
P R E S E N T E D B Y

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

Batching Circuits to Reduce
Compilation in Quantum Control
Hardware

Ashlyn D. Burch, Daniel S. Lobser, Christopher G. Yale, Jay W. Van Der Wall, Oliver
G. Maupin, Joshua D. Goldberg, Matthew N. H. Chow, Melissa C. Reve l l e , Susan
M . C l a r k

1 Technical paper for 2022 IEEE Quantum Week

SAND2022-12317CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

a problem shared amongst all quantum
computers: parameter control
Aim: greater hardware control, reduced overhead

The whole purpose of having a smaller testbed platform is to
explore the capabilities of user hardware and software control,
making it easier to scale to larger systems.

Tunable parameter and potential sources of drift on trapped
ion systems:

• Magnetic field fluctuations
• RF power instabilities
• Beam power or frequency fluctuations
• Spatial beam drifts
• Stray electric field effects
• Relative phases between gates

All of which may or may not be affecting the others! They all
may also be affected on different timescales.

T. Proctor, M. Revelle, et al. Nature Communications 11, 5396 (2020).
J. Kelly, R. Barends, et al. Phys. Rev. A 94, 032321 (2016).

discovering our current limitations

Current main limitations:
 Drifts – RF power fluctuations,

spatial beam drifts that call for
frequent recalibration

 Limitations of on-chip memory
buffers that make the experiment
infeasible – unique for certain
experiments

Collaboration on experiments with Tufts

University and Oak Ridge National Laboratories
exposed a problem that we needed to fix!

outline

• Exploring the Jaqal-verse
• Jaqal
• JaqalPaq
• JaqalPaw
• Jaqal Application Framework

• Implementing experiments on the hardware
• QSCOUT
• Octet

• Integration of batching in Jaqal
• Tufts University - Richardson extrapolation requiring scaling factor

 Batching with let parameter dictionaries
• Oak Ridge National Laboratories - randomized compiling requiring large number of circuits to be run

 Batching through indexing

the Jaqal-verse
Jaqal (Just Another Quantum Assembly Language) – quantum assembly
language created for explicit and transparent qubit control

• Preparation of all qubits in the z basis

• parameterized single qubit rotation gates that can be rotated about any axis on the
equatorial plane of the Bloch sphere

• Parameterized single qubit virtual Z gates that act as a phase advance on subsequent
waveforms

• Native two-qubit (Mølmer-Sørensen) gates between any two ions, with user-defined
phase and rotation angle

• Measurement of all qubits in the z basis

JaqalPaq – python software package for easy programming with sub-
packages that include compiler, emulator, code generator, etc.

JaqalPaw (Jaqal Pulses and Waveforms) – a suite that is used to define pulses
and waveforms for Jaqal to be run on the QSCOUT hardware

• The lower level counterpart to Jaqal that describes gates in terms of waveforms in a
gate pulse file

• Users can construct macros for custom gates built off of native gates

JAF (Jaqal Application Framework) – application framework to execute Jaqal
circuits on the hardware

JaqalPaq

JaqalPaw + JAF

A.J. Landahl, D.S. Lobser, et al (2020) “Jaqal, the Quantum Assembly Language for
QSCOUT.” arXiv: 2003.09382.

QSCOUT – testbed for open user access

• Individual addressability with 355 nm Raman beams

• RF tones applied to AOMs for individual addressing
and global beam are controlled by Octet (custom-
designed hardware for advanced gate + pulse control)

• Provides unique parameterized single and two-qubit
gate sets

• RT system based on 171Yb+ trapped
ions

• 1D linear chain of 2-11 qubits, with
hardware support of up to 32

• Full connectivity between ions
using radial vibrational modes

HOA 2.1 surface
electrode trap

Peregrine surface trap

S.M. Clark, D. Lobser, et al (2021) “Engineering the Quantum Scientific Computing Open User
Testbed.” IEEE Transactions on Quantum Engineering vol. 2, pp. 1-32 Art no. 3102832, doi:
10.1109/TQE.2021.3096480.

