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What is Molecular Dynamics Simulation?

• Input: ion positions
• Output: Electronic structure
• Energy, forces, stress
• Sample simple bulk properties
• Expensive
• O(N^3) scaling
• N ~ hundreds

• No electrons
• Interatomic potential
• Energy, forces, stress
• Describes complex 

properties and processes
• O(N) scaling
• N ~ millions, billions

Quantum Molecular 
Dynamics

Classical Molecular Dynamics

MD Engine        

atoms, 
positions, 
velocities

interatomic potential

constraints



What is LAMMPS?

Four images for the journal cover visualizing representative 
LAMMPS simulations of particle-based material models on a 
range of length and time scales. a) atomic magnetic spin 
configurations b) 2B atom simulation with SNAP carbon ML 
potential c) coarse-grained molecular simulation of biological 
vesicles fusing d) DEMSI simulation of arctic sea ice
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Large-scale Atomic/Molecular Massively Parallel Simulator 
https://www.lammps.org
• Focus on materials modeling: soft matter or solids 
• Particle simulator at varying length and time scales 

electrons ⇒ atoms ⇒ CG ⇒ mesoscale ⇒ continuum 
• Spatial-decomposition of domain for MPI parallelism
• Support for GPUs & OpenMP via Kokkos (portability)
• Can be coupled to other scales: QM, kMC, FE, CFD, ... 
• Open source, available on GitHub, GPL or LGPL 
• Ecosystem with hundreds of developers



New in LAMMPS

o New features from virtual LAMMPS workshop in August
• website: https://www.lammps.org/workshops/Aug21/ 
• 4-hour hands-on tutorial, 6 1-hour breakouts

4 invited talks on fun topics (ML, Covid modeling, etc) 
• 20 short talks (15 min), 20 lightning talks (3 min) 
• recordings of all talks available on website 

o Python + LAMMPS: call either one from the other 
o Inter-operability with OpenKIM database of potentials 
o Machine-learning interatomic potentials 
o Support for MDI (MolSSI Driver Interface) for code coupling 

RHEO package, Joel Clemmer, Dan Bolintineanu, Thomas O’Connor (Sandia) 
https://download.lammps.org/workshops/Aug21/day3/joel-clemmer.pdf
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What is LAMMPS?

MD Engine        

atoms, 
positions, 
velocities

interatomic potential

constraints



What is Molecular Dynamics Simulation?
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• Continuum models require underlying models of 
the materials behavior

• Quantum methods can provide very complete 
description for 100s of atoms

• Molecular Dynamics acts as the “missing link”
• Bridges between quantum and continuum models
• Moreover, extends quantum accuracy to continuum 

length scales; retaining atomistic information
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Large-scale Atomic/Molecular 
Massively Parallel Simulator 

•" Biomolecules 

•" Polymers (soft 
materials) 

•" Materials science 
(hard materials) 

•" Mesoscale to 
continuum 

Mike 
Chandross
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SNAP Training Workflow

Model Form

Regression Method

• Energy of atom 𝑖 expressed as a basis expansion over K 
components of the bispectrum (𝐵!" )

• β vector fully describes a SNAP potential
• Decouples MD speed from training set size

DFT Training

Set of DescriptorsWeights

Regularization
Penalty

Hyperparameter
Optimization
(SOGA Genetic 
Algorithm)
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https://github.com/FitSNAP/FitSNAP

optimize
hyper-parameters

energy and force errors
material property objective functions

energies 
forces
stress tensors



Bispectrum Components as Descriptor
• Neighbors of each atom are mapped onto unit sphere in 4D

3𝐷 𝐵𝑎𝑙𝑙: 𝑟, 𝜃, 𝜙 , 𝑟 < 𝑅!"# ⟹ 4𝐷 𝑆𝑝ℎ𝑒𝑟𝑒: (𝜃$, 𝜃, 𝜙), 𝜃$ =
𝑟

𝑅!"#
𝜋

• Expand density around each atom in a basis of 4D hyperspherical 
harmonics, 

• Bispectrum components of the 4D hyperspherical harmonic 
expansion are used as the geometric descriptors of the local 
environment

• Preserves universal physical symmetries
• Rotation, translation, permutation
• Size-consistent (extensible)

It is advantageous to use most of the 3-sphere, while still excluding the
region near the south pole where the configurational space becomes highly
compressed.

The natural basis for functions on the 3-sphere is formed by the 4D hy-
perspherical harmonics U j

m,m0(✓0, ✓,�), defined for j = 0, 12 , 1, . . . and m,m0 =
�j,�j+1, . . . , j�1, j [9]. These functions also happen to be the elements of
the unitary transformation matrices for spherical harmonics under rotation
by angle 2✓0 about the axis defined by (✓,�). When the rotation is parame-
terized in terms of the three Euler angles, these functions are better known
as Dj

m,m0(↵, �, �), the Wigner D-functions, which form the representations of
the SO(3) rotational group [10, 9]. Dropping the atom index i, the neighbor
density function can be expanded in the U j

m,m0 functions

⇢(r) =
1X

j=0, 12 ,...

jX

m=�j

jX

m0=�j

uj
m,m0U

j
m,m0(✓0, ✓,�) (3)

where the expansion coe�cients are given by the inner product of the
neighbor density with the basis function. Because the neighbor density is a
weighted sum of �-functions, each expansion coe�cient can be written as a
sum over discrete values of the corresponding basis function,

uj
m,m0 = U j

m,m0(0, 0, 0) +
X

rii0<Rcut

fc(rii0)wiU
j
m,m0(✓0, ✓,�) (4)

The expansion coe�cients uj
m,m0 are complex-valued and they are not

directly useful as descriptors, because they are not invariant under rotation
of the polar coordinate frame. However, the following scalar triple products
of expansion coe�cients can be shown to be real-valued and invariant under
rotation [7].

