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—Marx generators ﬂ , .
Z, the world’s largest pulsed power machine,

—insulator stack delivers 80-100 TW and 6 MJ of electrical energy to
' its center section in ~150 ns. X-ray pulse has ~300
TW. World’s power grid is ~4 TW.
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Sandia’s Z Machine

Send 20 MA through
this 2 cm radius x 1.4
cm height hohlraum!




‘ Sandia’s Z Machine




Sandia’s “Next Z Machine”. Next Generation Pulsed Power (NGPP)
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Vacuum &
Insulator
Stack g

Diameter
Marxes
Capacitors
Power at Stack

Forward Energy at
Stack

90 m
75 @ 2400 kJ (180 MJ)
13,500 @ 2.95 pF
602 TW
54 MJ (short pulse)

30 m
36 @ 600 kJ (22 MJ)
2,160 @ 2.65 pF
85 TW
6 MJ (short pulse)

Height of vacuum insulator
stack is a critical constraint.
Smaller gaps — requiring higher
breakdown strengths — will lead
to $100M’s of savings and
enable new class of designs.



Vacuum Insulator Flashover
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Cathode-Initiated Breakdown

SEY for stainless steel
normal incidence

f/// 'Qf" data
/ 8. (fit)

I

—— &, (fit)

(=]
j— 5, (fit)

1 | | i i i

540,48, (fit)

i I

200 400 600 800

Incident electron energy

(eV)

Electric Breakdown in Desorbed Gas

Furman, Phys. Rev. STAB, 2002

Jenkins, Electron and lon Emission from Solids, 1965
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Cathode-Initiated Breakdown: Measuring Yields

lon gun with 0.02 - 3 keV ions
and beam blanking for pulsed
operations on insulators.

Electron gun 0.05 - 5 keV
electrons with speed pulsing
capability.

Electron Yield
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Aleph Simulation Tool

1, 2, or 3D Cartesian

Unstructured FEM (compatible with CAD)

Massively parallel

Hybrid PIC + DSMC (PIC-MCC)

Electrostatics

Fixed B field

Solid conduction

Advanced surface (electrode) models

e- approximations (quasi-neutral ambipolar, Boltzmann)
Collisions, charge exchange, chemistry, excited states, ionization

Photon transport, photoemission, photoionization

Advanced particle weighting methods

Dual mesh (Particle and Electrostatics/Output)

Dynamic load balancing (tricky)

Restart (with all particles)

Agile software infrastructure for extending BCs, post-processed quantities, etc.
Currently utilizing up to 64K processors (>200M elements, >1B particles)




Cathode-Initiated Breakdown: Secondary Yield Simulation
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Cathode-Initiated Breakdown: Cascade Simulation

insulator

Ax ~ 300 nm,
Sometimes ic
emission surf

Rotate 45 so E, =
E E, =
E

normal’

tangent
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Cathode-Initiated Breakdown: Cascade Simulation

Time: 0.00 ns
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Time: 0.00 ns
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Anode-Initiated Flashover: Experiments

Wish to reproduce some of the environment on Z. Do
achieve fields ~400 kV/cm. Have shorter pulse (~25 .
ns vs. ~150 ns). Would also like to be amenable to
modeling for validation.

— Stygar et al. 2005
= T'T'U-Design

[
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[

Use new diagnostics on system!

Electric Field (V/d)
n
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T
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Esur,fﬂ.cc (21;2 ! d)

240 kV/0.6 cm = 400 kV/cm
(hope for 500 kV by end)
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Refining Insulator Configurations

2nd Generation 3d Generation

(Isometric) (Top) =
- L\ /

/ B

1st Generation

\ O Fully seated
~ anode.

) Variable fillet

¥ around anode.
No wire?

