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Motivation
• The energy footprint of Information and 

Computation Technology is growing rapidly:
• One estimate of Greenhouse Gasses (GHG) 

generated in 2020 by ICT puts it between 
1.8% and 3.9% of global GHG emissions

• Need for energy-aware computing:
• High-Performance Computing:  Exascale 

computing through parallelism
• Mobile Devices (IoT, cell phones, satellites): 

Meeting the increasing demand for 
performance with a longer battery life

Ref : https://www.nature.com/articles/d41586-018-06610-y 
Data Source : Andrae ASG, Edler T. On Global Electricity Usage of Communication Technology: Trends to 
2030. Challenges. 2015; 6(1):117-157. https://doi.org/10.3390/challe6010117

https://www.nature.com/articles/d41586-018-06610-y


How to control energy consumption



Background

• When to run DVFS: 
• Compile Time : System makes the decision for allocation of resources and operating point 

based on estimated operating characteristics. (2) 

• Runtime Systems: Current state of the art considers all the state transition based on a single 
resource, like CPU or memory, but ignore any interaction among resources. (3)  Runtime-DVFS 
for heterogeneous systems is a space to be explored.

• Deciding operating point:
• Currently all operating point transitions are done instantaneously (race to idle), which can 

lead to loss of energy.
• State transition latency can impact the performance of systems and can yield better results 

in place of aggressive DVFS.(4)

(1) B. Acun et. al . Fine-Grained Energy Efficiency Using Per-Core DVFS with an Adaptive Runtime System . 2019 IGSC . doi : 10.1109/IGSC48788.2019.8957174
(2) Sheng Yang et al., "Adaptive energy minimization of embedded heterogeneous systems using regression-based learning," 2015 (PATMOS), doi: 10.1109/PATMOS.2015.7347594
(3) Q. Fettes, et al ."Dynamic Voltage and Frequency Scaling in NoCs with Supervised and Reinforcement Learning Techniques," in IEEE Transactions on Computers, 1 March 2019, doi: 

10.1109/TC.2018.2875476
(4) D. H. K. Kim et al, "Racing and Pacing to Idle: Theoretical and Empirical Analysis of Energy Optimization Heuristics," 2015 ICCPS, doi: 10.1109/CPSNA.2015.23

https://doi.org/10.1109/IGSC48788.2019.8957174


Background

• GPU DVFS:
• CPU DVFS schemes split up applications into serialized compute and memory phases: GPUs 

break this assumption
• CRISP: Split GPU applications into the Load-Critical Path and Compute/Store Path

• DRAM DVFS:
• MemScale: Proposes DVFS for memory controllers and DFS for DRAM chips
• Voltron: Proposes voltage scaling for DRAM chips while maintaining correctness

• Full System DVFS:
• Having ignorant DVFS schemes for separate components can lead to performance 

pathologies.
• CoScale: Combined Memory and CPU DVFS scheme 
• Multiple components multiplicatively grows search space



Problem Statement

• How do different resources impact the power-
performance of the system in a multi-
component system?

• Are there substantial energy-performance 
inefficiency zones with respect to voltage and 
frequency for different components?

• Can varying demand across multiple resources 
be served to achieve optimal energy 
efficiency?



Methodology 

• Analyze the energy and performance of each component across various benchmarks

• Quantify the frequency dependence among various components

• Identify the clusters of operating points based on energy-performance requirement
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Dependency among resources
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Dependency among resources



Approach 



Results: Operating point clusters
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Results: Operating point clusters



Result : Impact of DVFS Policy



Conclusion

• Memory has a significant impact on the performance of other 
resources in a heterogeneous SoC

• Finer grained control over DVFS improves energy efficiency of the 
system

• Saving 45% energy while incurring minimal performance degradation



Future Work

• Analyze the latency transition characteristics of GPU and Memory

• Finer-grained DVFS policy. 

• Dynamic Performance Demand Prediction 

• Temporal analysis of application resource requirements for efficient scheduling



Work Slides



0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
0

500000

1000000

1500000

2000000

2500000 Chart Title

Series1 Series2

3D representation of data



CPU

Mem

GPU

CPU 
Governor

Mem 
Governor

GPU 
Governor

Our Policy

K
E
R
N
E
L



Results 

GPU Power (W)

GP
U

 B
en

ch
m

ar
k 

0 5 10 15 20
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

GPU Power-Perfomance

Memory Power (W)

M
em

or
y 

Be
nc

hm
ar

k

0 2 4 6 8 10 12 14
0

1000

2000

3000

4000

5000

6000

Memory Power-Performance


