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Abstract

Many explainability methods have been proposed
as a means of understanding how a learned machine
learning model makes decisions and as an important
factor in responsible and ethical artificial intelligence.
However, explainability methods often do not fully
and accurately describe a model’s decision process.
We leverage the mathematical framework of global
sensitivity analysis techniques to reveal deficiencies
of explanation methods. We find that current
explainaiblity methods fail to capture prediction
uncertainty and make several simplifying assumptions
that have significant ramifications on the accuracy
of the resulting explanations. We show that the
simplifying assumptions result in explanations that:
(1) fail to model nonlinear interactions in the model and
(2) misrepresent the importance of correlated features.
Experiments suggest that failing to capture nonlinear
feature interaction has a larger impact on the accuracy
of the explanations. Thus, as most state-of-the-art ML
models have non-linear interactions and operate on
correlated data, explanations should only be used with
caution.

Keywords: Explainability, Machine Learning,
Artificial Intelligence, Fidelity, Sensitivity Analysis

1. Introduction

Artificial intelligence (AI) and Machine learning
(ML) techniques are being used in increasingly
more high-consequence applications such as malware
detection [1], autonomous vehicles [2], and medical
diagnoses [3]. Wide-spread adoption, though, is limited
due to a recognized need to trust the models before
they are deployed and integrated into larger systems.
In response, several explainable AI (XAI) techniques
have emerged [4]. However, we show that current XAI
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methods themselves often lack verifiable foundations
and uncertainty quantification—leaving the end user or
ML practitioner to decide if the explanation itself is
valid and what to do with the provided information [5].
Many XAI methods have justified their approaches by
examining how similar they are to how an end-user
would explain a decision [6] with accompanying
frameworks that measure the accuracy of explainability
in the context of user-based explanations [7, 8]. While
these have laid a foundation, reliance on human
evaluation for the accuracy of explanations may bias
explanations towards persuasive explanations rather
than accurately describing the learned model [9] and can
persuade users to accept incorrect model outputs [5].
Computational-based explanation accuracy or fidelity
remains an open research question, with most prior work
on XAI fidelity focusing on modified backpropagation
and saliency-based methods [10, 11, 12].

In this paper, we examine the fidelity of
post-hoc, model agnostic explainability methods using
non-intuitive domains where the meaning is not obvious
through visual inspection. We look to the validation
and verification (V&V) principles that ensure the
correctness of computational modeling and simulation
in many science and engineering disciplines [13].
Uncertainty quantification (UQ) and sensitivity analysis
(SA) are fundamental elements of most V&V practices
and are often applied in tandem [14]. It is our intent
to examine global SA (GSA) [15] methods that are
well suited for data-driven UQ analysis with the goal
of evaluating the credibility of current XAI methods
and further developing credible explanations of an ML
model. GSA methods share the objective with XAI
of determining the most influential input on the model
output and have similar implementations.

Our work builds on previous work highlighting
several challenges in XAI. Specifically, Gosiewska
and Biecek [16] caution against the use of additive
explanations such as LIME and SHAP—specifically
highlighting that they do not model feature interactions.
Others have also highlighted this challenge for gradient
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based XAI methods [17]. Our work seeks to quantify
these claims and demonstrate the impact of not
quantifying feature interactions.

Other work also questions credibility of the
explanations from XAI methods. Chen et al. [18]
question the use of game-theoretic methods to provide
explanations and argue that XAI methods should be
application specific. Kumar et al. [19] highlight
several mathematical problems with SHAP explanations
and show that they do not suit human-centric goals
of explainability. Frye et al. [20] highlight
the problematic assumption of uncorrelated features
showing that they give incorrect explanations, hide
implicit model dependence on sensitive attributes and
lead to ambiguous explanations. Other challenges with
feature-importance-based explanations have also been
highlighted such as low robustness of explanations
(robustness assumes that similar inputs should have
similar explanations) [21]. Our work maps current XAI
methods into a mathematically-based framework, GSA,
to identify the deficiencies of XAI and to bridge the
work in the two communities.