45° wedge, straight sides.
Subject to breakdown along
back/side

Entire front is angled. Smoothed
edges. Still some breakdown along
back/side. Requires wire “field
enhancer” )



Spatially, Spectrally, and Temporally Resolved Light Emission

Light from the cathode and anode regions are collected via a pair of fibers
Fibers connect to a spectrograph with ICCD detector
* Use a5 ns ICCD gate to observe light in the early-stage of flashover formation

Observation window of the anode and cathode fibers
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Anode-Initiated Breakdown: Early Light
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OES Time Series (t = -24 ns)

Broadband background characteristic of
cathodoluminescence or similar
« Governed by optical characteristics of polystyrene
toward the UV
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OES Time Series (t =-10 ns)

High confidence transitions (nm): H - 486.1, 656.3
Possible transitions (nm):

C II-251.1, 283.7, 392.0, 426.7, 514.5, 589.0, 657.9
C III—229.7, 406.9, 418.7, 464.8

Mg I1 — 279.7, 448.1
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OES Time Series (t =-1 ns)

High confidence transitions (nm):

C 111 —229.7, 406.9, 418.7, 464.8

Mg I1 — 279.7, 448.1

Possible transitions (nm):

C II-251.1, 283.7, 392.0, 426.7, 514.5, 589.0, 657.9
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OES Time Series (t = +6 ns)

High confidence transitions (nm):
« CIII-229.7, 406.9,418.7, 464.8

« Mg 11 —279.7, 448.1

Possible transitions (nm):

« CII-251.1,283.7,392.0, 426.7, 514.5, 589.0, 657.9

« CIV-580.3
 AITI—358.7
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OES Time Series (t = +13 ns)

High confidence transitions (nm):
* Mg Il —279.7, 448.1

* AlIIl —415.0, 452.9

Possible transitions (nm):
 AlT-309.2, 396.2

* AlIl—358.7
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Anode-Initiated Breakdown: Simulations

Goals:
* Provide insights into breakdown phenomena roles

* Provide framework to study design ideas (predict
impacts on operation)

Anode Triple Junction (ATJ) Aleph modeling:
* Fowler-Nordheim emission of e-, with
arging on dielectric
Neutral emission scaled to Fowler-Nordheim
emission on dielectric for H,, C, O,, H,0,
CO, (1e3)
* e-heavy-ionization
* e-heavy dissociations
» e-heavy elastic/excitation for H, H+, C, C+,
O, O+, CO2, CO2+, CO, CO+, H2, H2+,
H20, H20, H20+, 02, O2+, OH
* e- secondary emission from above ion
species
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Anode-Initiated Breakdown: Simulations

Time: 0.00 ns
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Anode-Initiated Breakdown: Simulations
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Summary

Developing multiple approaches to investigate anode- and cathode-initiated breakdown for pulsed
power systems. Mechanisms of anode-initiated are not understood. We are identifying time-
resolved species to indicate material source.

Other project investigating different
insulator materials (inclusions).

Experiments not discussed here:

« X-ray measurement for high energy
electron locations

« Laser deflection measurements for n,
and n,

e lon-induced and photon-induced
secondary electron emission

Modeling not discussed here:

* Full geometry (maybe 3D)
 Photon processes

* More detailed species chemistry
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Small Gaps Lead to Cathode-Initiated?

Experimental conditions

4 mm gap (vertical dimension)
Vacuum at ~7.1-10 Torr
Vertical sanding on front face
in flashover region

Experimental Results
21 of 21 shots flashed over on
front face

Transition to cathode-initiated
flashover (?)
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SNL Surface Roughness Measurements

Cut piece of bulk Rexolite
Sa Roughness = 0.674 ym

Rexolite Surface from Z-machine
Sa Roughness = 1.861 ym
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Aleph Simulation Tool

Basic algorithm for one time step of length At:
1. Given known electrostatic field E* move each particle for 2 Via

‘WH/Q ot ﬁ _En
v, v, + 5 ('m«z

1/9
$?+1 —=x; + AtU?Jr /

2. Compute intersections (non-trivial in parallel).
3. Transfer charges from particle mesh to static mesh.
4. Solve for E"

v - (EVI]?LJfl) - _p(xn—l)

E’I’L+] _ _v‘/‘n—%l
5. Transfer fields from static mesh to dynamic mesh.
6. Update each particle for another % via:

ot 12 AL G g
* ! 2 \my

7. Perform DSMC collisions: sample pairs in element, determine cross section and probability of collision.
Roll a digital die, and if they collide, re-distribute energy.

8. Perform chemistry: for each reaction, determine expected number of reactions. Sample particles of those
types, perform reaction (particle creation/deletion).

9. Reweight particles.

10. Compute post-processing and other quantities and write output.

11. Rebalance particle mesh if appropriate (variety of determination methods).



