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Problem Description

Goal of Nuclear Forensics: Identify and attribute a set of processing 
conditions to interdicted special nuclear materials.
• Knowledge about processing conditions is helpful in determining where 

the material originated
• Identifying processing conditions can be considered an Inverse Prediction 

(IP) problem
• In classical regression, the covariates/predictors are known, and a statistical 

model is constructed to estimate their relationship with the response.
• In IP problems, the goal is to estimate the covariates (processing conditions) 

using the observed responses.
• Addressed using a Functional Inverse Prediction (FIP) framework from model 

incorporating information on particle features from SEM imagery.
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Fig.1: Contrasting particle features from different processing conditions.

Data

SEM images of particles were produced at different processing conditions levels 
specified from an I-optimal statistically designed experiment [1].
• The images were segmented and pre-processed to remove noise and 

background.
• MAMA morphological software was used to collect scalar features (measures of 

area, perimeter, major ellipse/minor ellipse, aspect ratio, etc.) for each particle 
and the response by run was represented by CDFs of the scalar features [2][3].

• Particle features are influenced by the processing conditions under which the 
material was produced.
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Distributions of MAMA Measurements
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Condition 1 Condition 1

Condition 1 Condition 1

X-axis: MAMA Characteristic
Y-axis: Cumulative Density Function 
(CDF)

Blue shading: True value of 
Condition 1 processing condition 
across all runs
Red line: True distribution of 
particles from a single run

These distributions can be treated 
as functions and modeled to 
discriminate between processing 
conditions.

Fig. 2: Demonstration of representing CDFs of MAMA 
characteristics as functions.



Inference

The Functional Inverse Prediction 
(FIP) framework [4] is used to 
estimate material processing 
conditions, which has two stages:
1. Forward model is fit to training 

data
2. Relationships found from 

forward model are used to 
estimate unknown covariates 
from new responses

September 13, 2022 6

Fig. 3: Functional Inverse Prediction Framework.



Model

Forward Model:

𝑌!" 𝑡 = 𝑔" 𝑥!; 𝜃" 𝑡 + 𝜖!" 𝑡 ; 𝑖 = 1,… , 𝑛; 𝑗 = 1,… , 𝑞, where
• 𝑔! " can be taken to be 𝑥"#𝛽!(𝑡) for functional linear regression, or other forms 

for non-linear responses
• 𝑥" are processing conditions and 𝜖"! 𝑡 are i.i.d., mean-zero, second-order 

stational stochastic processes

Inverse Model:
1𝑥∗ = argmin

$∗
∑"%&
' ∫𝐿(1𝑦" 𝑡 , 𝑌"∗ (𝑡))𝑑𝑡, where

• )𝑦! 𝑡 = 𝑔! 𝑋∗; .𝜃! 𝑡 , 𝐿 " is some loss function, 𝑌!∗ are some new 
observations/functions.
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Simulation Study

A simulated functional dataset was produced with two covariates,

• Functional linear model and MARS forward model fit using basis representation.
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Fig. 4: Functional responses, Y1 and Y2, from simulated dataset.



Simulation Study Results

The simulation study results indicate that the FIP framework is able to 
recover 𝑥! and 𝑥"
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𝑥" 𝑥&
Linear 0.06 (0.04) 0.57 (0.26)
MARS 0.02 (0.04) 0.51 (0.26)

Tab. 1: RMSE for IP of simulation study

RMSE = standard deviation of the residuals



Approaches for FIP
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Fig. 5: Functional Inverse Prediction Framework Approaches.



Seemingly Unrelated Regression

• A generalization of a linear regression 
model that contains only exogenous 
regressors (only related through the error 
terms).

• Fit forward and inverse model
• Fit into a Bayesian framework for easy UQ
• Considers particles within a run as a 

group
• Accounts for correlations between errors 

in morphological characteristics. I.e. for a 
particular run with the same set of 
processing conditions, morphological 
characteristics, such as particle size, 
shape, and smoothness are likely related.
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Bayesian Adaptive Spline Surface

• A non-linear model for nonparametric regression that 
incorporates flexibility, scalability, interpretability, and probabilistic 
accuracy.

• Fit a direct model
• Fits in a Bayesian framework for easy UQ
• Considers particles within a run individually, then combines 

results post hoc.
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Fig. 7: BASS RMSE of 
Condition 1 for all particles
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Fig. 8: Model performance assessment using LOOCV on BASS for Condition 1.



Conclusion

• There is a lot of variability in the chemical process that it makes it difficult 
to parse out the signal from noise in a purely-data driven manner.

• Non-linear relationships exist between processing conditions and particle 
features.

• Models are constructed so they are interpretable, allowing us to 
understand which particle features affect which processing conditions.

• Models are only as good as the data– if the major sources of variability are 
not captured in the data, then it will be difficult to develop generalizable 
data-driven models.

• Uncertainties on predictions are relatively large for all models considered.
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