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2 | All models are wrong...

...but some are useful (George Box 76)

« Computational models support decision making when:
v the models are computationally efficient enough
v’ uncertainty may be accounted for and propagated through the analysis

« Many models of complex systems do not meet these criteria
« Data science supports the development of computationally efficient
models, but may introduce additional errors and uncertainty.
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Optimization of Approximate Models

min J(S(z),z)

e .J is the objective
e 2 is a design, control, or inversion parameter

¢ S (z) is an approximate model

Our goals arc:
e Use the limited high-fidelity evaluations to improve the solution

e Characterize uncertainty in the optimal solution due to S — 5




Approximate Optimal Solution

z(6) = argmin J(§(2),2)
VA

High-fidelity Data

S(z) - 5(z)

Learning Optimal Solution Updates ml
|



Discrepancy
Parameterization

Learning Optimal Solution Updates ml

6(z,0) = S(z) — f(z)

1

Approximate Optimal Solution Post-Optimality Sensitivity Optimal Solution Posterior
~ _ - 9% , 0Z
z(8) = argmin J(S(z) + 6(z,0),z > ﬁﬂﬁ' — —H-1BAG > O ~ Mpost = 2 g%@

VA
High-fidelity Data Bayesian Inversion
5(z) - S(z) > Tt X Tl hal T pior

| |

Prior Discrepancy

T — Laws, length scales, etc. I

pior
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ILllustrative Example

1ot ) 3 !
mm—/ (S(z) — T(x)) d:z:—l——/ 2Ex
= 2y 2 Jo

where S(z) is the solution operator for

— k' =2 on (0,1)
s = hu on {0,1}

The high-fidelity model S solves

—rku +vu =2 on (0, 1)

k' = hu on {0,1}

Given the high-fidelity solution 5(z) for 2 different source terms, im-
prove and characterize uncertainty in the low-fidelity optimal source.
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Discrepancy
Parameterization

Learning Optimal Solution Updates ml
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Model Discrepancy Representation

e General form for a (discretized) operator

T

Z fz (/)z

e Since post-optimality analysis only depends on the mixed (z, #) derivative,
assume f;’s are linear, Reisz representation yields

T

Z :0+29:J ?abj Qbr
=1 l

5(z,0)=(1,, I, ®2z'M.) 0
Discretized 0 : R™ x R? — R"™ is parameterized by 6 € R?

p=m(n+ 1) so the dimension of # may be O(mesh size?)

Evaluate §(z, 8) efficiently using Kronecker product

(M)

— (Q/)’ia ,l;/j?)z

- mass matrix that defines the inner product on 2,
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Discrepancy
Parameterization

6(z,0) = S(z) — f(z)

1

Approximate Optimal Solution

z(8) = argmin J(S(2) + 6(z,0),z
Z

Learning Optimal Solution Updates

Post-Optimality Sensitivity

High-fidelity Data

S5(z) = $(z)

ag

Bayesian Inversion

> Tut X Tigdi hal Tpior

T

Prior Discrepancy

T — Laws, length scales, etc.

pior

o

Optimal Solution Posterior

a5
> — A8 = —H-1BAB >

*N
@"-Hpo”:‘*z =

0z
a6




., | Post-optimality Sensitivities

min J(S(z) + 6(z,6), z) (1)

e 7* solves (1) when d(z, 6y) = 0, the problem solved in practice |

e Under mild assumptions, applying the Implicit Function Theorem to

VJ(z*,0) =0 |

gIvVes
FN(Qo)—)N(i*) .
such that F(0y) solves (1) when 6 = 8y and :

Fp(0y) = —H 'B

is the sensitivity of the optimal solution with respect to model discrepancy i



., | Post-optimality Sensitivities

Fo(fo) = —H 'B
e 7 is the Hessian of the objective function with respect to z
e 5 is the mixed second derivative of the objective with respect to z and 6

e Acts like a Newton step to update the optimal solution after a perturbation
of the model discrepancy

Parameter Space

Objective Function
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Discrepancy
Parameterization

6(z,0) = S(z) — f(z)

1

Approximate Optimal Solution

z(8) = argmin J(S(2) + 6(z,0),z
Z

Post-Optimality Sensitivity

High-fidelity Data

0z AB = —H 'BAB
540 =

o

Optimal Solution Posterior

S(z) - 5(z)

Bayesian Inversion

*N
@"‘"Hpostﬁ‘z =

0z
a6

ﬂpx X Tlirdi  ha ﬂpiO‘

T

Prior Discrepancy

— Laws, length scales, etc.




