

Gate slices separate data based on rf output channel

Jagal (Just Another Quantum Assembly JagalPaw (Jaqal Pulses and
Language) Waveforms)
G q[1] O phit def gate_G(self, qubit, theta, phi):
G q[3] pi2 phi2 phase = (phi < @) * 180 + theta / np.pi * 180

duration = self.duration_from_rabi_angle (phi, qubit)
return [PulseData(

Gate Slices [GLOBAL BEAM, |
duration,
G q[1] 0 phi1 G q[3] pi2 phi2 amp@=self.gaussian(phi, qubit),
AN frego@=self.upper_carrier_frequency,
NN

C ////////A sync_mask=0bo1,

0: ce)s

. : PulseDat
Ch ///////A ||) Sieifa.]éubit_mapping[qubit],

1:] - / duration,
Ch N \\ amp@=self.gaussian(phi, qubit),
2: N freg@=self.lower_carrier_frequency,

C.h phase@=phase,

Gates can differ based on target channel and input values f‘f’f‘;—”‘as'(:@b@l’

Ga%huniqueness determined by names and inputs

b
.>-"-—{.

20 I Maintaining Scheduling on Unused Channels: Padded Gate Slices 77 [

i
QSCOUT

Gate slices are given a unique tag based on their call signature

G1 q[1] O phif1

- S

G2 q[3] pi2 phi2 =» Sy

So

S,

s

A

I,

NN

A

Unused channels are padded with NOPs to preserve
scheduling of later gate calls, and stored as “padded
gate slices”

S, —Pn
Padded gate slices are concatenated for readout

Po HP1H...

HAAAAHH G NN

Language)

21 I Handling Parallel Gate Execution

Jagal supports parallel execution of gates:

< G q[1] 0 phi1 | G q[3] pi2 phi2 >

Must ensure compatibility of pulse information on shared channg

G q[1] O phi1 G q[3] pi2 phi2

Ch 7 RN\ v) s

Ch Vo200 1| = Woiu0 = s s

ch NNNANVEEEE NN NN\ NN\

2: o
Ch

ey ™

22 | Breaking Up Data By Parameter

Each gate consists of a sequence of pulses, determined by a series of parameters:
amplitude, frequency, phase, and frame rotation, for two tones per channel.

Each parameter supports modulation using spline interpolators.
Individual sequences of parameters are called pulselets

Pulse Pulselet
| T T J J
I | | | ampd [AMPS [amPg [AmpS [ampg |}

s ///////// AMP; | AMP; | AMP; | AMPg | AMP;
<4 FRQ) FRQ) FRQY

P 1 1
7 I I I FRQ;5 FRQ; g
Gate < /////% | | : | I PH%‘D
............... - D
e e e, PHS? PHS;
\\\\ e FRM? FRMY FRMY FRMY
\ \ e o o o ik 2 . 3 4 T 5

l l l FRM,

23

DMA

Data Ordering

AmPg [AMPY [AMPE [AMPS [AMPY

AMPY,[AMPE, [AMPS,

AMPY [AMPg | AMP] [AMPY [AMPY AMP}
FRQ) FRQ] | FRQY FRQY
FRQ, [FRQ}, FRQ)
PHS) PHS)

PHS] PHS] \ PHS}

FRMS [FRMS | FRMS | FRMS

FRAMG [FRM

FRAM}

FRAM}

AMPY [AMPY

.\\u»‘;\.«\uw}\ AMPY

,mry,\mp‘,g AMPY,

AMPY | AMPY

.\\u»;\.\\u»; AMP}

FRQS FRQ! | FRQY
FRQl; | FRaj
PHS)
PHS} PHS, PHs) | PHs}

FRMS | FRMG | FRMS | FRMJ

FRM [FRMQ [FRME

FRM}

FRM}

AMPY [AMPY [AMPg [AMPS [AMPY

AMPE [AMPY [AMPY,

nwg\ \MP"“,\\IP[\ ,\\.p;\ AMP} AMP}
FRQ) FRQ] | FRQY FRQY
FRQ}, j FRQ}, FRQ}
PHS) PHS)