Our primary contributions include: (1) a process
leveraging GSA to evaluate the credibility of XAI
methods, (2) developing a definition of explanation
fidelity relative to a ground truth explanation found by a
closed-form analytical solution using GSA, (3) exposing
limitations of post-hoc XAI methods—specifically
that nonlinear interactions in a model have larger
ramifications on the fidelity of an explanation than input
correlations, and (4) identifying research gaps that, if
addressed, would result in higher-fidelity explanations.
Highlighting these deficiencies helps channel research
efforts to address them and increase the confident usage
of XAI methods in high-consequence applications.

The rest of the paper is organized as follows. We
first present preliminary background on GSA which
motivates our approach. Section 3 discusses the trust of
black box learned models and the connection between
XAI with GSA. Section 4 presents our definition of
explanation fidelity. We then use this definition of
fidelity to empirically examine the fidelity of several
XAI methods in a GSA framework in Section 5 before
concluding in Section 6.

2. Global Sensitivity Analysis Methods

GSA apportions the influence that model parameter
or input uncertainties have on the uncertainty of the
model output [15]. GSA has a history of application
to black box models in the science and engineering
disciplines and is gaining more traction for systems
modeling and policy support [22].

Let x ∈ Rd represent an input vector, y ∈ R
represent an output (label) and f : x 7→ y represent a
function that maps x to y. If we assume that the model
parameters do not change, such as inference for an ML
model, GSA proportions the uncertainty in each of the
d input variables on the output uncertainty measured
by a quantity of interest (QoI). Two common methods
are: (1) variance-based Sobol’ indices [23] and (2) game
theoretic Shapley values [24]. Here, the output of GSA
is a set of feature importance values Φ := {ϕj}dj=1 for
each variable xj .

Central to GSA is a proper design of experiments
which has four core decisions [25]:

1. Sampling the data. How to sample the data
to represent uncertainty in the inputs while
preserving the statistical properties of the training
data introducing only marginal standard error.

2. Modeling Controlled and Uncontrolled
Random Behavior. Running sufficient replicates
or trials to understand the behavior of the model

3. Quantity of Interest. measuring an appropriate
metric—particularly for explainability purposes
and capturing appropriate uncertainties.

4. Proportioning Output Uncertainty to Input
Uncertainties. Methods to apportion the source
of input uncertainty to the output uncertainty.

2.1. Sobol’ Indices

Assuming that x is composed of d mutually
independent random variables, and that the output y
is a scalar, the high-dimensional model representation
expands a multivariate function y = f(x) as:

y =f0 +
dX

j=1

fj(xj) +
dX

k=j+1

fj,k(xj , xk) + · · ·

+ f1,2,...,d(x1, x2, . . . , xd)

(1)

where xj represents the jth input variable, E denotes
expectation, and

f0 = E[y],
fj(xj) = E[y|xj ]− f0,

fj,k(xj , xk) = E[y|xj , xk]− f0 − fj − fk,

. . .

Further, using variance to measure uncertainty of the
QoI, and assuming that f(x) is square-integrable and



that each variable has finite variance, the variance of y
from Equation 1 can be decomposed as:

V ar(y) =

dX
j=1

V arxj (Ex∼j [y|xj ])+

 dX
k=j+1

V arxjk
(Ex∼jk

[y|xj , xk])− Vj − Vk


+ · · ·

(2)

where Vj := V arxj
(Ex∼j

[y|xj ]) represents the
variance contribution to y from input xj alone. Thus,
Sobol’ indices provides a decomposition of the variance
in y for each input variable as well as combinations
of the input variables. First order Sobol’ indices are

computed as Sj =
Vj

V ar(y) and can be extended to

higher order indices as Sj,k,... =
Vj,k,...

V ar(y) . Due to

the computational overhead of examining all possible
subsets of features, Sobol’ indices are not generally
examined beyond the first, second, and total order
indices; where total order indices quantify how much
inputs or parameters contribute to the total variance on
its own and through interactions with other inputs or
parameters.