hardware for coherent pulse generation
• RFSoC to control single and multi-channel AOMs
• Coherent output synchronized between all channels
• Generation of up to two tones per channel within AOMs
• Compact representation of gates for efficient circuit streaming
• Z gates are performed virtually in the software

 def gate_Rcounter(self, channel, angle=np.pi, phase=0):
 duration = (angle/np.pi)*self.counter_resonant_pi_time
 return [PulseData(0, duration,
 freq0=self.freq0,
 amp0= [0, 50, 100, 50]
 phase0=(0, 50, 100, 50, 0),
 sync_mask=0b01, enable_mask=1),
 PulseData(channel, duration,
 freq0=self.freq0,
 freq1=self.ia_center_frequency,
 amp0=[0,40,90,40,0],

 phase0 = (0,40,90,40,0),
 amp1=self.amp1_counterprop_list[int(channel)],
 phase1=phase,
 sync_mask=0b11, enable_mask=2)]

running QSCOUT with the software

JaqalPaq

Ion trap

JAF
Measurement

1) User builds their Jaqal circuits constructing JaqalPaq
2) These Jaqal circuits can construct new gates and pulses using JaqalPaw
3) The user code is uploaded to the JAF network service running through a Docker container
4) These circuits are sent to the hardware Octet, interpreted and then translated into laser pulses
5) Laser pulses are streamed out and quantum circuits are performed on the ions in the trap
6) Measurements are recorded in the Jaqal Application Framework and returned to the user

outline

• Exploring the Jaqal-verse
• Jaqal
• JaqalPaq
• JaqalPaw
• Jaqal Application Framework

• Implementing experiments on the hardware
• QSCOUT
• Octet

• Integration of batching in Jaqal
• Tufts University - Richardson extrapolation requiring

scaling factor
 Batching with let parameter dictionaries

• Oak Ridge National Laboratories - randomized
compiling requiring large number of circuits to be run
 Batching through indexing

2 variational quantum eigensolver experiments,
modeling dynamics of molecules and extracts
upper bound ground state energy of Hamiltonian

Quantum and classical hybrid – quantum
processor with classical optimizer

outline

• Exploring the Jaqal-verse
• Jaqal
• JaqalPaq
• JaqalPaw
• Jaqal Application Framework

• Implementing experiments on the hardware
• QSCOUT
• Octet

• Integration of batching in Jaqal
• Tufts University - Richardson extrapolation requiring scaling factor

 Batching with let parameter dictionaries
• Oak Ridge National Laboratories - randomized compiling requiring large number of circuits to be run

 Batching through indexing

error mitigation experiments on QSCOUT
Tufts University goal: Use a short-depth VQE (ground state energy of HeH+) circuits error mitigation
technique that can be demonstrated using QSCOUT  Richardson Extrapolation for determining zero-
noise extrapolation of the circuit which required a controlled scaling factor

1. Circuit is being driven
by a time-dependent
Hamiltonian

2. Expectation value of
the observable is
expanded as a Taylor
series

: ideal zero-noise expectation value

3. Additional noisy estimates are
added:

: small noise parameter

: controlled scaling factor

4. Measurements are extrapolated
to single noiseless estimate:

K. Temme, S. Bravyi, J.M. Gambetta, Error mitigation for short-depth quantum
circuits. Physical Review Letters, 119 (18), (2017)

Our biggest
challenge –
scaling by a time
factor or gate
depth factor!