Bj1,j2,j =
j1X

m1,m0
1=�j1

j2X

m2,m0
2=�j2

jX

m,m0=�j

(uj
m,m0)⇤H

jmm0

j1m1m
0
1

j2m2m
0
2

uj1
m1,m0

1
uj2
m2,m0

2
(5)

The constantsH
jmm0

j1m1m
0
1

j2m2m
0
2

are coupling coe�cients, analogous to the Clebsch-

Gordan coe�cients for rotations on the 2-sphere. These invariants are the
components of the bispectrum. They characterize the strength of density
correlations at three points on the 3-sphere. The lowest-order components
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describe the coarsest features of the density function, while higher-order com-
ponents reflect finer detail. An analogous bispectrum can be defined on
the 2-sphere in terms of the spherical harmonics. In this case, the compo-
nents of the bispectrum are a superset of the second and third order bond-
orientational order parameters developed by Steinhardt et al. [11]. These in
turn are specific instances of the order parameters introduced in Landau’s
theory of phase transitions [12].

The coupling coe�cients are non-zero only for non-negative integer and
half-integer values of j1, j2, and j satisfying the conditions kj1�j2k  j  j1+
j2 and j1+ j2� j not half-integer [10]. In addition, Bj1,j2,j is symmetric in j1
and j2. Hence the number of distinct non-zero bispectrum components with
indices j1, j2, j not exceeding a positive integer J is (J +1)3. Furthermore, it
is proven in the appendix that bispectrum components with reordered indices
are related by the following identity:

Bj1,j2,j

2j + 1
=

Bj,j2,j1

2j1 + 1
=

Bj1,j,j2

2j2 + 1
. (6)

We can exploit this equivalence by further restricting j2  j1  j, in
which case the number of distinct bispectrum components drops to (J +
1)(J + 2)(J + 3

2)/3, a three-fold reduction in the limit of large J .

2.2. SNAP Potential Energy Function

Given the bispectrum components as descriptors of the neighborhood of
each atom, it remains to express the potential energy of a configuration of
N atoms in terms of these descriptors. We write the energy of the system
containing N atoms with positions rN as the sum of a reference energy Eref

and a local energy Elocal

E(rN) = Eref (r
N) + Elocal(r

N). (7)

The reference energy includes known physical phenomena, such as long-
range electrostatic interactions, for which well-established energy models ex-
ist. Elocal must capture all the additional e↵ects that are not accounted for
by the reference energy. Following Bartók et al. [1, 7] we assume that the
local energy can be decomposed into separate contributions for each atom,

Elocal(r
N) =

NX

i=1

Ei(qi) (8)

6

Symmetry relation:

8SNAP, SOAP, Steinhardt, Behler, and many other descriptors are all related to 
the atomic cluster expansion (Ralf Drautz Phys.Rev.B 2019) 



SNAP Tantalum
• Training data:

• Energy, force, stress
• 363 configurations
• Deformed crystals phases
• Generalized stacking faults
• Surfaces
• Liquid

• Peierls barrier is the activation energy 
to move a screw dislocation

• Not included in training data

• SNAP post-diction agrees well with 
DFT calculations

A. P. Thompson , L.P. Swiler, C.R. Trott, S.M. 
Foiles, and G.J. Tucker, J. Comp. Phys., 285 316 
(2015) .

9



SNAP Applications
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Ta

System

InP

WBeHe

Actinides

NiMo

LiN

Various

InP

Al

2014

Year

2015

2017

2018

2018

2019

2020

2020

2021

Dislocation motion

Usage

Radiation damage, defects

Plasma facing materials

Shock, phase transitions

Phase diagram prediction

Super-Ionic Conductor

Accuracy/Cost comparison

Radiation damage, defects

Predicting electron density

31

NDoF

31

56

56

31

31

10-130

241

91

363

NTraining

665

25,052

20,000

2,000

3,000

1,000

1,000

30

Linear

Descriptors

Linear

Linear

Quadratic

Linear

Lin+Charge

Lin, Quad

EME

NN

SNL, Thompson

Origin

SNL, Thompson

SNL, Wood

SNL/LLNL

UCSD, Ong

UCSD, Ong

UCSD/SNL

SNL, Cusentino

SNL, Ellis

Mo 2017 Phase diagram prediction 31 1000 LinearUCSD, Ong

Fe 2021 Magnetic phase transition 1596 683 Quad+SpinSNL, Nikolov

AlNbTi 2020 High entropy alloy design 1596 7,250 QuadraticSNL, Tranchida

Si 2020 Neural network SNAP 1596 >5,000 NNUNLV, Zhu

SNL Involved, Independent



SNAP Applications
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WBeHN

System

C

C, V

-

Year

-

2021

Plasma facing materials

Usage

Planetary impacts, shock

Metal plasmas

56*

NDoF

1596

1596

>40,000

NTraining

30,000

10,000

Linear

Descriptors

Quadratic

Quadratic

SNL, Cusentino

Origin

USF, Willman

SNL, Wood

MoNbTaTi - HEA alloy design - >5,000 EMESNL, McCarthy

GeSe - Vitrification - >5,000 EMEUCD, Sievers

W - Model form selection - 330,000 NNLANL/SNL

LiMoS - Li-ion batteries - >5,000 -UConn, Dongarre

SiGeSnPb - Thermoelectric materials - >5,000 -GWU, Li

So what should you train a ML-IAP on? How do you recognize failures (poor extrapolations)?