2.2. Shapley Values

From cooperative game theory, Shapley values
proportion a global reward according to individual
contributions in a team effort [24]. Let S be a subset
of all input variables M := {xj}dj=1, and v|S be a value
function that approximates the QoI on the given subset
of variables. Shapley values are defined as [26]:

ϕj =
1

|M|
X

S⊆M\{xj}

|S|!(|M| − |S|)!− 1

|M|!
×

�
v|S∪{xj} − v|S

�
,∀S ⊂ M

(3)

In terms of feature importance, the impact each variable
xj is evaluated over all possible subsets S. It is
assumed that f is sufficiently complex such that a
simpler surrogate model v is needed for computational
feasibility. Shapley values have been used in GSA
as a measure of variable importance [27, 28] and are
theoretically bound by the first and total order Sobol’
indices [29]. Similar to integrated gradients [30],
Shapley values calculate the difference between the

average and the actual output. The SHAP XAI
method [31] is based on these values.

3. Trusting Learned Models

The need to trust learned models has been explored
broadly in ML [32] and reinforcement learning [33],
as well as for specific applications such as computer
vision [34] and automotive software engineering [35].
However, most of these studies focus primarily on
how robust ML models are to adversarial attacks or
out-of-distribution data points. Additionally, with the
increased usage of AI in many businesses, several
maturity models have been put forward to assess if
a learned model is ready to be deployed. Most of
these focus on AI operations from a strategic and
principled development point of view rather than on
an examination of a learned model [36]. For example,
guidelines from Ethical AI point out the need to provide
explanations and transparency, but do not examine
if the explanation reflects the underlying model [37].
As XAI methods have been proposed as a means
of providing trust and verifying model behavior, we
examine explanation fidelity from the perspective of
GSA which have been used in V&V to ensure safety
and increase trust in a model and argue that the fidelity
of the explanations should also be used to establish
credibility. Specifically, we examine how the four core
design of experiments decisions from GSA (Section 2)
are addressed in XAI.

3.1. Black Box Explanation Methods

There are several connections between GSA,
specifically Sobol’ indices and Shapely values, and
perturbation feature importance methods. LIME [6] was
one of the first methods to gain traction in explaining
the predictions from an ML model as a means for
building trust and examining that a model functions
properly. The explanation is derived from a locally
weighted linear regression model. To create this linear
model, in its simplest form, the input space is randomly
sampled and the sampled data points are passed through
the model that is to be explained. Each sampled data
point and its classification is weighted based on its
distance from the data point to be explained. The linear
model is then learned using a weighted linear regression
algorithm. Explanations are then derived using the input
values of the data point to be explained and the weights
in the linear model.

SHAP [38] builds on cooperative game theory
computing Shapley values (Equation 3), and appears
to be the strongest theoretically grounded XAI method.
SHAP calculates Shapley values using bootstrapping



Figure 1. Mapping of GSA processes to XAI and highlighting current holes.

methods to replace a feature with noise to effectively
remove it. To deal with high-dimensional data, SHAP
is extended to Kernel SHAP where the subsets are
weighted based on the weights of their contributions and
also has several model specific implementations (e.g.
TreeSHAP [39]).

3.2. Design of Experiments Decisions in XAI

As ML often deals with high dimensional data,
computation feasibility is a major concern to XAI
methods and impacts their design decisions. In this
section we consider these decisions at a high-level. We
then empirically analyze how they affect the fidelity of
the explanations in the following sections.