PHS] PHS, PHS, \ PHS}

FRMY [FRMS | FRMS ‘ FRMZ
FRM}

nij[nm: FRMJ

FRM}

ampg [AMPY

AmPg [AnPg [ampg

AMPY, [anipg,JAMPY,

AMP] | AMPY | AMPE | AMP} [AMPY AMP}
FRQY FRQ | FRQY FRQY
FRQL, [FRQ}, FRQj
Prisy Pisy

PHS} PHS) PHS) | PHs

FRM | FRMS | FRMS | FRMJ

FRME [FRMQ [FRMS

Data is fed to spline engines via DMA through a single bus and a
switch network

Blocking conditions can lead to FIFO starvation, especially in cases
of highly asymmetric data

Data need to be sorted based on time needed

FRAM} FRAM}
AMP] [AMPY [AMPS [AMPS [AMPS [AMPY, [ANPS, [AMPY,
AMP} \ \m»:_\,\\u»',\,\\w;\ AMP} AMPY
FRQJ FRQ | FRQY FRQY | |
FRQl, | FRal FRQL I I I | |
PHS{ PHS]
pis; | pms) Pisy | pist I I I |
FRME | FRMS | FRM | FRMZ | FRMY | FRM | FRMG I
FRAM} FRAM}
ampy [AMPY [amPg [AMPS [AMPS [aMPg [AMPY, [AMPY,
AmPy [AMPY | APl [AMP] [AMPY AMPL
FRQ) FRQ] | FRQY FRQY
FRQL, [FRQLL FRQ)
PHS) PHS)
PHS} pHsy | PHs}

FRMS | FRMS | FRMS | FRMJ

FRM) | FRM3 | FRMS

FRM}

FRAM}

AMP) \ AMPY

.\\u»‘;\.«\uw}\ AMPY

,mry,\mp‘,g AMPY,

AMPY | AMPY

.\\u»;\.\\u»; \ AMP}

AMPY

FRQS FRQ! | FRQY
FRQ, | FRaj,
PHS)
PHS} PHS, PHs) | PHs}

FRMS | FRMG | FRMS | FRMJ

FRM [FRMQ [FRME

FRM}

FRM}

AmPg [AMPY [AMPg [AMPS [AMPY

AMPY, [aMPY [AMPY,

AMPY [AMPE | AMP] [AMPY [AMPY AMP}
FRQ) FRQ] | FRQY FRQY
FRQ, [FRQ}, FRQ)
PHS) PHS)
PHS] \ PHS] PHS] PHS}
FRMJ \ FRMY \ FRM \ FRMY ymm\wm: FRM)
FRM} FRM}

24

Reducing Overhead: Compressing Gate Data

\/.’
“
[. 00 |

In many cases, data can be reused, such as for X and Y gates VX VY G
Only 2.25 Kb of raw data is needed to describe ‘
i > | > > [5>
comparable X/Y gates (only one phase word differs) AAEIEIEE Il ZIZ] . |2l
_ CARCAE S FoA R R = B RZR RA s 9| I
—> Locally store data on chip and read out as eelex colonl” "leolenl I39ls-
necessary
PLUT g
Raw data stored in Pulse Lookup Table Ps | AMP)
(PLUT) Ps | AMP}
> Gives a fixed factor of 12/216 in i? ;;1(3%
wasuldbeside]E%r itera Stﬁ'nrough address pz FRM%
space, then only address boundaries are
needed Define gates with numeric ids and store in a Gate LUT

- Data is not contiguous if more than 2 gates (GLUT)

rely on the same spline segments

° Introduce a Mapping LUT (MLUT) to remap
addresses so they are linearly ordered for

o |terator module is added to automatically

step through addresses footprint

> Allows gates to be compressed to (currently) 11 bits, for a
compression ratio < 0.00625

o Compression ratio is better for gates with a lot of modulation
each gate > Restricts time ordering requirements to individual channels
o More gates can be packed into a smaller memory