(more in the literature, not an exhaustive list)

• Growing evidence that SNAP is a general use material model form, unlike any 
interatomic potential used in MD to date

• SNAP model training software now incorporated in Materials Design Inc. products

SNL Involved, Independent

https://www.materialsdesign.com/


Materials for Fusion Energy12

• Difficult to develop materials to handle 
extreme conditions within tokamak

• Large heat loads of 10-20 MW/m3

• High particles fluxes of ~1024 m-2s-1 of 
mixed ion species (H/He/Be/N etc.)

• Complex chemical/physical processes

Joint European Torus (JET)

• Molecular dynamics is well suited to study 
initial implantation, diffusion, material 
deformation, and surface response of 
plasma facing materials

• Need accurate interatomic potentials
• We have published potentials for:

• Helium/Tungsten
• Beryllium/Tungsten

• In progress:
• Hydrogen/Tungsten
• Nitrogen/Tungsten
• ZrC/Tungsten

• Eventually: H/He/N/ZrC/W

Beryllium 
First Wall

Tungsten 
Divertor

Cusentino, Wood



Dispersoid-strengthened Tungsten
• The W-ZrC SNAP potential is trained on ~8,000 structures including bulk, surfaces, 

interfaces, as well as ab initio molecular dynamics.

• A genetic algorithm is used to optimize hyper-parameters for low force, energy, and 
material property errors.

• Potentials are narrowed down based on material properties like bulk modulus (GPa) 
and surface energy (eV/Å2) and stability in NVT simulations.

Bulk Surfaces Interfaces

Sikorski, Cusentino, Wood

Hydrogen uptake in 
polycrystalline tungsten

Zirconium carbide 
dispersoid nanoparticle in 
tungsten



Saikat C-terminated interface during tensile test @ 300K14

Just before fracture At fracture



Saikat C-terminated interface during tensile test @ 2500K15

Just before fracture At fracture



Zhang interface during tensile testing @ 2500 K16



Other Advanced Materials17
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Nikolov et. al. npj Comp.Mat.

• Many materials are absent from MD 
literature due to viability/availability of IAP

• (Right) SNAP ML-IAP with explicit treatment 
of magnetic spin dynamics

• (Below) MoNbTaTi HEA displaying short 
range chemical order near grain boundaries

Chemical, Functional Complexity

McCarthy, Nikolov, Wood



Magnetic Materials Simulations18

• Electronic structure or Spin-Lattice 
simulations have been the only options for 
many decades.

• Former lacks scalability, latter lacks any real 
dynamic or finite temperature effects

Chemical, Functional Complexity • Molecular Dynamics
– Atoms interact via nonmagnetic interatomic potential, 𝑈(𝐑)

– ℋ%& = ∑'
𝐩#$

)*
+𝑈(𝐑)

• Spin Dynamics
– Atoms interact via exchange Hamiltonian

– ℋ+ = −∑',-. 𝐽'- 𝐑 𝒔' @ 𝒔- − 1 −∑',-. 𝐾'- 𝐑 𝒔' @ 𝒔-
) − 1

– Momentumless damped dynamics (Landau–Lifshitz–Gilbert)

• Molecular-Spin Dynamics

– ℋ%/& = ℋ0 +ℋ+ = ∑'
𝐩#$

)*
+𝑈(𝐑) −∑',-. 𝐽'- 𝐑 𝒔' @ 𝒔- − 1 −

∑',-. 𝐾'- 𝐑 𝒔' @ 𝒔-
) − 1

– Parallel symplectic time integration implemented in LAMMPS

– Energy and magnetization conservation ~ O(dt^2) for NVE

– Tranchida et al., J. Comp. Phys. (2018)

Tranchida (CEA)



Magnetic Materials Simulations19
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Nikolov et. al. npj Comp.Mat.

"Data-driven magneto-elastic predictions 
with scalable classical spin-lattice 

dynamics." , NPJ

• Transformational capability to study 
magnetic materials at the grain scale

• Explicit treatment of spin dynamics 
captures the second order phase transition 
at Curie temperature

Iron

Tranchida, Nikolov, Wood
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Spin Cond.
Phonon Cond.

Nikolov et. al. J. Mat. Sci.

Tmin Tmax
Temperature

Magnetic Materials Simulations

Finite Temperature Magnetism

• Hot/cold regions are spaced 28.8 nm apart
• Thermal gradient established by setting hot 

region to Tmax = 1.08Tmin ,Tmin : 300 -
1200K

• Magnon-phonon scattering 
significantly reduces conductivity

• Magnons more conductive than 
phonons where T < 0.5TCurie

Tranchida, Nikolov, Wood
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Training Data
Multiple phases of Carbon from 0-4TPa, 0-15,000K

High Pressure Carbon 
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Wood, Oleynik, Willman, Nguyen, U. of South Florida

Matches DFT melt curves (two-phase method) for cubic 
diamond, BC8, and simple cubic phases up to 5 TPa



Accuracy and Scale22

n Novel mechanism of inelastic deformations observed for the 1st time – multiple cracks create multiple sound waves which interfere while 
propagating towards the elastic front

n 2.6 billion atom diamond sample, 0.5×1.5 𝜇m
n Shock wave in <110> direction initiated by piston, 𝑣1 = 7 𝑘𝑚/𝑠.

doi.org/10.1145/3458817.3487400  

Oleynik group, U. of South Florida

http://doi.org/10.1145/3458817.3487400


SNAP

NNP

Molybdenum

“Performance and Cost Assessment of Machine Learning 
Interatomic Potentials” Zuo, Chen, Li, Deng, Chen, Behler, Csányi, 
Shapeev, Thompson, Wood, and Ong. J.Phys.Chem A. 2020.  

