Thisllpaperidescribes| ctive icallresultsfandlanalysis JAnvisubiectivelviewslorfopinionsithatimightibelexpressedjin| SAND2022-12272Cl
elpaperfdoinotinecessarilyfrepresentithefviewsjofftheju.S IDepa ntjoflEnergyjorfthejUnitedjStatesjGovernment.

Sandia National Laboratories

Benchtop Experimental and Computational Design Tools
for Continuous Drying Processes

Chance Parrish!, Nelson Bell!, Kristianto Tjiptowidjojo?, Marvin Larsen?, P. Randal Schunk!->
I'Sandia National Laboratories 2 University of New Mexico

Continuous Coating and Drying Processes Drying Process Design: Prior Work and Challenges

Cracking Blistering . . .

e o N Drying and Sorption Experiments I11- Posed D1ffusw1ty Models

.[::' Ve elrying channel
Sample

l:.hﬂ.mhﬂ % :J_: 3 2 pm? polyrmar soasho 0075 F

007

Drying/Annealing Zones

objective | 7 plezo naich- confocal Raman-
(100 x 1,3) (0 -200 pm)  filter pinhole  spectrometer

Paosition (cm)
(=
:

= ( : ..‘ N ““. 3 s Tt I E‘:]Ll \ - -
Coating ' fsatscom B lasuritcom : l 8l

(514, 633nm)

Step 08 -06 -04 -02 D.- 0.2 0.4 (1.6
S — Price Jr. et al. AIChE J. 1997. 43, Schabel et al. Dry. Technol. 2004. 22, Polystyrene Concentration (g/cnf)

1925 285 Price Jr. & Romdhane. AIChE J. 2003. 49, 309
Drying Process Predlctlons

5

e
=

Bubbie-Point i
Temperaru:g_-.-'"

;

Inconsistency in Thermodynamic Parameters
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* Continuous coating and drying processes key manufacturing process
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* Defects may arise for poor drying conditions, limiting process throughput
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Free-Volume Diffusivity Model Key Diffusivity Parameters

D, ;: infinite-dilution diffusion coefficient

Measured Temperature
Predicted Temperature

wees Measured Residual Toluene
Predicted Residual Toluene

=
b
o=

—_—
—
e

Teer = 100°C

[
=
=

Dy = D, o7, _DN?_N‘”N G Omy &y solvent i to polymer N jumping unit ratio
ik = LN . IS
D;V;M; J\RT dc

V:": critical hole volume of component i
I —— T'Set — 800[:‘

Qo
o

* Moisture analyzer with thermocouples and data logger K, /y: solvent free-volume params
( [_I ) 1;' P - [ e N

. _ . . ¥ w; V .
pI’OVldCS a cost-effective drylng apparatus D. = D[“exp( = wi(Kyi = Tgi + T) Ky; — Ty;i: polymer free-volume params.

Toor = 60°C

Residual Toluene ( g/cm?)

IL’rF H

* Sample and surrounding temperatures may be measured and - Key Thermodynamic Parameter

used as inputs in computational model . | 1000 2000 3000 4000 0 1000 2000 3000 4000
Price Jr. & Romdhane. AIChE J. 2003. 49, 309 Xr,ij: FH binary interaction parameter Time (s) Time (s)

=

Base Coating Temperature (°C)

Two-Solvent System Conclusions
20 wt% poly(vinyl pyrrolidone) in n-propanol
2 O Wt% p Oly (Viny1 ac etatE) ﬂ 1[} — o ......I\l(:a.:-i_urud R.L:s_i(hml Toluene g Jjﬂ v Measured Temperature
- . . X AN — []'?' [}8 E ——Predicted Residual Toluene E -; ——Predicted Temperature
in toluene/ethanol (5:7 by weight) o . o s o0l :, -
2 0.08} | | ; =
e ¢ Yrinv = 1416 #0.38 Z £
= Measured Residual Solvent =0 ,; 0.36 | ; oo z
—— Predicted Residual Solvent T (). :._EJ "’; | :%
E S : 0.34} £ | o D%
= 0.08 - 2 0.32] 0 1000 2000 3000 4000 " 1000 2000 3000 1000
5 H 0.04 a o0 Time (s) Time (s)
- — = U.alh - . . .
S < 2 Updated models and regression are needed to account for viscoelastic
C = 2 0.28 | . .
= g g effects for fast-drying coatings
pn / < 0.26 + . . . . . .
S = 3 —— Xeix = 0.708 Uncertainty in Flory-Huggins Parameter hinders prediction of
0.24 == =xrin = 0.354 . . .
o ' - - T Yoy = 1416 process operating limits
100 2000 1000 T.Qm}n 3000 4000 0.22 g oo o
mne (s Time (s
Time (s - i Acknowledgement
Mock Single-Zone Oven
S 00 We would like to thank our collaborators within the AMO AMM
2—-’ Model predict ¢ residual sol , o © R2R consortium for their useful discussions and feedback on this
280 1O el pre 1.ct1(?ns 0 r§s1 ual solvent insensitive to = 130 work. Additionally, we would like to acknowledge EERE AMO for
] - o) . . o . .
b Flory-Huggins interaction parameter ~ 1906 sponsoring this work. Any opinions, findings, conclusions, or
2070+ : : g, -4 : : : :
s Representative range of Flory-Huggins parameters : recommendations expressed in this material are those of the author(s)
TD 60 yields large variations in vapor pressure (~0.1 bar) z and do not necessarily reflect the views of the United States
k= . Coe : <
ERT Variation in vapor pressure yields large spread of 3 i government or any agency thereof.
8 W~ [ Measured Temperature . t t t f . Fl 3 o Xriv = 0.354 OAK RIDGE
) - Predicted Temperature MEFERE Tl 00O pEt el Mg LET A1 ES DI Ik ory a ¢ xriv = 0.708 I DL L RS Energy EfﬁCiency & ; ﬁ'\: al Laboratary
3 , , Hugg oo = 1416 ENERGY
2 40 1000 2000 3000 Huggins parameter | | 4 XriN | Renewable Energy Argonne
. ‘ 4 6 8 10 ‘
Time (s , -
(5) ho by x 10* (cal/cm? s K) ADVANCED MANUFACTURING OFFICE FINREL
T e Sandia National Laboratories is a multimission laboratory managed and .
‘) ENERGY operated by National Technology & Engineering Solutions of Sandia, Sand|a
- LLC, :
AW~ a wholly owned subsidiary of Honeywell Interna’FionaI In.c.., for ’Fhe u.sS. Nat|0ﬂ3| .
v A' Q’?ﬁ.l (II))Oerﬁ?:CTgrg_?\lfpli)rg)eorggz%Natlonal Nuclear Security Administration under laboratones
lational Nuclear Security Administration SAND No :

SandialNation. al islalmultimissionllaboratoryimanagedian d echnologvl&|EngineeringlSolutionslofiSandia ILLC la owned
subsidiary]of Hone eII Internationalfinc. JforftheJU.S JDepartmentjof Ener Natlonal NuclearfSecurityJAdministrationjunderfcontractiDE-| NA0003525



