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Sandia’s Z Machine

Marx Generator
(22 MJ Stored)

Pulse Forming
Storage Section Center

 Section

Z, the world’s largest pulsed power machine, 
delivers 80-100 TW and 6 MJ of electrical energy to 
its center section in ~150 ns. X-ray pulse has ~300 
TW. World’s power grid is ~4 TW. 
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Sandia’s Z Machine

Send 20 MA through 
this 2 cm radius x 1.4 
cm height hohlraum!

33 m
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Sandia’s Z Machine
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Sandia’s “Next Z Machine”: Next Generation Pulsed Power (NGPP)

Parameter Example NGPP Option Z

Diameter 90 m 30 m

Marxes 75 @ 2400 kJ (180 MJ) 36 @ 600 kJ (22 MJ)

Capacitors 13,500 @ 2.95 µF 2,160 @ 2.65 µF

Power at Stack 602 TW 85 TW

Forward Energy at 
Stack

54 MJ (short pulse) 6 MJ (short pulse)

Vacuum 
Insulator 

Stack

Height of vacuum insulator 
stack is a critical constraint. 
Smaller gaps – requiring higher 
breakdown strengths – will lead 
to $100M’s of savings and 
enable new class of designs.
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Vacuum Insulator Flashover

anode triple junction
(ATJ)

cathode triple junction
(CTJ)

Polarity flips on back end of pulse

6 
m

m

Current Z center section
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Cathode-Initiated Breakdown

Furman, Phys. Rev. STAB, 2002
Jenkins, Electron and Ion Emission from Solids, 1965
Neuber, IEEE Trans. Plasma Sci., 2000
Stygar, Phys. Rev. STAB, 2005
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Cathode-Initiated Breakdown: Measuring Yields

Ion gun with 0.02 - 3 keV ions 
and beam blanking for pulsed 
operations on insulators.

Electron gun 0.05 - 5 keV 
electrons with speed pulsing 
capability.
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Aleph Simulation Tool

 1, 2, or 3D Cartesian
 Unstructured FEM (compatible with CAD)
 Massively parallel
 Hybrid PIC + DSMC (PIC-MCC)
 Electrostatics
 Fixed B field
 Solid conduction
 Advanced surface (electrode) models
 e- approximations (quasi-neutral ambipolar, Boltzmann)
 Collisions, charge exchange, chemistry, excited states, ionization
 Photon transport, photoemission, photoionization
 Advanced particle weighting methods
 Dual mesh (Particle and Electrostatics/Output)
 Dynamic load balancing (tricky)
 Restart (with all particles)
 Agile software infrastructure for extending BCs, post-processed quantities, etc.
 Currently utilizing up to 64K processors (>200M elements, >1B particles)
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Cathode-Initiated Breakdown: Secondary Yield Simulation

Vary chamber radius

Vary 1st generation 
secondary energy

Vary 2nd generation 
secondary energy
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6 
m

m

60 um Rotate 45 so Ex = 
Enormal, Ey = 
Etangent

Δx ~ 300 nm,
Sometimes identify a “field 
emission surface”

Cathode-Initiated Breakdown: Cascade Simulation
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Cathode-Initiated Breakdown: Cascade Simulation
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Anode-Initiated Flashover: Experiments

240 kV/0.6 cm = 400 kV/cm
(hope for 500 kV by end)

SideFront

Wish to reproduce some of the environment on Z. Do 
achieve fields ~400 kV/cm. Have shorter pulse (~25 
ns vs. ~150 ns). Would also like to be amenable to 
modeling for validation.

Use new diagnostics on system!
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Refining Insulator Configurations

45° wedge, straight sides. 
Subject to breakdown along 
back/side

1st Generation

Entire front is angled. Smoothed 
edges. Still some breakdown along 
back/side. Requires wire “field 
enhancer”

2nd Generation 3rd Generation

Fully seated 
anode. 
Variable fillet 
around anode. 
No wire?
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Spatially, Spectrally, and Temporally Resolved Light Emission

Observation window of the anode and cathode fibers

Example ICCD measurement of spectrally 
resolved early-stage light emission

• Light from the cathode and anode regions are collected via a pair of fibers
• Fibers connect to a spectrograph with ICCD detector

• Use a 5 ns ICCD gate to observe light in the early-stage of flashover formation
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Progress: Large-Scale ExperimentsAnode-Initiated Breakdown: Early Light
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OES Time Series (t = -24 ns)

R2.0.3
S9

Optical gate (5 ns width)Broadband background characteristic of 
cathodoluminescence or similar

• Governed by optical characteristics of polystyrene 
toward the UV

Black: High degree of confidence
Gray: Lesser degree of confidence

-24 ns
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OES Time Series (t = -10 ns)