ﬁﬁ;f

s | Compression—Compression-Compression Compression? 17
QSE(;UT
1. Minimizing samples: baseband frequencies of ~200 MHz can be generated by DDSs

2. Hardware-native phase bookkeeping: cuts down on amount of unique data needed
- Global phase synchronization handled by custom DDS

- Dedicated phase accumulators track virtual phase, eliminating issues with context
dependency

3. Cubic spline interpolators offer 102 to 104 reduction in data on average

4. Gate sequencer LUTs for storing pulse information locally

26

Data Flow

Initial programming data is uploaded

before gates are sequenced
_ . PLUT Programming Data {
If a gate is called once, overhead is

3 extra words when compared to

o)

irect streamin
direct strea g MLUT Programming Data

GLUT Programming Data

Sequence Data

Subsequent gate calls are cheap,
up to 20 gates per word

Partial programming data can be interleaved with
sequence data for circuits with a lot of unique gates

This is more efficient than direct streaming if fewer than
N-1 parameters are updated for an N-parameter gate

“

AMPE || t | wvs | va | w1 | o

AMP; [t | vs | va | v1 | w0

PHSS ||t | vs | va | v1 | wo

FRM 1 Lt vs | v2 | U1 | o

Moy : Ps | Mas : P3| Mag : P Ma, : P,
G Moy — Mis

G

AMPY || t | vz | w2 | v1 | wo

Gs

AMPY || t | v3 | va | v1 | vo

Gs

AMPg t | vy | va | v1 | Vg

Gs | G7 | Ge | Gr Gi2 | Gi | Gi7 | Go

27

Fast Branching For Conditional Gate Sequences ity

C e : . H A F——)T
When mid-circuit measurements require a conditional sequence of —

gates to be run, the hardware must be able to react quickly Iy

For situations where these gates are known in advance, they can be R H R.(m) H)
passed to the hardware with a partial gate identifier (i.e. address for - :

the gate LUT) a
Given a gate identifier of 0b001010 and a measurement result of 0b0011, the lookup value of the

gate address is converted to 0b0011001010 using a matrix-style bitmask
0 0 1 1 0 0 1 0 1 0

Once a measurement result is complete, a secondary trigger is sent to the gate sequencer
such that the additional latency only depends on the latency imposed by the measurement

HF&&%&?HQ&’H&M i&gﬁf)w the gate 1 1 0 0 0 0 1 0 1 0

LUT is programmed, one can optionally

and dynamically configure the aspect L 1 0 0 0 0 1 0 1 0

ratio of the matrix lookup, since 1 : ol o1 o1 o 1 0 1 0

measurement result masks are simply

R’d with the input gate identifier
gi cevg\;”ate i(?eln |fyerg areI pac Ield into 256-bit words, multiple gates can be applied based on a

single measurement result and chained together across multiple 256-bit words to realize long
measurement-based sequences

28

Pulse Managers

The compiler has a dedicated Pulse Manager for each rf channel

Pulse Managers are responsible for organizing spline data associated with different gates
They mirror the structure of the gate sequencer LUTs for tracking associated data across gates
Extra tables are used for memoization of spline inputs to avoid refitting

Makes use of Array of Structs (AoS) and Struct of Array (SoA) schemes for fast lookup

Pulses: [0: {P[O], P[1], P[4], P[9], ...}, 1: {P[12], P[1], P[4], P[9], ...}]
Pulselets: [0: {Spl[5], Spl[6], Spl[7], ...}, 1: {SpI[O]}, ...}]
Spline Segments: [0: {Ch: 1, Type: Amplitude, Duration(clk): 132, U0: 235125, U1: 23523..}, ...]

