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a problem shared amongst all quantum 
computers: parameter control
Aim: greater hardware control, reduced overhead

The whole purpose of having a smaller testbed platform is to 
explore the capabilities of user hardware and software control, 
making it easier to scale to larger systems. 

Tunable parameter and potential sources of drift on trapped 
ion systems:

• Magnetic field fluctuations
• RF power instabilities
• Beam power or frequency fluctuations
• Spatial beam drifts
• Stray electric field effects
• Relative phases between gates

All of which may or may not be affecting the others! They all 
may also be affected on different timescales. 

T. Proctor, M. Revelle, et al. Nature Communications 11, 5396 (2020). 
J. Kelly, R. Barends, et al. Phys. Rev. A 94, 032321 (2016).



discovering our current limitations

Current main limitations:
 Drifts – RF power fluctuations, 

spatial beam drifts that call for 
frequent recalibration

 Limitations of on-chip memory 
buffers that make the experiment 
infeasible – unique for certain 
experiments

Collaboration on experiments with Tufts

University and Oak Ridge National Laboratories 
exposed a problem that we needed to fix! 
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• Jaqal 
• JaqalPaq
• JaqalPaw
• Jaqal Application Framework

• Implementing experiments on the hardware
• QSCOUT 
• Octet 

• Integration of batching in Jaqal
• Tufts University - Richardson extrapolation requiring scaling factor

 Batching with let parameter dictionaries
• Oak Ridge National Laboratories - randomized compiling requiring large number of circuits to be run

 Batching through indexing



the Jaqal-verse
Jaqal (Just Another Quantum Assembly Language) – quantum assembly 
language  created for explicit and transparent qubit control

• Preparation of all qubits in the z basis 

• parameterized single qubit rotation gates that can be rotated about any axis on the 
equatorial plane of the Bloch sphere

• Parameterized single qubit virtual Z gates that act as a phase advance on subsequent 
waveforms

• Native two-qubit (Mølmer-Sørensen) gates between any two ions, with user-defined 
phase and rotation angle

• Measurement of all qubits in the z basis

JaqalPaq – python software package for easy programming with sub-
packages that include compiler, emulator, code generator, etc. 

JaqalPaw (Jaqal Pulses and Waveforms) – a suite that is used to define pulses 
and waveforms for Jaqal to be run on the QSCOUT hardware

• The lower level counterpart to Jaqal that describes gates in terms of waveforms in a 
gate pulse file

• Users can construct macros for custom gates built off of native gates

JAF (Jaqal Application Framework) – application framework to execute Jaqal 
circuits on the hardware

JaqalPaq

JaqalPaw + JAF

A.J. Landahl, D.S. Lobser, et al (2020) “Jaqal, the Quantum Assembly Language for 
QSCOUT.” arXiv: 2003.09382.



QSCOUT – testbed for open user access

• Individual addressability with 355 nm Raman beams

• RF tones applied to AOMs for individual addressing 
and global beam are controlled by Octet (custom-
designed hardware for advanced gate + pulse control) 

• Provides unique parameterized single and two-qubit 
gate sets

• RT system based on 171Yb+ trapped 
ions

• 1D linear chain of 2-11 qubits, with 
hardware support of up to 32

• Full connectivity between ions 
using radial vibrational modes

HOA 2.1 surface 
electrode trap

Peregrine surface trap

S.M. Clark, D. Lobser, et al (2021) “Engineering the Quantum Scientific Computing Open User 
Testbed.” IEEE Transactions on Quantum Engineering vol. 2, pp. 1-32 Art no. 3102832, doi: 
10.1109/TQE.2021.3096480.



hardware for coherent pulse generation
• RFSoC to control single and multi-channel AOMs
• Coherent output synchronized between all channels
• Generation of up to two tones per channel within AOMs 
• Compact representation of gates for efficient circuit streaming
• Z gates are performed virtually in the software

 def gate_Rcounter(self, channel, angle=np.pi, phase=0):
        duration = (angle/np.pi)*self.counter_resonant_pi_time
        return [PulseData(0, duration,
                          freq0=self.freq0,
                          amp0= [0, 50, 100, 50]
                          phase0=(0, 50, 100, 50, 0),
                          sync_mask=0b01, enable_mask=1),
                  PulseData(channel, duration,
                          freq0=self.freq0,
                          freq1=self.ia_center_frequency,
                          amp0=[0,40,90,40,0],

     phase0 = (0,40,90,40,0),
                          amp1=self.amp1_counterprop_list[int(channel)],
                          phase1=phase,
                          sync_mask=0b11, enable_mask=2)]



running QSCOUT with the software

JaqalPaq

Ion trap

JAF 
Measurement

1) User builds their Jaqal circuits constructing JaqalPaq
2) These Jaqal circuits can construct new gates and pulses using JaqalPaw
3) The user code is uploaded to the JAF network service running through a Docker container
4) These circuits are sent to the hardware Octet, interpreted and then translated into laser pulses
5) Laser pulses are streamed out and quantum circuits are performed on the ions in the trap
6) Measurements are recorded in the Jaqal Application Framework and returned to the user



outline

• Exploring the Jaqal-verse
• Jaqal 
• JaqalPaq
• JaqalPaw
• Jaqal Application Framework