SNAP provides a good tradeoff between accuracy 
and performance

How Does SNAP Compare?23

• SNAP is competitive with the best approaches world 
wide

• In a 2020 independent study of 4 leading approaches 
(left), quadratic SNAP achieved good cost/accuracy 
balance on all 6 elements

• Also showed best stability in extrapolation 
• We continue to evolve the training algorithms for more 

robust prediction
• Algorithmic improvements have greatly boosted 

performance on pre-exascale hardware

GAPMTP

World Map of Leading ML Potentials

NNP Neural 
Network Potential 
(Behler, U. 
Gottingen) 

GAP Gaussian 
Process (Csanyi, U. 
Cambridge) 

MTP 
Moment 
Tensor 
(Shapeev, 
Skoltech)

SNAP 
(Thompson, 
Sandia)

ANI,HIPNN 
(Smith,
Lubbers 
LANL)ChIMES

(Goldman, 
LLNL)

DeepMD
(Weinan E, 
Princeton U.)



SNAP

NNP

Molybdenum

“Performance and Cost Assessment of Machine Learning 
Interatomic Potentials” Zuo, Chen, Li, Deng, Chen, Behler, Csányi, 
Shapeev, Thompson, Wood, and Ong. J.Phys.Chem A. 2020.  

SNAP provides a good tradeoff between accuracy 
and performance

Maybe ACE is Better?24

• SNAP is competitive with the best approaches world 
wide

• In a 2020 independent study of 4 leading approaches 
(left), quadratic SNAP achieved good cost/accuracy 
balance on all 6 elements

• Also showed best stability in extrapolation 
• We continue to evolve the training algorithms for more 

robust prediction
• Algorithmic improvements have greatly boosted 

performance on pre-exascale hardware

GAPMTP

World Map of Leading ML Potentials

NNP Neural 
Network Potential 
(Behler, U. 
Gottingen) 

GAP Gaussian 
Process (Csanyi, U. 
Cambridge) 

MTP 
Moment 
Tensor 
(Shapeev, 
Skoltech)

SNAP 
(Thompson, 
Sandia)

ANI 
(Smith, 
LANL)ChIMES

(Goldman, 
LLNL)

DeepMD
(Weinan E, 
Princeton U.)

“Performant implementation of the atomic cluster expansion 
(PACE),” Lysogorskiy et al., npj Comput. Mater. 7 (2021) 97

Atomic Cluster Expansion 
(Ralf Drautz, ICAMS, Germany)



Atomic Cluster Expansion (ACE) 2,3,...,N-
body irreducible scalar invariants
Drautz, Phys.Rev.B, 2019
Willatt, Musil, Ceriotti, J.Chem.Phys. 2019
Seko, Togo, Tanaka, Phys.Rev.B 99, 2019

• Local environment expanded in atomic basis
• Generates very general set of 2, 3, ...N-body irreducible scalar 

invariants
• Superset of many previous descriptors (SNAP, GAP, MTP, BP)
• For example, SNAP bispectrum components can be expressed in 

the ACE form
• Available in LAMMPS as the ML-PACE package
• Ported to KOKKOS package for GPUs (Stan Moore, Sandia)
• Prototype training in FitSNAP (James Goff, Sandia)

New Descriptor: Atomic Cluster Expansion (ACE)

25

5

the form of an ACE. Furthermore, as the ACE provides
a basis, while the contraction of the cartesian tensors for
the MTPs is to some extent arbitrary, the re-expansion of
the MTPs in the form of an ACE may be used to ensure
a complete set of basis functions for the moments tensor
potentials.
Furthermore, the SOAP descriptor15 is parameterized

using hyperspherical harmonics for the Spectral Neighbor
Analysis method Potential (SNAP)13. By decomposing
the hypershpherical harmonics into a product of an effec-
tive radial contribution and a spherical harmonics, one
can rewrite the SNAP exactly in the form of an ACE.
The details are given in App. C.

V. MULTI-COMPONENT MATERIALS

Before adding magnetic or charge degrees of freedom,
I discuss the expansion of scalar, vectorial or tensorial
properties in multi-component materials. I assume that
the state of a multi-component material is completely
characterized by the atomic positions and their chemical
species, such that

σj = (µj , rrrji) . (30)

Next I choose basis functions that are localized on the
atoms and are written as a product of chemical, radial
and angular contributions

φφφiµiκnl(σj) = eeeκ(µj)R
µjµi

nl (rji)YYY l(r̂rrji) . (31)

The basis functions are vectors with elements
{φφφiµiκnl(σj)}m, m = −l, . . . , l. Different from Ref. 1,
where the chemical space is expanded in Chebyshev
polynomials, I simply use an explicitly orthogonal basis.
The M different chemical species are identified by M
orthogonal unit vectors in an M -dimensional space,

eeeκ(µ) = δκµ , (32)

such that Eqs.(6,7) are given by

"eeeκ1
(µ)|eeeκ2

(µ)# = δκ1κ2
, (33)

!