29

Feedback on Gate Definitions

Feedback that requires complex algorithms or advanced gate designs
is not always as trivial as incrementing/decrementing a parameter

Example: Gaussian amplitude modulation in the presence of AOM
distortion

o (Gaussian needs to be calculated and mapped to account for the distortion
profile

> Splines need to be recalculated/encoded for the gate sequencers

Approach: Use in-situ mutations of gate data to minimize

leB

L
QSCOUT

led

250 o

0.05 4

reprogramming VX VY G E?'
P I TR S 3
=1212|2|2|2|2|E|E|5|5]: |5
O'-UOD'-}U_IOO or|(COolCr OOOP—'HHHP-UQ):’U_l 3.-% 3‘-% 0.05 4

2 0.00{—

Mutated data can be shared among different “classes” of 005

gateS R 0,00 =

———————————— -7 | 0.00 | =—————————

=+0.05 -

Optional “mutation ids” can strictly tag similar classes of
gates to avoid undesired overlap among gates

30 I Compiler Performance Case Study: On-Chip Gate Mutations e
QSCOUT
_ ¢ Data encoding 0.2464(3)*N + 3.40(4) us
Gates tested domlnantly for ® Spline refitting and mapping 0.6251(7)*N + 45.92(9) us
Gaussian amplitude modulation, W On-chip fetch time 0.097(2)*N + 70.1(2) ps
Symmetric across tones A Full mutation (Julia gates) 0.943(1)*N + 120.5(2) us
Y Full mutation (Go gates) 0.913(1)*N + 46.5(1) us

All parameters updated during

mutation

Times are shorter than the 1 ms
Doppler cooling stage used for 2507
repreparing ions after detection

3
Off-chip fetch times are ~1 ms, with 2 ;5.
~170-200 us for Protobuf =
serialization alone 100 1 o
+

U

=
On-chip mutation is faster than off- >0 M —4
chip mutation when accounting for 0-

upload times 20 40 60 80 100 120 140 160 180 200
Number of spline knots

31 I Parser Performance

. 2000 A
Recursive-descent parser ® On-chip 21.54(4)*N + 161(2) us

> Well-suited to Jaqal due to its lack of . | ¢ Off<chip >-08(3)*N + 132(1) s
|eft-branChing grammar rules A Off-chip (with upload) 9.22(5)*N + 815(2) us

Parsed outputs are recast into a set 1°90°
of tables, referred to as a
“tabulated” intermediate
representation (TIR)

)
=
[\
[#)
o

I

Parse time (us
H
o
o
o

The TIR stores unique gate calls

(gate name and inputs), macros, 750 -
loops, and other elements into
distinct tables once, and 500 -
subsequently refers to them by
index, thus removing redundancies 250 4

This provides the first stage of | | | | | | | | | |
compression for the final 8 16 24 32 40 48 56 64 72 80
representation of gates on Number of gates

hardware

32

Tabulated Intermediate Representation

Jaqal

from gscout.vl.std usepulses *

let pi 3.141592653589793
let pi2 1.5707963267948966
let phil 1.234

let phi2 2.456

register q[8]

prepare_all
G q[1] @ phi1l
G q[3] pi2 phi2
< G g[1] @ phil | G q[3] pi2 phi2 >
loop 10 {
G q[1] @ phi1l
< G q[1] @ phil | G q[3] pi2 phi2 >
}
G q[3] pi2 phi2
measure_all

QSCOUT

Tabulated Intermediate

Representation

constants [{ name: "pi"

{ name: "pi2"

{ name: "phil"

{ name: "phi2"
registers { name: "q" size
imports { source: "qgscout.
gate_table [{ index: ©

name: "G"

args [{ type:
{ type:
{ type:

{ index: 1
name: "G"

args [{ type:
{ type:
{ type:

block _table [{ index: 2
block_ type:
statements:

{ index: B
block_type:
argument {
statements:

{ index: §
block_type:
statements:

body: [

value: 3.141592653589793 }
value: 1.5707963267948966 }
value: 1.234 }

value: 2.456 }]

: 8}

vl.std" }

QUBIT string value: "q" arguments { value: 1 } }
INTEGER value: 0}
CONSTANT string value: "phil" }]

QUBIT string value: "q" arguments { value: 3 } }
CONSTANT string value: "pi2" }
CONSTANT string value: "phi2" }] }]