• Implementing experiments on the hardware
• QSCOUT 
• Octet 

• Integration of batching in Jaqal
• Tufts University - Richardson extrapolation requiring 

scaling factor
 Batching with let parameter dictionaries

• Oak Ridge National Laboratories - randomized 
compiling requiring large number of circuits to be run
 Batching through indexing

2 variational quantum eigensolver experiments, 
modeling dynamics of molecules and extracts 
upper bound ground state energy of Hamiltonian

Quantum and classical hybrid – quantum 
processor with classical optimizer
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error mitigation experiments on QSCOUT
Tufts University goal: Use a short-depth VQE (ground state energy of HeH+) circuits error mitigation 
technique that can be demonstrated using QSCOUT   Richardson Extrapolation for determining zero-
noise extrapolation of the circuit which required a controlled scaling factor

1. Circuit is being driven 
by a time-dependent 
Hamiltonian

2. Expectation value of 
the observable is 
expanded as a Taylor 
series

: ideal zero-noise expectation value 

3. Additional noisy estimates are 
added:

: small noise parameter

: controlled scaling factor

4. Measurements are extrapolated 
to single noiseless estimate:

K. Temme, S. Bravyi, J.M. Gambetta, Error mitigation for short-depth quantum 
circuits. Physical Review Letters, 119 (18), (2017)

Our biggest 
challenge – 
scaling by a time 
factor or gate 
depth factor!



Richardson extrapolation

Px q[target1]
Px q[target2]
loop MS_loop{MS q[target2] 
q[target1] 0 pi2
MS q[target2] q[target1] 0 npi2}
MS q[target2] q[target1] 0 pi2
Rz q[target2] theta
MS q[target2] q[target1] 0 npi2
loop MS_loop{MS q[target2] 
q[target1] 0 pi2
MS q[target2] q[target1] 0 npi2}

*theta is tuned to construct the 
formation of the Hamiltonian

COBYLA method: iteratively approximates next 
candidate solution based on linear programming 
and continues to evaluate using original objective 
and constraint functions to find the minimum of the 
Hamiltonian 

Px q[target1]
Px q[target2]
MS q[target2] q[target1] 0 pi2
Rz q[target2] theta
MS q[target2] q[target1] 0 npi2

Adding an example stretch factor:



running with JAF

• In the older regime, JAF created a brand new Jaqal file for each 
new step of a user’s code

let MS_loop 2
let ZZ 1
let XZ 0
let ZX 0
let XX 0

prepare_all
Px q[target1]
Px q[target2]
loop MS_loop{MS q[target2] q[target1] 0 pi2
MS q[target2] q[target1] 0 npi2}
MS q[target2] q[target1] 0 pi2
Rz q[target2] theta
MS q[target2] q[target1] 0 npi2
loop MS_loop{MS q[target2] q[target1] 0 pi2
MS q[target2] q[target1] 0 npi2}
loop XZ { Sy q[target1]
Px q[target1] }
loop ZX {Sy q[target2]
Px q[target2]}
loop XX{ Sy q[target1]
Px q[target1]
Sy q[target2]
Px q[target2]}
measure_all

Two main inconveniences:
• let parameters could only correspond to one value at a time
• A new Jaqal file was created for each new step of the code

How does (did) JAF work with the hardware?
• Fetches data from notebook or other application and stores 

as binary data in the docker container (QSCOUT unaware of 
application)

• When the compiler stores the data, it prohibits recalculation
• Those subcircuits are then executed on Octet

Linux machine – 
JAF Docker

Windows machine – 
Hardware control

Octet
1000 shots = 3.5 s

2 s



batching with overrides for VQE
Batching Implementation:
• Batching with overrides

ZZ x 4 XZ x 2 ZX x 2 XX

• Identical circuits with varying parameters

• Θ = 0.01 (as an example)

• # of shots =1000 (as an example), although we also have the support for 
changing this amongst projections

• 1 batch = 1 optimizer step
18 steps vs. 162 steps (9 proj x 18 opt. steps) where each JAF call 
was 2 s

• Reduction from 29 minutes  19.5 minutes

 9 Pauli terms in the 
Hamiltonian

*When calibration parameters do not change and gate 
data is similar, the circuit is compressed by compiling 
everything upfront



results – batching Tufts VQE code

• num_MS = 1
• One theta value per optimizer step, 

although we have the ability to incorporate 
multiple thetas 

• Number of experiments set to 1000
• Batched results are performing at the same 

accuracy in a shorter amount of time

Next and final step: vary across num_MS to 
incorporate the scaling factor to perform 
Richardson extrapolation

