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Motivation

* The energy footprint of Information and
Computation Technology is growing rapidly:

* One estimate of Greenhouse Gasses (GHG)
generated in 2020 by ICT puts it between
1.8% and 3.9% of global GHG emissions

* Need for energy-aware computing:

* High-Performance Computing: Exascale
computing through parallelism

* Mobile Devices (loT, cell phones, satellites):
Meeting the increasing demand for

9,000 terawatt hours (TWh)

ENERGY FORECAST 20.9% of projected
Widely cited forecasts suggest that the electricity demand
total electricity demand of information and
communications technology (ICT) will
accelerate in the 2020s, and that data
centres will take a larger slice.
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The chart above is an ‘expected case’ projection from Anders Andrae, a
specialist in sustainable ICT. In his ‘best case” scenario, ICT grows to only
8% of total electricity demand by 2030, rather than to 21%.
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How to control energy consumption

Dynamic Voltage and Frequency Scheduling (DVFS) allows for lower power
consumption by reducing the frequency of operation:

e Power and energy model:

Frequency

P= CLVZf + ILV

Emml = Edynamic + Eleakage ,,.,i,u u.ti u.j..z

where P is power consumed, C, and I, are constants, V is voltage, and f is the
operating frequency N

« Memory power correlates with access count and operating frequency &
2
1
Pyem = = CLV?f X access_count + I,V
- Performance
- Lowers operating temperature of the system: longer life —— »

«  Provides a software method for controlling the system usage without
massive hardware changes
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Background

e When to run DVFS:

* Compile Time : System makes the decision for allocation of resources and operating point
based on estimated operating characteristics. (2

* Runtime Systems: Current state of the art considers all the state transition based on a single
resource, like CPU or memory, but ignore any interaction among resources.®) Runtime-DVFS
for heterogeneous systems is a space to be explored.

* Deciding operating point:

* Currently all operating point transitions are done instantaneously (race to idle), which can
lead to loss of energy.

» State transition latency can impact the performance of systems and can yield better results
in place of aggressive DVFS.®

(1) B. Acun et. al . Fine-Grained Energy Efficiency Using Per-Core DVFS with an Adaptive Runtime System . 2019 IGSC . doi : 10.1109/IGSC48788.2019.8957174
(2) ShengYang et al., "Adaptive energy minimization of embedded heterogeneous systems using regression-based learning," 2015 (PATMOS), doi: 10.1109/PATMO0S.2015.7347594
I UNIVERSITY 0F (3) Q. Fettes, et al."Dynamic Voltage and Frequency Scaling in NoCs with Supervised and Reinforcement Learning Techniques," in IEEE Transactions on Computers, 1 March 2019, doi:
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"" (4) D.H.K.Kim et al, "Racing and Pacing to Idle: Theoretical and Empirical Analysis of Energy Optimization Heuristics," 2015 ICCPS, doi: 10.1109/CPSNA.2015.23
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Background

* GPU DVFS:

* CPU DVFS schemes split up applications into serialized compute and memory phases: GPUs
break this assumption

* CRISP: Split GPU applications into the Load-Critical Path and Compute/Store Path

* DRAM DVEFS:
* MemScale: Proposes DVFS for memory controllers and DFS for DRAM chips
* Voltron: Proposes voltage scaling for DRAM chips while maintaining correctness

* Full System DVFS:

* Having ignorant DVFS schemes for separate components can lead to performance
pathologies.

* CoScale: Combined Memory and CPU DVFS scheme
* Multiple components multiplicatively grows search space
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Problem Statement

* How do different resources impact the power-
performance of the system in a multi-
component system?

* Are there substantial energy-performance
inefficiency zones with respect to voltage and
frequency for different components?

Equivalence Class

* Can varying demand across multiple resources
be served to achieve optimal energy
efficiency?
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Methodology

* Analyze the energy and performance of each component across various benchmarks
* Quantify the frequency dependence among various components

* |dentify the clusters of operating points based on energy-performance requirement
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Dependency among resources
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Dependency among resources

CPU Freguency vs. CPU Performance Score
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Dependency among resources

| GPU | CPU | Mem |

| | MemPerf | CPUPerf | GPUPerf | Total -0.36 | -0.58 0.2
KMeans -0.70 | -0.65 | -0.055

CPUFreq 0.152 0.737 0.070 Pathfinder 0.83 | -045 015
GPUFreq | -0.130 0.041 0.538 StreamCluster | -0.18 | -0.80 | -0.53

HotSpot3D -0.23 | -0.91 -0.17
BackProp -0.26 | -0.85 | -0.41
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Approach

* We tried multiple clusters based on various
Governor

methods and parameters:
* Power-based: We clustered operating points
Mem g
Governor
GPU »
Governor

based on power consumption

* Performance: Operating points were clustered
based on the performance score

* Power-perf: We used multi-dimensional
clusters, such as DBSCAN.

* EDP(v) : We use energy-delay product with v
determining the balance of power and performance

: power * perf"”

* Designed state transition policy based on
the system-wide resource utilization and
efficiency requirement v

* Implement our policy using scripts which
allows all resources to work in coherence
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Results: Operating point clusters
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Result : Impact of DVFES Policy
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Conclusion

* Memory has a significant impact on the performance of other
resources in a heterogeneous SoC

* Finer grained control over DVFS improves energy efficiency of the
system

* Saving 45% energy while incurring minimal performance degradation
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Future Work

Analyze the latency transition characteristics of GPU and Memory

Finer-grained DVFS policy.

Dynamic Performance Demand Prediction

Temporal analysis of application resource requirements for efficient scheduling
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