The overall process of GSA is mapped to the
XAI paradigm in Figure 1 and is composed of four
major design of experiment decisions. Examining
XAI techniques through the lens of GSA, we have
identified three primary areas where improvement could
significantly enhance the fidelity of the explanations:

Sampling To make computation feasible, most
XAI methods, including LIME and SHAP, assume
mutual independence of input variables—ignoring
all dependencies as part of their sampling strategy.
Previously mentioned here and in other works [40],
independence assumptions about the input cause
incorrect feature importance values when correlations
are present. The appeal of such a limiting assumption
is motivated by avoiding the computational cost
in modeling the full-joint probability distribution.
There also exists a plethora of readily available
expedient sampling techniques such as bootstrapping
and independent random sampling that are commonly
used. Proper care is rarely taking into consideration
with regards to feasibility of the sampled data points
resulting in these methods creating data points that are
clearly out of distribution. For example, consider the
third and fourth features (petal length and width) of the

Iris dataset which are highly correlated to each other and
with the class label. Figure 2 shows the original data
points (Figure 2a) the bootstrapped sampled data points
(Figure 2b) and random sampling (Figure 2c). Visually,
it is clear that: (1) the original features are correlated,
(2) the sampled data do not preserve the correlation
between the data points and (3) therefore, the sampled
data points are out-of-distribution from the training data.
What does an explanation generated from these types of
data points tell us about the model?

Future work needs to consider how to sample the
data that preserves the statistical properties of the data.
Sampling without care can introduce large amounts of
standard error. Also, there is little consideration about
the amount of replicates needed to properly model the
input and output uncertainties.

Quantity of Interest For XAI, the output of the
classifier or a confidence metric is often used, but
is that really what is most important for explaining
a prediction? Currently, model outputs, such as
confidences, are often used. In XAI, this becomes
challenging for classification problems as large amount
of variances are sometimes needed to change the
classification. Further, model confidence measures have
been shown to be difficult to calibrate [41], they are
often meaningless [42], and easily manipulated [43].
These results often do show which inputs are influential,
but, as pointed out by Rudin [44], often just knowing
where a model “looks” is not always sufficient for
why a prediction was made. Future work should
investigate other possibilities in QoIs that correlate with
explanations.

Nonlinear Uncertainty Apportionment For
computational expediency, current XAI methods
assume a linear relationship between the output QoI
and all input features—enabling the computation of
expectations directly rather than from sampling [38].
For example, LIME uses a linear model to apportion



a b c
Figure 2. The results of sampling on the correlated petal width and petal length features from the iris data set

showing a) the original dataset, b) the resampled dataset by perturbing only the petal width feature

(bootstrapping), and c) the randomly sampled data.

the influence of the inputs on the outputs. Follow
up work has proposed extending SHAP to model
input dependencies (SHAP-Dep) [45] incurring an
increase in computational complexity which severely
limits its usability (the authors only examined up to
10 input features). We have found that the lack of
ability to apportion the influences of input uncertainty
across output uncertainty accounting for higher-order,
nonlinear interaction in a model is the greatest
challenge. This poses a significant hurdle to overcome
as most state-of-the-art ML models are highly nonlinear
and have high-order feature interactions within the
model. Thus, not being able to model these interactions
poses a significant hurdle to overcome in explaining
ML models.

These issues are not isolated to XAI, but are also
challenges in the GSA and UQ communities. Our hope
is that techniques from GSA could be used to improve
XAI. There are several promising research lines in GSA
that could be leveraged in XAI including work from
Sobol’ indices that specifically address correlations [46]
in certain situations and may be applicable for nonlinear
interactions. Razavi et al. [22] provide a good
overview of current research directions in GSA include
perspectives from the GSA community on its use in
ML. Appropriate QoIs could leverage recent advances
in model output calibration [47] or leverage another
metric which provides insights into the actual decision
making process of the learned model, perhaps along
the same lines as anchors [48] or the most influential
data points such as prototypes and criticisms [49].
To our knowledge, addressing nonlinear uncertainty
apportionment and appropriate QoIs for explainaiblity
have not been explored in much depth.

4. What Constitutes the Fidelity of an
Explanation?

In this section, we examine how the design decisions
discussed above affect the fidelity of the explanation
to the actual model. There are several measures that
can be used to evaluate an explanation [50]. Here, we
study fidelity which we define as the accuracy of the
explanation to the underlying model. An explanation
that has complete fidelity and completeness would
describe the model in complete detail and would be the
model itself. Therefore, to be useful to an end-user
a trade-off exists between fidelity and completeness
of an explanation to convey enough information to
describe the decision process1. As noted earlier, reliance
on human evaluation of fidelity may bias explanations
towards persuasive explanations rather than accurately
describing the learned model [9, 5]. Given this danger,
our definition of fidelity is inspired by the need to
determine what the learned model actually does to
properly convey that to an end-user.