PARALLEL
[e1]}

LOOP
typ: INTEGER value: 10 }

[12]}

SUBCIRCUIT
[eT28B121 1]

33

Tabulated Intermediate Representation
Tabulated Intermediate

Jaqal

from gscout.vl.std usepulses *

let pi 3.141592653589793

let pi2 1.5707963267948966

let phil 1.234
let phi2 2.456

register q[8]

prepare_all
G q[1] @ phi1l

G q[3] pi2 phi2
< G g[1] @ phil | G q[3] pi2
loop 10 {

DA DAANODDOANDODODOANODDODO O O

G q[1] @ phi1l

< G gq[1] @ phil

q[3] pi2 phi2
q[3] pi2 phi2
q[1] @ phi1l
q[3] pi2 phi2
G q[1] @ phi1l
q[3] pi2 phi2
q[1] @ phi1l
G q[1] @ phi1l
q[1] @ phi1l
q[1] © phil
G q[1] @ phi1l
G q[1] @ phi1l
q[1] @ phi1l
G q[1] @ phi1l
q[1] @ phi1l

measure_all

@

()]

@

()]

()]

| G q[3]

ql[3]

ql3]

ql[3]

ql3]

ql3]

pi2

pi2

pi2

pi2

pi2

phi2 >

pi2 phi2 >

phi2 >

phi2 >

phi2 >

phi2 >

phi2 >

QSCOUT

Representation
constants [{ name: "pi"
{ name: "pi2"
{ name: "phil"
{ name: "phi2"
registers { name: "q" size
imports { source: "qgscout.

gate_table [{ index: ©
name: "G"

args [{ type:

{ type:
{ type:

index: 1
name: "G"

args [{ type:
{ type:
{ type:

block _table [{ index: 2

body: [

block_ type:
statements:
index: B

block_type:
argument {
statements:
index: [

block_type:
statements:

value:
value:
value:
value:
: 8}
vl.std" }

3.141592653589793 }
1.5707963267948966 }
1.234 }
2.456 }]

QUBIT string value: "q" arguments { value: 1 } }
INTEGER value: 0}
CONSTANT string value: "phil" }]

QUBIT string value: "q" arguments { value: 3 } }

CONSTANT string value: "pi2" }
CONSTANT string value: "phi2" }] }]
PARALLEL
[e1]}
LOOP
typ: INTEGER value: 10 }
[12]}
SUBCIRCUIT
[@612 I 1101210200220280] }]

34

Compression-GCompression-Compression Compression?®
QSE(;UT
1. Minimizing samples: baseband frequencies of ~200 MHz can be generated by DDSs

2. Hardware-native phase bookkeeping: cuts down on amount of unique data needed
- Global phase synchronization handled by custom DDS

- Dedicated phase accumulators track virtual phase, eliminating issues with context
dependency

3. Cubic spline interpolators offer 102 to 104 reduction in data on average
4. Gate sequencer LUTs store unique pulse information locally

5. Parser distills unique gate calls resulting in a compressed intermediate
representation

35 I Non-local Gate Definitions
Jaqgal is first parsed, then converted to a compressed intermediate representation (IR) QscouT

T
R [[

gscout.vi.std
Jaqal 1et pi 2.141592653580790
1et pi2 1.5787963267949

register q[2]

[0] g[1] pi2 pi

> .
Nl
33 I Non-local Gate Definitions Eiﬁfi“‘
Jaqgal is first parsed, then converted to a compressed intermediate representation (IR) QscouT

The IR is sent to the pulse compiler, which looks for existing gate definitions

Tabulated
Intermediate

Representation
(IR)

gscout.vi.std
Jaqal let 3.14159265358979
let 1.5787926326 7949

register q[2]

[8] q[1]

37 I Non-local Gate Definitions
Jaqgal is first parsed, then converted to a compressed intermediate representation (IR) QscouT

If a gate isn’t defined, or needs an updated definition, the compiler requests a new one from a JagalPaw
server

Gate Definition Response

The IR is sent to the pulse compiler, which looks for existing gate definitions I
i
|
’