., | Bayesian Inverse Problem - Prior Discrepancy

o Measure size of 6:
L L®zIM.
2 _ nl Zz
001G =0 (. L et )0
¢ Marginalize out z:
E.[116(2, 0)][2] = 6T M0
where

=T
Mg_( L L@z Mz)

L& M.z L&E

e L encodes known physics of the discrepancy - in our case a Laplacian like
operator and L~! represents the prior covariance

e I' is a covariance matrix on the control space Z

e Hence My defines an inner product for 8 to measure the size of the model
discrepancy d(z, @) according to our prior knowledge imposed in L and T




s | Bayesian Inverse Problem - notation

e for notational simplicity, we define

AE — (I’m I'm %Y ZgMZ) < R’m)(p’ (= 11 2: LS N;

so that d(zy,0) = As0, and the concatenation of these matrices

so that A# € R™V corresponds to evaluating 6(z, §) for the inputs z,.

e let b € R™V be defined by stacking y¢ = S(z;) — S(z¢), £ = 1,2,..., N,
into a vector so that we seck

Al ~Db

e infinite number of 6 directions because the problem is underdetermined

i . B 0000 e



|
.« | Bayesian Inversion Problem [[m

e Arrange data and discrepancy representation so that we seek 6 such that

Af ~Db ‘

e Given Gaussian prior and noise models, linearity of §(z,0) in €, the pos-
terior is Gaussian with a negative log probability density function

— (A6 —b)” (A8 —Db)+ 6" Myb.
o (A0 =) (A0~ b)+ 67M,
e « balances the dependence of prior and data misfit
e The posterior mean is
— 1
§=-2A"b :
o |
and the posterior covariance is I
1 —1
> — (MQ + ATA> . |
6!
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e The goal is to sample from a GGaussian distribution which may be generated
by multiplying a factor of the covariance matrix with a standard normal
random vector and adding the mean

e DBut how do we invert the sum?

|
Bayesian Inversion Problem - Enabling Sampling [[J

—1
1
> = (M@ + ATA>
Y

1. Factorize A to rewrite My + - AT A

2. Invert My + ATA I
3. Factorize X2 I
4. Compute matrix-vector products for posterior samples I



s | Bayesian Inversion Problem - 4 step process
1. Factorize A to rewrite My + %ATA

e compute GSVD of A in the My = CC? inner product

e cxploit Kronccker structurc

. . : 1
e factor out My to enable inversion: X !=-CXC?
X

e where
X =0al+CTod*P'C.

convenicntly consists of identity, orthogonal, and diagonal matrices

i T N "'



19 | Bayesian Inversion Problem - 4 step process

2. Invert X

e applying Sherman-Morrison-Woodbury to X yields

=M, - ¥P¥’

o where P € R™NVNX™MN g 5 diagonal matrix whose entries are given by

/\-ify,()_, a combination of the eigenvalues from L and G (object from
* L

computing GSVD of A), along with the noise covariance o

e cnables calculation of 8 = éEATb

!
|
|
|



20 | Bayesian Inversion Problem - 4 step process

3. Factorize X

e factorization is needed to sample Gaussian

e compute eigendecomposition of X = al + CT ¥ 2T C

X =QYQ'.

e (Q is an orthonormal matrix with collected cigenvectors

> =—oC X Cc =177
T =.aCTQYr 2.

e this facilitates eflicient sampling

!
|
|
|



21 | Bayesian Inversion Problem - 4 step process

4. Compute matrix-vector products for posterior samples

e computing matrix-vector products with > and T gives a sum over cigen-
pairs of an operator which scales with the mesh resolution

e rcewrite the sum in terms of lincar solves in the direction of the incoming
vectors

e this gives expressions for posterior samples which scale with the number
of high-fidclity data computc postcrior samples as