κ

eeeκ(µ1)eeeκ(µ2) = δµ1µ2
. (34)

This has the advantage that chemical species may be
added or removed to the system without modifying basis
functions of other species and therefore the chemistry
dependent expansion coefficients are directly transferable
between different materials systems. One may argue that
this contradicts the spirit of the original cluster expansion
that requires φ0 = 1. This may easily be taken into
account by introducing explicitly a further species, the
’vacuum species’ for which φ0 = 1 and which has no
properties associated to it.
The radial functions R

µjµi

nl (rji) depend on the distance
rji between the atoms of chemical species µi and µj , while

n and l are further indices and l makes reference to the ir-
reducible representation of the rotation group. Evidently,
the radial functions are invariant with respect to rotation.
The angular functions YYY l(r̂rr) depend only on the bond

direction r̂rr. They form a complete basis for the irre-
ducible representation l of the rotation group, which
means that Y m

l (r̂rr) with m = −l,−l + 1, . . . , l − 1, l is
a vector of 2l + 1 linearly independent basis functions.
Typically the angular functions YYY l are taken as spheri-
cal harmonics, but other, related representations are also
possible.
The energy or other configuration dependent quanti-

ties are obtained by inserting the basis functions into
Eq.(14). The atomic base Eq.(17) reads

AAAiµnl =
!

j

δµµj
R

µjµi

nl (rji)YYY l(r̂rrji) , (35)

which means that in the sum over neigbors j only atoms
of species µ are considered, and

A(0)
iµ = δµµi

. (36)

The expansion of a configuration dependent quantity GGGi

on atom i with species µi that transforms according to
the irreducible representation LR of the rotation group
is then written as

GGGi =GGG(σσσ) =
!

µn

c(1)µiµnLR
AAAiµnLR

+
!
!

µnlµnlµnl

c(2)µiµnlµnlµnlLR

"

lllLR
#

2
AAAiµ1n1l1AAAiµ2n2l2

+
!
!

µnlLµnlLµnlL

c(3)µiµnlLµnlLµnlLLR

$

lll
LLL

LR

%

3

×AAAiµ1n1l1AAAiµ2n2l2AAAiµ3n3l3

+
!
!

µnlLµnlLµnlL

c(4)µiµnlLµnlLµnlLLR

$

lll
LLL

LR

%

4

×AAAiµ1n1l1AAAiµ2n2l2AAAiµ3n3l3AAAiµ4n4l4

+ . . . . (37)

The sums are taken over lexicographically ordered com-
binations µnlµnlµnl and the intermediate couplings LLL which
are necessary for a complete set of basis functions. The
summation over possible combinations mmm is implied.
One may define the irreducible set of basis functions

of the atomic cluster expansion

BBB(N)
µiµnlLµnlLµnlLLR

=

$

lll
LLL

LR

%

N

N
&

k=1

AAAiµknklk , (38)

and rewrite the atomic cluster expansion as

GGGi =
!

N=0

!
!

µnlLµnlLµnlL

c(N)
µiµnlLµnlLµnlLLR

BBB(N)
µiµnlLµnlLµnlLLR

. (39)

Radial basis Angular basis
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The body order of the products is given by r+1 and the
species of atom i by µi. The vectors µµµ, nnn, lll and mmm have
length r and contain atomic species, radial function in-
dices, and spherical harmonics indices, respectively. Non-

zero values of c̃(p,r)µiµnlmµnlmµnlm are provided as input by the user.
The indices µnlmµnlmµnlm are lexicographically ordered.

The expansion coe�cients c̃(p,r)µiµnlmµnlmµnlm ensure invariance of
the energy under rotation and inversion. They may be
represented as a sum over products of expansion coe�-

cients c
(p,r)
µiµnlLµnlLµnlL in an explicitly rotationally and inversion

invariant basis and generalized Clebsch-Gordan coe�-
cients, where LLL indicates the couplings in the generalized
Clebsch-Gordan coe�cients7.

The atomic base is computed as

Aiµnlm =
X

j

�µµj�µjµinlm(rrrji) , (7)

and

�µjµinlm = R
µjµi

nl (rji)Ylm(r̂rrji) , (8)

with spherical harmonics Ylm(r̂rrji) and radial functions
R

µjµi

nl (rji) and di↵erence vectors given as rrrji = rrrj � rrri,
rji = |rrrji| and r̂rrji = rrrji/rji.

III. EXPRESSION FOR THE FORCES

The forces may be obtained from using an adjoint
method1,7

rkEi =
X

µnlm

!iµnlmrkAiµnlm , (9)

with

!iµnlm =
X

r=1

X

µnlmµnlmµnlm

⇥(r)
iµnlmµnlmµnlm

rX

t=1

dB
(r)
iµnlmµnlmµnlmt , (10)

and where

dB
(r)
iµnlmµnlmµnlmt = �µµt�nnt�llt�mmt

⇥
 

t�1Y

k=1

Ainklkmk

! 
rY

k=t+1

Ainklkmk

!
, (11)

and

⇥(r)
iµnlmµnlmµnlm =

X

p

@F

@⇢
(p)
i

c̃
(p,r)
µiµnlmµnlmµnlm . (12)

For the gradients of the atomic base one has

rkAiµnlm = �µµkrk�µkµinlm(rrrki)

�
X

j

�µµjrj�µjµinlm(rrrji)�ik , (13)

where we use

�µjµinlm(rrrji) = �µiµjnlm(rrrji) , (14)

ri�µjµinlm(rrrji) = �rj�µiµjnlm(rrrji) . (15)

Then from

fffki =
X

nlm

!iµknlmrk�µkµilm(rrrki) , (16)

the force on atom k is written as

FFF k =
X

i

(fff ik � fffki) . (17)