Tabulated
Intermediate Gate
Representation Definition
(IR) Request

JaqgalPaw

def gate MS{self, qubit1, qubit2, th, ph):
return [PulseData(GLOBAL_ BEAM,
Ofe-hG*self _time scale,
freqd=global_ freq,

gscout.vi.std
Jaqal 1et pi 2.141592653580790
1et pi2 1.5787963267949

ampB=tuple{amps qubiti1),
sync_mask=8b11,
8

register q[2]

[0] g[1] pi2 pi

I I Em B

33 I Non-local Gate Definitions P2
Jaqal is first parsed, then converted to a compressed intermediate representation (IR) QscouT

If a gate isn’t defined, or needs an updated definition, the compiler requests a new one from a JagalPaw
server

The pulse compiler uses the resulting definition(s) Gate Definition Response

The IR is sent to the pulse compiler, which looks for existing gate definitions I
i

to construct the compiled dat?f r hardyare
abulate
Intermediate Gate
Representation Definition
(IR) Request

Programming and

JagalPa
Sequence Data aga’ aw

def gate MS{self, qubit1, qubit2, th, ph):
return [PulseData(GLOBAL_ BEAM,
Ofe-hG*self _time scale,
freqd=global_ freq,

gscout.vi.std
Jaqal 1et pi 2.141592653580790
1et pi2 1.5787963267949

ampB=tuple{amps qubiti1),
sync_mask=8b11,
8

register q[2]

[0] g[1] pi2 pi

I I Em B

39 1 On-Chip Gate Definition Performance

e

QSCOuUT

Protobuf serialization time on an external machine is longer than generating on-chip
gates (left)

Taking upload times into account, the on-chip speedup is ~10-15x

250
¢ Off-chip serialization 0.170(9)*N + 166(1) us
225 M On-chip fetch 0.097(2)*N + 70.1(2) us 0.200 1
0.175
200 -
$0.150
175 S
W S
=1 50.125
- @
o 150 =
£ @ 0,100 -
= =
125 - 5
@ 0.075
o
100° 0.050
757 0.025 -
50 0.000 -

25 50 75 100 125 150 175 200 0.050 0.075 0.100 0.125 0.150 .0 15 2.0 25 3.0
Number of spline knots Time (ms)

40 I Compiler Topologies

A) Parser and Pulse Compiler ~ A)
are on one machine, JaqalPaw
Server is (optionally) on another
machine. Octet Gate Sequencer
handling is on chip.

<1 I Compiler Topologies

| QscouT
A) Parser and Pulse Compiler)
are on one machine, JaqalPaw

Server is (optionally) on another
machine. Octet Gate Sequencer Pulse Compiler [+« JaqalPaw
handling is on chip. Server

B) Parser is on one machine, | |
JagalPaw Server is (optionally) || OctetGate
I I
I I

on another machine. Pulse Sequencers
Compiler and Octet Gate — |
Sequencer handling is on chip.

B)

2 I Compiler Topologies

A) Parser and Pulse Compiler)

; Parser
are on one machine, JaqalPaw
Server is (optionally) on another
machine. Octet Gate Sequencer Pulse Compiler |~ JaqalPaw
handling is on chip. Server

B) Parser is on one machine, |

JagalPaw Server is (optionally) || ©ctetGate
I
I

on another machine. Pulse Sequencers
Compiler and Octet Gate — |
Sequencer handling is on chip.)

C) JagalPaw Server is on one Parser

machine. Parser, Pulse
Compiler, and Octet Gate e
Sequencer handling is on chip.

JaqalPaw
Server

\ 4

Pulse Compiler

Octet Gate
Sequencers

—_—— e — e — e — e — e ———

3 I Compiler Topologies

A) Parser and Pulse Compiler) Parser

are on one machine, JaqalPaw

Server is (optionally) on another

machine. Octet Gate Sequencer Pulse Compiler [— JaqalPaw Q)
handling is on chip. Server

B) Parser is on one machine, |

JagalPaw Server is (optionally) || ©ctetGate
I
I

on another machine. Pulse Sequencers
Compiler and Octet Gate — |
Sequencer handling is on chip.)