Tw=T (I @ V") v=0+0

where
) N 1 S 1L _ n—N+1 5
0=+ — L and 6 = kTR
\/7; r—)\! ( u; X Mz_lr_lwi ) — ( uj X Wi )
with

lAlT; = (OﬁL —+ )\TI)_% V; gk = —_TI‘_ﬁik

- 1 ~ - 1
Uk:L QVN—I—P{. Wk:M lF 27y




- ‘ Posterior Samples for Discrepancy

e Posterior samples take the form

where the mean 1s

1 & ol al S; U
n— ety - . Si Ui, ¢
0= 0" [( we @ MZIT "z — %) ) sz,e ( w;p © MIIT )]

£=1

uncertainty in the data informed directions is |

N

~ 1 S.ﬁ

9 — \/a - — ( -~ '&_1’?; —1 )
Z@:—l VA ; @ M2 I' "w;

and uncertainty in the data uninformed directions is

n—N-+1 L
I SrpUL
g = E . v
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Discrepancy
Parameterization

6(z,0) = S(z) — f(z)

1

Approximate Optimal Solution

z(8) = argmin J(S(2) + 6(z,0),z
Z

Learning Optimal Solution Updates

Post-Optimality Sensitivity

High-fidelity Data

S5(z) = $(z)

ag

Bayesian Inversion

> Tut X Tigdi hal Tpior

T

Prior Discrepancy

T — Laws, length scales, etc.

pior

o

Optimal Solution Posterior

a7
> —AQ = —H 1BA@ >

O~ Mpost = 2" =

0z
a6




|
Propagating Samples Through Post-optimality Sensitivities m

Sample
Fy(00)(0 + 6+ 0) = —H Y(BI + B+ BY)
1- a : 1
B6 = &SZVU ud Z (ug — sz‘,E(e g;)u; g) + o Z Vaudug)'™ (z¢ — 2)
(=1 i=1 =1

al el'g SN VI 1)
Bl = vaSTv, J "0 | + Vo T
Vst (3 20 ) vy Y |
and I
n—N+1



,c | A Fluid Flow Example

Optimal design of a flow controller ‘

. 1/ 5 5/ 2
min - | v,(2)° 4+ = ||z||
z 2 X J 2 0

constrained by the Stokes equations

—uVv+Vp=g+z on {)
V.-v=0 on {2
as a simplification of the Navier-Stokes equations I
—uVv+(v-V)iv+Vp=g+=z on €2

V-v=90 on §? I



» | Comparison of Controllers

Nominal controller z,

6 ' Updated controller z, 6 %igh—ﬁdelity optimal controller z, .
4 a 4
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0 0.6 0 0.6 0
2 i )
0.4 < 0.4 £
-4 -4 -4
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,, | Comparison of States

Navier-Stokes solve
with nominal control

Navier-Stokes solve
with updated control

Nominal high-fidelity state v,(Z) Updated high-fidelity state v, (2 + Fy(0)9)

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

Navier-Stokes solve
with optimal control

E}ptimal high-fidelity state v,(z*)

0.8

0.6

0.4

0.2
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Posterior Controller Uncertainty

First mode coefficient
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Second mode coefficient
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-0.5

- Jpdated
= =High-fidelity

0

L

0.5

KL representation
Histogram of posterior
Goal is for updated to be

as close as possible to
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- Conclusions

o Developed a framework to learn updates of low-fidelity optimal solutions
using limited high-fidelity data

e Builds on linear approximation in post-optimality sensitivity analysis

e The discrepancy representation, inverse problem formulation, and judi-
cious linear algebra manipulations enables closed form solution for poste-
rior samples

¢ Kronecker product representation of the discrepancy facilitates computa-
tion which scales with dim(i/) and dim(Z), not dim(U ® Z)

e Approach is non-intrusive to the high-fidelity data and hence applicable -
to wide range of applications I

v' Joseph Hart and Bart van Bloemen Waanders, “Hyper-Differential Sensitivity Analysis With Respect to
Model Discrepancy (in preparation)




