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Problem Description

Goal of Nuclear Forensics: Identify and attribute a set of processing
conditions to interdicted special nuclear materials.

«  Knowledge about processing conditions is helpful in determining where
the material originated

 ldentifying processing conditions can be considered an Inverse Prediction
(IP) problem

« In classical regression, the covariates/predictors are known, and a statistical
model is constructed to estimate their relationship with the response.

« InIP problems, the goal is to estimate the covariates (processing conditions)
using the observed responses.

- Addressed using a Functional Inverse Prediction (FIP) framework from model
incorporating information on particle features from SEM imagery.
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Data

SEM images of particles were produced at different processing conditions levels
specified from an I-optimal statistically designed experiment [T].

« Theimages were segmented and pre-processed to remove noise and
background.

«  MAMA morphological software was used to collect scalar features (measures of
area, perimeter, major ellipse/minor ellipse, aspect ratio, etc.) for each particle
and the response by run was represented by CDFs of the scalar features [2][3].

« Particle features are influenced by the processing conditions under which the
material was produced.

v '*.' :./\, %
Fig.1: Contrasting particle features from different processing conditions.
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Distributions of MAMA Measurements

X-axis: MAMA Characteristic

Y-axis: Cumulative Density Function

Blue shading: True value of
Condition 1 processing condition
across all runs

Red line: True distribution of
particles from a single run

These distributions can be treated
as functions and modeled to
discriminate between processing
conditions.
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Inference

The Functional Inverse Prediction
(FIP) framework [4] is used to
estimate material processing

conditions, which has two stages:

1. Forward model is fit to training
data

2. Relationships found from
forward model are used to

estimate unknown covariates
from new responses
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Fig. 3: Functional Inverse Prediction Framework.
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Model

Forward Model:

V(6) = g; (x5:6;(8)) + €;();i = 1,...,m;j = 1, ..., q, where

« g;(-) can be taken to be x;B;(t) for functional linear regression, or other forms
for non-linear responses

° x; are processing conditions and €;;(t) are i.i.d.,, mean-zero, second-order
stational stochastic processes

INnverse Model:
£* = argmin Y.7_; [ L(F;(®),Y;" (t))dt, where
X*

« ¥i(t) =g (X*; éj(t)),L(-) s some |oss function, ¥;" are some new
observations/functions.
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Simulation Study

A simulated functional dataset was produced with two covariates,

1.00-

0.75-

0.25-

Fig. 4. Functional responses, Y1 and Y2, from simulated dataset.

t 1 _ 12 u2
Y1 (8) :f o e “*in du Yi2(t) = xj;8in(x;,t)
—e i1

« Functional linear model and MARS forward model fit using basis representation.
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Simulation Study Results

The simulation study results indicate that the FIP framework is able to
recover x; and x,

Tab. 1: RMSE for IP of simulation study

I N
Linear 0.06 (0.04) 0.57(0.26)
MARS 0.02 (0.04) 0.51 (0.26)

RMSE = standard deviation of the residuals
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Approaches for FIP

Training Phase

Represent

Functional functional

PCA responses using
basis functions

Inference Phase

Optimization

Seemingly Forward model gives
Unrelated Define and fit a functional predictions s s
Regression forward model

Bayesian -

Bayesian RIMCMC

Adaptive Perform
Spline Surface uncertainty I IEIETIED

quantification Use bootstrapped
distribution of parameters

Obtaindistribution
of predictions

Bootstrap
Validate model

Cross-validation
by run

Bayesian
Posterior Fig. 5: Functional Inverse Prediction Framework Approaches.
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Seemingly Unrelated Regression

« Ageneralization of a linear regression
model that contains only exogenous
regressors (only related through the error
terms).

« Fit forward and inverse mode|
« Fit into a Bayesian framework for easy UQ

- (Considers particles within a run as a
group

« Accounts for correlations between errors
in morphological characteristics. l.e. for a
particular run with the same set of
processing conditions, morphological
characteristics, such as particle size,
shape, and smoothness are likely related.
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Fig. 6: Model performance assessment using LOOCV on

SUR for Condition 1.
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Bayesian Adaptive Spline Surface

* Anon-linear model for nonparametric regression that - Fig. 7: BASS RMSE of
incorporates flexibility, scalability, interpretability, and probabilistic condition 1 for all particles
accuracy.

e Fitadirect model
« Fits in a Bayesian framework for easy UQ

« Considers particles within a run individually, then combines
results post hoc.

Distribution of Sampled Values

Mean A Median O Mode

Fig. 8: Model performance assessment using LOOCV on BASS for Condition 1.
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Conclusion

« There is a lot of variability in the chemical process that it makes it difficult
to parse out the signal from noise in a purely-data driven manner.

« Non-linear relationships exist between processing conditions and particle
features.

« Models are constructed so they are interpretable, allowing us to
understand which particle features affect which processing conditions.

« Models are only as good as the data- if the major sources of variability are
not captured in the data, then it will be difficult to develop generalizable
data-driven models.

« Uncertainties on predictions are relatively large for all models considered.
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