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Revisiting CP: Generalizing the Goodness-of-Fit Criteria

2
Hong, Kolda & Duersch (2020)

≈

GCP: Generalized CP Tensor Decompositions

generalized 
loss function

Matlab Tensor Toolbox:
gcp_opt



Poisson CP: Identity Link
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Chi & Kolda (2012); Hansen, Plantenga & Kolda (2015) 

Probability Mass 
Function (PMF):

≈

CP-APR: CP-Alternating Poisson Regression Tensor Decompositions



Loss Function Name Data ‘type’ Parameter in gcp_opt

Gaussian real-valued ‘normal’, ‘gaussian’

Poisson with Linear Link count ‘count’, ‘poisson’

Poisson with Log Link count ‘poisson-log’

Bernoulli with Odds Link binary ‘binary’, ‘bernoulli-odds’

Bernoulli with Logit Link binary ‘bernoulli-logit’

Rayleigh real-valued ‘rayleigh’

Gamma nonnegative real-valued ‘gamma’

Huber nonnegative real-valued ‘huber (<d>)’

Negative Binomial count ‘negative-binomial (<r>)’

Beta nonnegative real-valued ‘beta (<b>)’

GCP: Loss Functions
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Hong, Kolda & Duersch (2020)

Advanced: Create and use your own loss function (and gradient)



GCP: Loss Function and Gradient Computations
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Compute
Gradient

MTTKRP

Important: Computing the GCP gradient is expensive!

Hong, Kolda & Duersch (2020)



GCP: Optimization Methods

6

Optimization Method Notes ‘opt’ in gcp_opt

Limited-Memory Quasi-Newton with Bound 
Constraints

Default for dense tensor data ‘lbfgsb’

Stochastic gradient descent (SGD) ‘sgd’

ADAM: adaptive moment estimation Default for sparse tensor data ‘adam’

AdaGrad: adaptive gradient ‘adagrad’

Stochastic Methods: User must specify amount of sampling for good performance

Advanced: Create and use your own optimizer

Sampling Method Notes ‘sampler’ in gcp_opt

Uniform Entries are selected uniformly at random. Default for dense tensors. ‘uniform’

Stratified Zeros and nonzeros sampled separately. Default for sparse tensors. ‘stratified’

Semi-Stratified Modification to stratified sampling that avoids rejection sampling for 
better efficiency at the cost of potentially higher variance.

‘semi-stratified’

Hong, Kolda & Duersch (2020); Kolda & Hong (2020)



GCP: Matlab Tensor Toolbox
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>> help gcp_opt >> doc tensor_toolbox

GCP Parameters: Many user parameters that impact time to solution and accuracy



GCP Example: Chicago Crime Data
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• 4-way count tensor
• 6,186 Days
• 24 Hours of the Day
• 77 Community Areas
• 32 Crime Types

• Non-zeros: 5,330,673
• 0.21GB for sparse tensor

• Distribution of entries
• 0: 98.54%
• 1: 1.33%
• > 2: 0.12%

• Obtained from FROSTT
• http://frosttio/tensors/chicago-crime/

• Data originally from Chicago Data Portal
• https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-Present/ijzp-q8t2

http://frosttio/tensors/chicago-crime/
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-Present/ijzp-q8t2


GCP Example: Chicago Crime Data
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>> load chicago_crime.mat             % load data from file
>> X = crime_tensor;                  % extract sparse tensor from data
>> M = gcp_opt(X,10,'type’,'count’);  % compute GCP decomposition
>> chicago_viz(M,1);                  % visualize results



GCP Example: Chicago Crime Data
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>> M = gcp_opt(X,10,'type’,’normal’);

>> M = gcp_opt(X,10,'type','count’);



GCP Example: Chicago Crime Data (Component #1)

11Shape file for areas downloaded from https://data.cityofchicago.org/Facilities-Geographic-Boundaries/Boundaries-Community-Areas-current-/cauq-8yn6

>> chicago_component_viz(M,1,1);

https://data.cityofchicago.org/Facilities-Geographic-Boundaries/Boundaries-Community-Areas-current-/cauq-8yn6


GCP Example: Chicago Crime Data (Component #2)

12Shape file for areas downloaded from https://data.cityofchicago.org/Facilities-Geographic-Boundaries/Boundaries-Community-Areas-current-/cauq-8yn6

>> chicago_component_viz(M,2,1);

https://data.cityofchicago.org/Facilities-Geographic-Boundaries/Boundaries-Community-Areas-current-/cauq-8yn6
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