R2.0.3
S9

 High confidence transitions (nm): H - 486.1, 656.3
 Possible transitions (nm):
• C II – 251.1, 283.7, 392.0, 426.7, 514.5, 589.0, 657.9
• C III – 229.7, 406.9, 418.7, 464.8
• Mg II – 279.7, 448.1

Black: High degree of confidence
Gray: Lesser degree of confidence

Cathode

Optical gate (5 ns width)

-10 ns
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OES Time Series (t = -1 ns)

R2.0.3
S9

 High confidence transitions (nm):
• C III – 229.7, 406.9, 418.7, 464.8
• Mg II – 279.7, 448.1
 Possible transitions (nm):
• C II – 251.1, 283.7, 392.0, 426.7, 514.5, 589.0, 657.9

Black: High degree of confidence
Gray: Lesser degree of confidence

CathodeCathode

Optical gate (5 ns width)

-1 ns
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OES Time Series (t = +6 ns)

R2.0.3
S9

 High confidence transitions (nm):
• C III – 229.7, 406.9, 418.7, 464.8
• Mg II – 279.7, 448.1
 Possible transitions (nm):
• C II – 251.1, 283.7, 392.0, 426.7, 514.5, 589.0, 657.9
• C IV – 580.3
• Al II – 358.7

Black: High degree of confidence
Gray: Lesser degree of confidence

CathodeCathode

+6 ns
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OES Time Series (t = +13 ns)

R2.0.3
S9

 High confidence transitions (nm):
• Mg II – 279.7, 448.1
• Al III – 415.0, 452.9
 Possible transitions (nm):
• Al I – 309.2, 396.2
• Al II – 358.7

Black: High degree of confidence
Gray: Lesser degree of confidence

CathodeCathode

+13 ns
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Anode-Initiated Breakdown: Simulations

Anode Triple Junction (ATJ) Aleph modeling:
• Fowler-Nordheim emission of e-, with 

surface charging on dielectric
• Neutral emission scaled to Fowler-Nordheim 

emission on dielectric for H2, C, O2, H2O, 
CO2 (1e3)

• e-heavy ionization
• e-heavy dissociations
• e-heavy elastic/excitation for H, H+, C, C+, 

O, O+, CO2, CO2+, CO, CO+, H2, H2+, 
H2O, H2O, H2O+, O2, O2+, OH

• e- secondary emission from above ion 
species

60
 um

V = 750 V (E = 125 kV/cm)V = 0

ε = 2.55

Goals:
• Provide insights into breakdown phenomena roles
• Provide framework to study design ideas (predict 

impacts on operation)

Δx = 333 nm
Δt = 10 fs
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Anode-Initiated Breakdown: Simulations

ne (m-3) nO2 (m-3)

nO2+ (m-3)Enorm = Ey
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Anode-Initiated Breakdown: Simulations

ne (m-3) nO2 (m-3)

nO2+ (m-3)Enorm = Ey
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Summary
Developing multiple approaches to investigate anode- and cathode-initiated breakdown for pulsed 
power systems. Mechanisms of anode-initiated are not understood. We are identifying time-
resolved species to indicate material source.

Other project investigating different 
insulator materials (inclusions).

Experiments not discussed here:
• X-ray measurement for high energy 

electron locations
• Laser deflection measurements for ne 

and nn
• Ion-induced and photon-induced 

secondary electron emission

Modeling not discussed here:
• Full geometry (maybe 3D)
• Photon processes
• More detailed species chemistry



27

THANK YOU!

BACKUP SLIDES FOLLOW
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Experimental conditions
• 4 mm gap (vertical dimension)
• Vacuum at ~7.1·10-6 Torr 
• Vertical sanding on front face 

in flashover region

Experimental Results
• 21 of 21 shots flashed over on 

front face
• Transition to cathode-initiated 

flashover (?)

30 kV chargeS1 S2 S6

S8 S15S7

Small Gaps Lead to Cathode-Initiated?
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S3

S38

S23

S11

S1 S2

S10
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SNL Surface Roughness Measurements

Cut piece of bulk Rexolite
Sa Roughness = 0.674 µm

Rexolite Surface from Z-machine
Sa Roughness = 1.861 µm
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Aleph Simulation Tool

Basic algorithm for one time step of length      :
1. Given known electrostatic field     , move each particle for      via:

2. Compute intersections (non-trivial in parallel).
3. Transfer charges from particle mesh to static mesh.
4. Solve for          ,

5. Transfer fields from static mesh to dynamic mesh.
6. Update each particle for another       via:

 

7. Perform DSMC collisions: sample pairs in element, determine cross section and probability of collision.  
Roll a digital die, and if they collide, re-distribute energy.

8. Perform chemistry: for each reaction, determine expected number of reactions.  Sample particles of those 
types, perform reaction (particle creation/deletion).

9. Reweight particles.
10. Compute post-processing and other quantities and write output.
11. Rebalance particle mesh if appropriate (variety of determination methods).

p1

p2 p3

p4