Here, we suggest definitions for an explanation and a
mathematical notion of fidelity based on Shapley values.
We denote the importance values estimated using XAI
methods as Φ̂i := {ϕ̂j}dj=1 by an explainability value
function v. For consistency in notation, we denote the
dependence of v and f on both x and the restriction to
the subset of features S with the expressions v|S(x) and
f |S(x). The validity of the explanation depends on how
well v|S approximates f |S for all S ⊆ M. In practice,
having a closed-form solution to Φ is not available or is
restricted due to computational constraints, therefore Φ̂
is a numerical approximation of the analytical solution,
Φ.

Definition 1 An explanation is a subset S⋆ of n ≤ d
features with corresponding importance values ΦS⋆ :=

1Note that this is a trade-off of current XAI methods. In the future
XAI methods that have complete fidelity and completeness may be
available.



{ϕj}xj∈S⋆ from the set of all features M that have the
greatest contributions to f(x):

S⋆ = argmax
S⊆M,|S|=n

X
xj∈S

ϕj (4)

where the ϕj correspond to Equation 3, such that the
nominal feature values are defined by the realization of
a data point x.

Definition 2 The fidelity Fj of an explanation, S⋆,
of x for the jth feature is the complement to the
absolute difference between the actual ϕj values and the

estimated ϕ̂j values:

Fj(x, v) = 1− |ϕj − ϕ̂j |. (5)

This definition assumes that the ϕj values are in the
range of [0,1] which can easily be done by normalizing
the values Φ. We subtract this quantity from one so
that Fj near zero/one correspond to low/high fidelity.
An aggregate score can also be obtained by summing
the individual Fj scores, while care should be taken as
the score could vary based on the number of features
considered. This definition holds for a feature as well as
a particular data point. The fidelity of an explanation
may vary per feature and in different areas of the
input space. Therefore, the fidelity Fj is dependent on
how well v|S(x) approximates f |S(x). Equation 5 is
equivalently expressed as:

Fj(x, v, f) = 1− | v|S(x)− f |S(x) | (6)

As defined in Equation 4, an explanation is a ranked
feature list, therefore, v does not necessarily have to be
equivalent to f to produce useful explanations, but it
should be close enough to produce the same ordering
and give an idea of the magnitude of each feature’s
importance. Therefore, while absolute difference can
serve as an appropriate loss function, a metric such as
the Kendall Tau metric could also measure the difference
in the feature rankings. Practically, calculating S∗

would require relearning f |S for all S ⊆ M making it
computationally infeasible for all but the most trivial
problems, hence the need for and importance of v to
accurately and efficiently approximate f . It should be
understood how v differs from f and what uncertainty
comes from the model-form error.

5. Empirical Examination of Explanation
Fidelity

This section examines the fidelity of explanations for
models with various properties. To establish ground

truth explanations, we examine using closed-form
analytical solution to Shapley values (Equation 3)
on a synthetic model where we can manipulate the
properties of the features and the model. We compare
the global measures of LIME [6], SHAP [38], and
SHAP-Dep [45] aggregating over the entire training
set with: (1) permutation feature importance [51] on a
random forest trained on data generated by the model
using sklearn2, (2) the GINI values from the same
random forest model, (3-4) empirical and analytical
Sobol indices (implemented in OpenTurns3), and (5-6)
empirical Shapley values.