IV. REQUIRED INPUT AND RESULTS

For running the ACE code the user needs to provide
the basis vectors µnlmµnlmµnlm for each required rank r and for
each density and the corresponding expansion coe�cients

c̃
(p,r)
µiµnlmµnlmµnlm. The user also needs to specify the radial basis

functions R
µjµi

nl .
We provide several examples for functions sEi =

F (⇢(1)i , . . . , ⇢
(P )
i ) and the derivatives dF

d⇢(p) . For the imple-
mentation of other functions F we furthermore supply a
simple interface that users may easily adapt to their par-
ticular choice for F .
During the simulation the ACE code expects a neigh-

borlist for each atom i that contains information on the
vectors to neighboring atoms rrrji as well as the species of
the atom i and neighbors j, µi and µj , respectively.
The ACE code then computes the energy Ei and the

pairwise force components fff ij from which the atomic
forces are assembled. Further, pressure and stresses are
computed from the pairwise force components13.

V. WORKFLOW

A. Memory layout and assembly

After reading the input, the necessary memory is allo-
cated and variables are assembled into arrays. The arrays

Aiµnlm, B(r)
iµnlmµnlmµnlm, dB(r)

iµnlmµnlmµnlmt, ⇢
(p)
i and !iµnlm have atomic

index i, but they are always utilized for one atom only
and the index i is omitted.
For fast memory access and e�cient memory man-

agement multi-dimensional arrays are organized into
a contiguous memory layout. For example, the
spherical harmonics indices l and m are contracted
into a single index (lm) by consecutive enumeration,
(0, 0), (1,�1), (1, 0), (1, 1), . . . .

B. Force and energy evaluation

The energy and force for a given atom i are obtained
in five steps,
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Current basis of ACE descriptors is overcomplete
ACE models: powerful but challenging to define analytically

Powerful descriptors, but with linear 
dependence

Single bond 
basis

Form a complete, orthogonal N-bond 
tensor product basis

⋯

𝑁 = 1 𝑁 = 2 𝑁 = 3 𝑁 = 4 𝑁 = 5 𝑁 = 6

Impose invariance w.r.t. rotations 
and permutations

𝑖
𝑗 𝑖

𝑗
𝑩'𝒏𝒍

Use symmetry arguments to select unique 
descriptors a priori

Imposing invariance w.r.t. rotations and 
permutations introduces linear dependencies



Using symmetries of binary trees
Unique descriptor labels, 𝒏𝒍

𝐺. = 𝑠𝑦𝑙)(𝑆.) + ⋯

Grow group of automorphisms 
(equivalent tree permutations)

Symmetric orbits of 
unique 𝒍 tree - encoded 
into a Young Tableau

Sort 𝑛! , 𝑙! tuples in 
the same symmetric 
orbits

Find unique 𝒍 trees Find unique 𝒏𝒍 trees Apply valid internal nodes

Iterated triangle conditions 
△ (𝑙! , 𝑙" , 𝐿#)
Parity conditions

Find equivalent 𝒍 trees

= ≠ ≠



Descriptor labels for a single element system
Results and demonstration

For many practical ACE applications, this provides a significant reduction in computational 
cost

• Exhaustive descriptor counts for 𝑛$%& = 4, 
𝑙$%& = 4

• Significant reduction in the number of basis functions  
to evaluate compared to numerical methods

• Symmetry reduction becomes more significant at larger 
ranks (scales with the size of 𝐺')

Descriptor counts



MLIAPs Available in LAMMPS
Native LAMMPS

• ML-SNAP
LAMMPS Interfaces

• ML-HDNNP: Singraber, N2P2, Behler-Parrinello
Descriptors, ANN Potentials

• ML-QUIP: Bartok, Csanyi, GAP Potentials, SOAP 
Descriptors

• ML-PACE: Lysogorskiy, Drautz, Atomic Cluster 
Expansion

• ML-RANN: Dickel, NN potential with fast 
fingerprints

• KIM: Tadmor, many ML potentials: DUNN, hNN, 
PANNA

• USER-DEEPMD: Zhang, E, Car, Deep Network 
Potentials 

• USER-MLIP: Shapeev, Moment Tensor 
Potentials

• USER-MLIP: Seko, Machine Learning Potential 
Repository

• USER-PINN: Mishin, Physically informed neural 
network potential

• USER-ANI: Barros, Smith, Lubbers, ANI ANN 
Potentials

• USER-AENET: Artrith, Behler-Parrinello
Descriptors, ANN Potentials

• FLARE++: Sparse Gaussian process, ACE

:
:



LAMMPS MLIAP Interface: Overview
MLIAP Approach
• Provide a common API for many methods
• Decompose ML potential into three independent objects: 

Descriptor Model Data

• Descriptor generates local fingerprint for each atom
• Model computes energy as function of descriptors 
• Data handles LAMMPS interface
• Data also handles intermediate quantities e.g. gradients
• Descriptor and Model insulated from LAMMPs and each other 
• Allows mix-and-matching of Models and Descriptors

30Model
Descriptor

Inputs
Atoms
Elements
Neighbors

Outputs
Energy 
Force
Stress

Data

Pair MLIAP



LAMMPS MLIAP Interface:

inputs to a model for the atomic energy that is trained on QM data for total
potential energy, forces, and stress tensor components for a large number of
atomic configurations. While all MLIAPs share these common features, they
di↵er greatly in two aspects: descriptors and models.