C) JagalPaw Server is on one Parser

machine. Parser, Pulse
Compiler, and Octet Gate e
Sequencer handling is on chip.

JaqalPaw
Server

\ 4

Pulse Compiler

chip, but still need to send

; : Octet Gate
relevant calibration data

Sequencers

|
|
|
|
D) (Not shown). Everything on |
|
|
|
|
|
|

—_—— e — e — e — e — e ———

4+ I Simultaneous Support for All Topologies

o\
QSCouT
We can run all topologies simultaneously.

45 I Simultaneous Support for All Topologies

We can run all topologies simultaneously.

A\
il

QSCOUT

Can use the configuration that makes the most sense on a case-by-case basis. For example,
massive Jaqal files will parse more efficiently on a normal PC, but smaller files and mutative

algorithms are better suited for running on chip.

Jaqal Application

Framework

" Control Com

Experi men“

46 1 Collaborators

Embedded Theory & Software Experimental Collaborators
Dan Lobser Andrew Landahl Susan Clark, PI Alan Bell (AOSense)
Jay Van Der Wall Ben Morrison Christopher Yale Ken Brown (Duke)
Josh Goldberg Kenny Rudinger Dan Lobser Marko Cetina (Duke)
Antonio Russo Melissa Revelle Nafis Irtija (UNM)
Brandon Ruzic Matt Chow Jungsang Kim (Duke)
Jay Van Der Wall Ashlyn Burch Chris Monroe (Duke)
Josh Goldberg Megan Ivory Jim Plusquellic (UNM)
Tim Proctor Theala Redhouse Eirini Tsiropolou (UNM)
Kevin Young Josh Wilson
Craig Hogle
Dan Stick

Email: gscout@sandia.gov (mailing list)
Web: https://qgscout.sandia.gov
Jaqal: https://gitlab.com/jaqgal/jaqgalpag

Funding
US Department of Energy, Office of Science, Office of Advanced

Scientific
Computing Research Quantum Testbed Program and National

Y o W B

mailto:qscout@sandia.gov
https://qscout.sandia.gov
https://gitlab.com/jaqal/jaqalpaq

47 I Gate Mutations

QSCOUT
Gates are broken up into low level pulse information and duplicate information is shared
across gates

If a gate needs to be updated, adding new
information to the lookup tables can cause
fragmentation and eats up precious memory in
firmware lookup tables

Instead, gate data can be overwr-'rl-len—'m—pleee—by—l
mutating pulse information at the lowest level

Mutated data can affect other gates!

Gates can be assigned a “uniqueness” identifier, :

that can be used to prevent data de-duplication for
a single gate, or a class of gates which are
expected to share common data

48 I Non-local Gate Mutations Full dependency graph ,,%”ﬁ;?:

Gates typically rely on calibration
parameters, and mutations typically
target these parameters

Gates can call other functions, including Calibrated Calibrated
from external libraries, as well as other Duration Amplitude
gates, all of which can rely on calibration
parameters

Calibrated Calibrated
Duration Amplitude

We back out a dependency graph for all
calibration parameters and all affected
gates

The gate requests from the gate compiler
are collected for a particular circuit to re-
construct gate definitions for each gate 5x q[1] Sy q[2] R q[1] O pi

and the associated inputs : :
5x q[2] Affected gate calls R 9l1] pi/4 pi/8

I I Em B

49

Drift Control

Experimental result is intercepted and used to modify
one or more calibration parameters based on a user-
defined function

The updated parameters trigger necessary mutations
for the affected gates used in the current circuit to
generate the next point

so I Data Ordering

1 1
I I I I I
T T T T
I
1 1
1 1 1 1 1
I I I I
I
I I I
I 1
1
T 1 I

51 I RPU-Driven Sequences

Subcircuits cherry picked based on results of Collatz
sequences calculated with the RPU

Static registers used to update overall amplitude scaling
before each circuit, amplitudes determined from trig
functions on the RPU