5.1. Synthetic Data

We use simple regression models with four input
variables, with and without correlation, and with and
without nonlinear feature interactions:

y =2x1 + 3x2 + x3 + x4 (7)
y =2x1 + 3x2 + x3x4 (8)
x1 ∼N (0, 1), x2 ∼ N (0, 2), x3 ∼ N (0, 3),

x4 ∼N (0, 4) (9)

For correlation, we set x1 and x2 to be perfectly
correlated as a worst-case scenario. We build on the
traditional notion that greater weights and variance
equate to a larger importance factor (in this case
normalizing the data would negate this, but for
demonstrative purposes we keep the different variances
as variance is important for the GSA methods). Given
the actual models and low number of features, we can
calculate the closed-form solution to Shapley values
considering all of the feature combinations. The
explanation fidelity for each feature (Equation 5) is
computed analytically using the Shapley value ϕj and

the value from each XAI method as ϕ̂j .
We create a dataset from each model with and

without correlated features by sampling 1000 samples
for each xj and recording the resulting y from Equations
7 and 8. We then train a random regression forest on
the data as our black box model (we tested several ML
algorithms; the most important factor was the ability
to model higher-order interactions, so models that
make strong independence assumptions such as naı̈ve
Bayes had significantly different results). The fidelity
of the explanations showing the differences between
the Shapley values and the calculated importance
for each feature are shown in Figure 3a-d for each
combination of input independence/correlation and
model linearity/nonlinearity. It is clear that while

2https://scikit-learn.org/
3https://pypi.org/project/openturns/
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Figure 3. The fidelity of model explanations per feature. Here, a value of 1 is perfect fidelity. nonlinearity in the

model has the greatest negative impact on fidelity

correlations have an impact on the fidelity, nonlinear
feature interactions produce even lower fidelity values.

We make the following observations:

1. When the model and data meet the correct
assumptions of feature independence and
linearity (Figure 3a), the explanations best match
the ground truth, although x2 is consistently
underestimated by LIME, SHAP and SHAP-Dep.

2. When only correlation is introduced (Figure
3b), the fidelity of each method degrades as
expected—most significantly with the Sobol’
methods.

3. Once nonlinear feature interactions are introduced
(Figures 3c and d), the fidelity significantly
decreases compared to feature correlation.

4. While SHAP-Dep is designed to work specifically
with correlated features, we find that it shows
lower model fidelity than SHAP in the presence

of nonlinearity—this is probably partially due
to the fact that we used treeSHAP as the
underlying version of SHAP which is not
available in SHAP-Dep. Additionally, the
sampling complexity requirements are larger
to model dependencies as demonstrated in the
following section.

5. The tree-based importance methods consistently
show high model fidelity and do exceptionally
well in the case of correlated input features and
nonlinear model interactions.

With these results, we strongly caution the use of SHAP,
SHAP-Dep, LIME, and related approaches when the
ML models include correlated features or nonlinear
interactions. Of course, it should be noted that
SHAP, SHAP-Dep and LIME are designed for local
explanations for a specific data point. While the
importance features from the random forest methods
show the highest model fidelity, they only provide
global feature importance—but do show robustness and



high fidelity explanations. One of the reasons why
they perform exceptionally well is that they explicitly
optimize the splits which separate the data. Studies
examining both their benefits in identifying relevant
features [52] and cautioning against possible bias [53]
warrant a closer examination outside the scope of this
paper. However, we will comment that random sampling
and not using a linear dependence between the inputs
and outputs may provide suggestions for improving
other XAI methods.

6. Conclusion

While XAI has helped to provide insights into
the learned models and offers some means of trust,
we have demonstrated that strong assumptions that
have been made for computational feasibility need
to be considered when using XAI—especially in
high-consequence applications and in models with
nonlinear feature interactions. By casting XAI within
the framework of GSA, we identified several holes
and demonstrated that correlated input features and,
more significantly, nonlinear model interactions have
strong ramifications on the fidelity of XAI methods.
Random forest models are surprisingly robust to these
and may offer some paths for future work. New
explainability methods are needed that are able to
capture higher-order model interactions and can provide
estimates of uncertainty. We only examined a small
set of XAI methods. Future work could expand this
notion given the ability to calculate a ground truth
explanation value. Addressing these issues in neural
networks will be even more difficult since the features
of such networks are not well defined. Our motivation is
that this analysis motivates others to pursue solutions to
the gaps in XAI.
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