• NNP Behler/Parrinello, The first successful MLIAP was the model for
silicon developed by Behler and Parrinello. It combined

• NNP Singraber/Dellago

• GAP

• ACE

• MTP

• DeepPot SE, Deep MDKit [4], https://github.com/deepmodeling/deepmd-
kit

• SNAP

We will now consider a much wider range of choices, including non-linear
manybody pooling of descriptors, as well as deep learning artificial neural
networks. In order to decouple the choice of energy model from the choice of
descriptors, we will develop a new package in LAMMPS to allow arbitrary
energy models to be combined with arbitrary descriptors. This is in contrast
to most MLIAP implementations, including that of SNAP in LAMMPS,
where the calculation of the descriptors and the calculation of the forces are
lumped together in a single function call. This makes it di�cult to replace
either the descriptor or the energy model without modifying a lot of low-level
code.

We propose to define a new MLIAP interface in LAMMPS that separates
the descriptor and force model in the following way:

descs = Desc.getDescs(atoms)

modelGrads = Model.getGrads(descs)

forces = Desc.getForces(modelGrads)

Listing 1: Decoupled MLIAP interface for simulation

48

The same approach can be also used to define a LAMMPS interface for
training MLIAP models. The main challenge is to e�ciently calculate the
gradient of force predictions w.r.t. model parameters. This is true regardless
of whether the energy model is linear as in the case of SNAP, or a complex
nonlinear function. For example, in the case of an ANN using stochastic
gradient descent optimization, computing the gradient of the loss function
w.r.t. network weights requires first calculating the gradient of each atomic
force component w.r.t. each descriptor and then passing this information
to the ANN software. This information can be e�ciently calculated within
LAMMPS, using SNAP or some other descriptor and then passed to an
arbitrary energy model. The energy model will compute the gradient of the
loss function and update its parameters accordingly. This is described in the
following pseudocode:

descs = Desc.getDescs(atoms)

gradGrads = Model.getGradGrads(descs)

forceGrads = Desc.getForceGrads(gradGrads)

Model.update(forceGrads)

Listing 2: Decoupled MLIAP interface for training

The e�cacy of this approach depends on the size of the Ndesc ⇥ Nparam

matrix modelGradGrads, the double gradient of the potential energy w.r.t.
both descriptors and model parameters. For a general non-linear atomic en-
ergy model with Nparam model parameters and Ndesc descriptors, this can
be prohibitively large to evaluate and store. However, for many important
models, most entries will be zero, and the cost of calculating and storing
modelGradGrads is negligible. For a linear model, the matrix is simply the
identity matrix of rank Ndesc, while for a quadratic model, the number of non-
zero entries scales as O(N2

desc). Conversely, in cases where modelGradGrads
is large, the following alternative algorithm for obtaining the force gradient
may be more e�cient:

descGrads = Desc.getDescGrads ()

forceGrads = Model.getForceGrads(descGrads)

Model.update(forceGrads)

Listing 3: Decoupled MLIAP interface for training, alternate

The e�cacy of this approach depends on the size of descGrads, the derivative
of each descriptor w.r.t. the position of each neighbor atom, which scales as
O(3Nneighs ⇥ Ndesc), where Nneighs is the average number of neighbors per

49

The same approach can be also used to define a LAMMPS interface for
training MLIAP models. The main challenge is to e�ciently calculate the
gradient of force predictions w.r.t. model parameters. This is true regardless
of whether the energy model is linear as in the case of SNAP, or a complex
nonlinear function. For example, in the case of an ANN using stochastic
gradient descent optimization, computing the gradient of the loss function
w.r.t. network weights requires first calculating the gradient of each atomic
force component w.r.t. each descriptor and then passing this information
to the ANN software. This information can be e�ciently calculated within
LAMMPS, using SNAP or some other descriptor and then passed to an
arbitrary energy model. The energy model will compute the gradient of the
loss function and update its parameters accordingly. This is described in the
following pseudocode:

descs = Desc.getDescs(atoms)

gradGrads = Model.getGradGrads(descs)

forceGrads = Desc.getForceGrads(gradGrads)

Model.update(forceGrads)

Listing 2: Decoupled MLIAP interface for training

The e�cacy of this approach depends on the size of the Ndesc ⇥ Nparam

matrix modelGradGrads, the double gradient of the potential energy w.r.t.
both descriptors and model parameters. For a general non-linear atomic en-
ergy model with Nparam model parameters and Ndesc descriptors, this can
be prohibitively large to evaluate and store. However, for many important
models, most entries will be zero, and the cost of calculating and storing
modelGradGrads is negligible. For a linear model, the matrix is simply the
identity matrix of rank Ndesc, while for a quadratic model, the number of non-
zero entries scales as O(N2

desc). Conversely, in cases where modelGradGrads
is large, the following alternative algorithm for obtaining the force gradient
may be more e�cient:

descGrads = Desc.getDescGrads ()

forceGrads = Model.getForceGrads(descGrads)

Model.update(forceGrads)

Listing 3: Decoupled MLIAP interface for training, alternate

The e�cacy of this approach depends on the size of descGrads, the derivative
of each descriptor w.r.t. the position of each neighbor atom, which scales as
O(3Nneighs ⇥ Ndesc), where Nneighs is the average number of neighbors per

49

Force (Running MLIAP Simulation)

Force Gradient (Training MLIAP)

Algorithm 2: NNEIGHS x NDESCRIPTORS

Algorithm 1: NPARAMS x NDESCRIPTORS

https://lammps.sandia.gov/doc/pair_mliap.html
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Completed
• All SNAP variants
• Python and PyTorch models now enabled
• SO(3) Descriptors (Qiang Zhu, UNLV)
• Native NN Energy Model (Qiang Zhu, UNLV)
• PyTorch models
• Python models
• Entropy maximization (Danny Perez, LANL)