Richardson extrapolation

Px q[target1]
Px q[target2]
loop MS_loop{MS q[target2]
q[target1] 0 pi2
MS q[target2] q[target1] 0 npi2}
MS q[target2] q[target1] 0 pi2
Rz q[target2] theta
MS q[target2] q[target1] 0 npi2
loop MS_loop{MS q[target2]
q[target1] 0 pi2
MS q[target2] q[target1] 0 npi2}

*theta is tuned to construct the
formation of the Hamiltonian

COBYLA method: iteratively approximates next
candidate solution based on linear programming
and continues to evaluate using original objective
and constraint functions to find the minimum of the
Hamiltonian

Px q[target1]
Px q[target2]
MS q[target2] q[target1] 0 pi2
Rz q[target2] theta
MS q[target2] q[target1] 0 npi2

Adding an example stretch factor:

running with JAF

• In the older regime, JAF created a brand new Jaqal file for each
new step of a user’s code

let MS_loop 2
let ZZ 1
let XZ 0
let ZX 0
let XX 0

prepare_all
Px q[target1]
Px q[target2]
loop MS_loop{MS q[target2] q[target1] 0 pi2
MS q[target2] q[target1] 0 npi2}
MS q[target2] q[target1] 0 pi2
Rz q[target2] theta
MS q[target2] q[target1] 0 npi2
loop MS_loop{MS q[target2] q[target1] 0 pi2
MS q[target2] q[target1] 0 npi2}
loop XZ { Sy q[target1]
Px q[target1] }
loop ZX {Sy q[target2]
Px q[target2]}
loop XX{ Sy q[target1]
Px q[target1]
Sy q[target2]
Px q[target2]}
measure_all

Two main inconveniences:
• let parameters could only correspond to one value at a time
• A new Jaqal file was created for each new step of the code

How does (did) JAF work with the hardware?
• Fetches data from notebook or other application and stores

as binary data in the docker container (QSCOUT unaware of
application)

• When the compiler stores the data, it prohibits recalculation
• Those subcircuits are then executed on Octet

Linux machine –
JAF Docker

Windows machine –
Hardware control

Octet
1000 shots = 3.5 s

2 s

batching with overrides for VQE
Batching Implementation:
• Batching with overrides

ZZ x 4 XZ x 2 ZX x 2 XX

• Identical circuits with varying parameters

• Θ = 0.01 (as an example)

• # of shots =1000 (as an example), although we also have the support for
changing this amongst projections

• 1 batch = 1 optimizer step
18 steps vs. 162 steps (9 proj x 18 opt. steps) where each JAF call
was 2 s

• Reduction from 29 minutes  19.5 minutes

 9 Pauli terms in the
Hamiltonian

*When calibration parameters do not change and gate
data is similar, the circuit is compressed by compiling
everything upfront

results – batching Tufts VQE code

• num_MS = 1
• One theta value per optimizer step,

although we have the ability to incorporate
multiple thetas

• Number of experiments set to 1000
• Batched results are performing at the same

accuracy in a shorter amount of time

Next and final step: vary across num_MS to
incorporate the scaling factor to perform
Richardson extrapolation

Noisy emulator COBYLA: simulated error model using common
experimental control errors (power, frequency, phase, etc.)

outline

• Exploring the Jaqal-verse
• Jaqal
• JaqalPaq
• JaqalPaw
• Jaqal Application Framework

• Implementing experiments on the hardware
• QSCOUT
• Octet

• Integration of batching in Jaqal
• Tufts University - Richardson extrapolation requiring scaling factor

 Batching with let parameter dictionaries
• Oak Ridge National Laboratories - randomized compiling requiring large number of circuits to be run

 Batching through indexing

randomized compiling comparison
ORNL goal: To characterize and mitigate coherent errors in a trapped ion quantum processor
using hidden inverses  How does randomized compiling compare to the use of hidden
inverses? • For randomized compiling, twirling gates are

inserted before and after each single qubit
gate and are then compiled together

prepare_all
Px q[1]
Sy q[1]
Sxd q[0]
CNOT q[1] q[0]
Rz q[0] alpha
CNOT† q[1]
q[0]
Syd q[1]
Sx q[0]
measure_all

prepare_all
Px q[1]
Sy q[1]
Sxd q[0]
Twirl q[0]/q[1]
CNOT q[1] q[0]
Twirl q[0]/q[1]
Rz q[0] alpha
Twirl q[0]/q[1]
CNOT q[1] q[0]
Twirl q[0]/q[1]
Syd q[1]
Sx q[0]
measure_all • Each set of circuits starts as a combination

