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All models are wrong…2

...but some are useful (George Box 76)
• Computational models support decision making when:

 the models are computationally efficient enough
 uncertainty may be accounted for and propagated through the analysis

• Many models of complex systems do not meet these criteria
• Data science supports the development of computationally efficient 
     models, but may introduce additional errors and uncertainty. 



3 Optimization of Approximate Models
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Illustrative Example6



Optimal Solution Posterior7
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Model Discrepancy Representation9
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Post-optimality Sensitivities11

(1)



Post-optimality Sensitivities12
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Bayesian Inverse Problem - Prior Discrepancy14



Bayesian Inverse Problem - notation15



Bayesian Inversion Problem16



Bayesian Inversion Problem – Enabling Sampling17



Bayesian Inversion Problem – 4 step process18



Bayesian Inversion Problem – 4 step process19



Bayesian Inversion Problem – 4 step process20



Bayesian Inversion Problem – 4 step process21



Posterior Samples for Discrepancy22
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Propagating Samples Through Post-optimality Sensitivities24



A Fluid Flow Example25



Comparison of Controllers26



Comparison of States27

Navier-Stokes solve 
with nominal control 

Navier-Stokes solve 
with updated control 

Navier-Stokes solve 
with optimal control



Posterior Controller Uncertainty28

• KL representation

• Histogram of posterior

• Goal is for updated to be 
as close as possible to 
high-fidelity



29 Conclusions

 Joseph Hart and Bart van Bloemen Waanders, “Hyper-Differential Sensitivity Analysis With Respect to 
Model Discrepancy (in preparation)