Noisy emulator COBYLA: simulated error model using common 
experimental control errors (power, frequency, phase, etc.) 
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randomized compiling comparison   
ORNL goal: To characterize and mitigate coherent errors in a trapped ion quantum processor 
using hidden inverses  How does randomized compiling compare to the use of hidden 
inverses? • For randomized compiling, twirling gates are 

inserted before and after each single qubit 
gate and are then compiled together

prepare_all 
Px q[1] 
Sy q[1]
Sxd q[0] 
CNOT q[1] q[0]  
Rz q[0] alpha 
CNOT† q[1] 
q[0]
Syd q[1]
Sx q[0] 
measure_all 

prepare_all 
Px q[1] 
Sy q[1]
Sxd q[0] 
Twirl q[0]/q[1]
CNOT q[1] q[0]  
Twirl q[0]/q[1]
Rz q[0] alpha
Twirl q[0]/q[1]
CNOT q[1] q[0]
Twirl q[0]/q[1]
Syd q[1]
Sx q[0] 
measure_all • Each set of circuits starts as a combination 

of single qubit gates and CNOT gates

Px 
q[1]
Pz 
q[0]
or
Pz 
q[1]
Pz 
q[0]
or
Pz 
q[1]
or…

Px 
q[1]
Py 
q[0]
or
Pz 
q[1]
or
Py 
q[0]
Py 
q[1]
or…

Py 
q[1]
Pz 
q[0]
or
Pz 
q[1]
or
Px 
q[1]
Pz 
q[0]
or…

Py 
q[1]
Py 
q[0]
or
Pz 
q[0]
or
Pz 
q[1]
or…Our biggest challenge was 

performing all these randomizations 
– over 2 hours, creating new Jaqal 
file at each step

S. Majumder, C.G. Yale. (2022) “Characterizing and mitigating 
coherent errors in a trapped ion quantum processor using hidden 
inverses.” arXiv:2205.14225.



batching VQE through indexing
Batching implementation:
• Batching with indexing
• Cannot have different values for # shots within indexing batch

RC 
(20 shots per twirl -
> 200 shots total)

HI Standard

ZZ XX YY

ZZ XX YY

ZZ XX YY

ZZ XX YY

…

Twirl 1

Twirl 2

Twirl 3

Twirl 10

ZZ XX YY ZZ XX YY
× 10 × 10

1 batch = 90 points ((10 RC + 10 HI + 10 standard) × 3 proj.)
Total 41 batches (41 α) = 3690 points

Compressed binary data 
representation ≈ single circuit



results – batching ORNL VQE code

• Intentionally introduced coherent errors to compare RC to HI (refer to arXiv paper for details)
• Significant reduction in total JAF calls and dead time (41 vs. 3690 JAF calls)

S. Majumder, C.G. Yale. (2022) “Characterizing and mitigating coherent errors in a trapped ion 
quantum processor using hidden inverses.” arXiv:2205.14225.



summary

• Dominant sources of error in many ion trap testbed systems is drift due to variation in often 
controllable parameters. Speeding up experiment run-time helps to mitigate the effects of drift.

• Batching in Jaqal speeds experimental run-time through the reduction of communication and 
upload times. 
 Batching with let parameters creates a let parameter override dictionary that is used when 

circuits are identical but need to be run using different values for calibration parameters. 
 Batching through indexing compresses the representation of all circuits into subcircuits so 

that multiple circuits can be calculated once and executed by uploading minimal sets. 

• Both techniques were useful in running completely different sets of code in Jaqal in collaboration 
with Tufts University and Oak Ridge National Laboratories, making running their code more feasible 
and/or convenient. 



21
Email: qscout@sandia.gov (mailing list)  Web: https://qscout.sandia.gov   Jaqal: https://gitlab.com/jaqal/jaqalpaq 

Experimental 
Susan Clark, PI
Christopher Yale 
Dan Lobser
Melissa Revelle
Matt Chow 
Ashlyn Burch
Megan Ivory
Theala Redhouse
Craig Hogle 
Dan Stick 

Trap Fabrication 
and Packaging
Becky Loviza
Ed Heller 
Chris Nordquist 
Ray Haltli
Tipp Jennings
Ben Thurston
John Rembetski 
Eric Ou 
Matt Delaney
Zach Meinelt
Nick Jimenez 
 

Theory & Software 
Andrew Landahl
Ben Morrison 
Kenny Rudinger 
Antonio Russo 
Brandon Ruzic 
Jay Van Der Wall
Josh Goldberg
Tim Proctor 
Kevin Young 

Mechanical & 
Optical Engineering
Brad Salzbrenner
Madelyn Kosednar 
Ted Winrow 
Bill Sweatt 
Dave Bossert
Josh Lane

QSCOUT Team

Collaborators/Users
Ken Brown, Duke
Peter Love, Tufts
Oliver Maupin, Tufts
William Simon, Tufts
Titus Morris, ORNL
Swarnadeep Majumder, ORNL 
Jacek Jakowski, ORNL
Raphael Pooser, ORNL

QSCOUT Experimental Team

mailto:qscout@sandia.gov
https://qscout.sandia.gov
https://gitlab.com/jaqal/jaqalpaq