of single qubit gates and CNOT gates

Px
q[1]
Pz
q[0]
or
Pz
q[1]
Pz
q[0]
or
Pz
q[1]
or…

Px
q[1]
Py
q[0]
or
Pz
q[1]
or
Py
q[0]
Py
q[1]
or…

Py
q[1]
Pz
q[0]
or
Pz
q[1]
or
Px
q[1]
Pz
q[0]
or…

Py
q[1]
Py
q[0]
or
Pz
q[0]
or
Pz
q[1]
or…Our biggest challenge was

performing all these randomizations
– over 2 hours, creating new Jaqal
file at each step

S. Majumder, C.G. Yale. (2022) “Characterizing and mitigating
coherent errors in a trapped ion quantum processor using hidden
inverses.” arXiv:2205.14225.

batching VQE through indexing
Batching implementation:
• Batching with indexing
• Cannot have different values for # shots within indexing batch

RC
(20 shots per twirl -
> 200 shots total)

HI Standard

ZZ XX YY

ZZ XX YY

ZZ XX YY

ZZ XX YY

…

Twirl 1

Twirl 2

Twirl 3

Twirl 10

ZZ XX YY ZZ XX YY
× 10 × 10

1 batch = 90 points ((10 RC + 10 HI + 10 standard) × 3 proj.)
Total 41 batches (41 α) = 3690 points

Compressed binary data
representation ≈ single circuit

results – batching ORNL VQE code

• Intentionally introduced coherent errors to compare RC to HI (refer to arXiv paper for details)
• Significant reduction in total JAF calls and dead time (41 vs. 3690 JAF calls)

S. Majumder, C.G. Yale. (2022) “Characterizing and mitigating coherent errors in a trapped ion
quantum processor using hidden inverses.” arXiv:2205.14225.

summary

• Dominant sources of error in many ion trap testbed systems is drift due to variation in often
controllable parameters. Speeding up experiment run-time helps to mitigate the effects of drift.

• Batching in Jaqal speeds experimental run-time through the reduction of communication and
upload times.
 Batching with let parameters creates a let parameter override dictionary that is used when

circuits are identical but need to be run using different values for calibration parameters.
 Batching through indexing compresses the representation of all circuits into subcircuits so

that multiple circuits can be calculated once and executed by uploading minimal sets.

• Both techniques were useful in running completely different sets of code in Jaqal in collaboration
with Tufts University and Oak Ridge National Laboratories, making running their code more feasible
and/or convenient.

21
Email: qscout@sandia.gov (mailing list) Web: https://qscout.sandia.gov Jaqal: https://gitlab.com/jaqal/jaqalpaq

Experimental
Susan Clark, PI
Christopher Yale
Dan Lobser
Melissa Revelle
Matt Chow
Ashlyn Burch
Megan Ivory
Theala Redhouse
Craig Hogle
Dan Stick

Trap Fabrication
and Packaging
Becky Loviza
Ed Heller
Chris Nordquist
Ray Haltli
Tipp Jennings
Ben Thurston
John Rembetski
Eric Ou
Matt Delaney
Zach Meinelt
Nick Jimenez

Theory & Software
Andrew Landahl
Ben Morrison
Kenny Rudinger
Antonio Russo
Brandon Ruzic
Jay Van Der Wall
Josh Goldberg
Tim Proctor
Kevin Young

Mechanical &
Optical Engineering
Brad Salzbrenner
Madelyn Kosednar
Ted Winrow
Bill Sweatt
Dave Bossert
Josh Lane

QSCOUT Team

Collaborators/Users
Ken Brown, Duke
Peter Love, Tufts
Oliver Maupin, Tufts
William Simon, Tufts
Titus Morris, ORNL
Swarnadeep Majumder, ORNL
Jacek Jakowski, ORNL
Raphael Pooser, ORNL

QSCOUT Experimental Team

mailto:qscout@sandia.gov
https://qscout.sandia.gov
https://gitlab.com/jaqal/jaqalpaq