Coming Soon!! (LAMMPS + FitSNAP)
• ACE Descriptors
• Non-linear models (PyTorch)
• HIPPYNN (Lubbers, LANL)

Algorithm 3: Autodiff on Loss Function

https://lammps.sandia.gov/doc/pair_mliap.html
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NVIDIA V100
SNAP Tungsten 
2k atoms

• GPU Performance Timeline
Gayatri, Moore, Weinberg et al. (2020) 
https://arxiv.org/abs/2011.12875

• ~50x improvement over baseline

GPU Performance Optimization

• Highly collaborative effort involving: Sandia, 
LANL, NERSC, NVIDIA, several hackathons 
and a lot of experimentation

• Created stripped-down proxy code 
(TestSNAP)

• Completely rewrote TestSNAP to reduce flops 
and memory

• Explored many different GPU strategies, 
using OpenACC, CUDA, and Kokkos

• break up the force kernel into sub-kernels 
and pushing atom/neighbor parallelism into 
the sub-kernels 

• Ported best implementation back to 
production code with Kokkos

• Further improvements in memory access

https://arxiv.org/abs/2011.12875
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SNAP Tungsten 
4M atoms Best Speed

4 ns/day
30 katoms/node

EAM Copper
4M atoms

20x
Best Speed
80 ns/day
4M atom/node

Summit Strong-Scaling

• Excellent strong scaling on Summit
• Leadership DOE Computing Platform (ORNL)
• 4608 nodes, 6 NVIDIA v100s/node, 200 petaFlops
• Comparison of EAM and SNAP Simulation Speed vs. 

Summit Node Count
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7 PERFORMANCE RESULTS
The small amorphous sample pro�led previously was replicated
in three dimensions to give ⇠20 billion (19,683M) atoms. Due to
this periodic repetition we expect the number of �oating point
operations measured previously to scale with the number of atoms
for this larger benchmark. We then ran the 20 billion atom sim-
ulation on 27,900 GPUs for 100 timesteps, and the timers in the
LAMMPS log �le reported an average performance of 6.21 Matom-
steps/node-s, or equivalently 1.47 timesteps per second. We note
that the LAMMPS timers only measure the MD timestep loop, so
time setting up the run and MPI initialization/�nalization are not
included. Combining this performance with the previously
measured FLOP count gives 50.0 PFLOPS (double precision)
on the full Summitmachine, or 24.9% of the theoretical peak
computing rate. Our SNAP implementation has no regular linear
algebra kernels yet achieves one-third of the measured LINPACK
performance on Summit, highlighting the extent of our optimiza-
tions for GPUs.

The DeepMD NN-based ML-IAP [30] recently reported a double
precision time-to-solution of 8.1 ⇥ 10�10 s/step/atom for ⇠127 mil-
lion copper atoms on 4560 Summit nodes [39], which is equivalently
an MD performance of 0.271 Matom-steps/node-s. For 20 billion
carbon atoms on 4650 Summit nodes, our MD performance of
6.21Matom-steps/node-s is 22.9x higher than what DeepMD
reported, meaning our SNAP ML-IAP is signi�cantly more
e�cient than DeepMD while still achieving ab initio accu-
racy.

Amaximum of 4,662 nodes can be requested per job in the “batch”
queue on Summit. We chose to run on 4,650 nodes (27,900 GPUs)
for two reasons. The �rst is that 27,900 MPI ranks factor into a 3D
grid of nearly equal values: 30⇥30⇥31, minimizing the surface-to-
volume ratio of the communication halo exchange regions for our
cubic simulation box. The second is that this provides a small bu�er
of extra nodes in case one or more nodes go down or are running
at sub-optimal performance.

Tominimize variation andmaximize performance in both scaling
and production runs, we ran a small LAMMPS test job on every
GPU independently. The average runtime was calculated, and any
GPUs that were signi�cantly slower than the average were recorded.
While running our scaling and production runs, several (⇠15) GPUs
outside this criterion were detected and the corresponding nodes
were reported to the system administrators. To mitigate the e�ect of
these unhealthy nodes on the performance of our full system runs,
we reserved 4,660 nodes (10 nodes more than we use in production
4,650 node runs) and used the LAMMPS test job to generate a list
of slow nodes on-the-�y. These nodes were then automatically
excluded at runtime when the MPI driver “jsrun” was executed in
the submission script.

A strong scaling study was performed on the amorphous carbon
sample running for 100 MD timesteps, as shown in Fig. 3. We
used several sample sizes: 1, 10, and 100 million, and 1, 4 and 20
billion atom a-C samples while varying number of nodes from the
minimum possible to all 4,650 nodes, the former being the minimum
number of nodes a particular sample size can �t into, e.g. 64 nodes
for 1 billion atom a-C sample and 972 nodes for 20 billion atom a-C
sample.
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Figure 3: Strong scaling: (a) time to solution in seconds per
step and (b) MD performance for amorphous carbon sam-
ples with 1,259,712; 10,077,696; 102,503,232; 1,024,192,512;
4,251,528,000 and 19,683,000,000 atoms. Total loop time was
measured for 100 MD steps. Perfect scaling is shown in (a)
as dashed lines. Perfect scaling in (b) would be a horizontal
line (not shown).

Fig. 3 shows excellent strong scaling behavior up to the full ma-
chine for samples with billions of atoms. For example, the 20 billion
atom simulation has 97% parallel e�ciency when comparing the
performance of 4,650 nodes to 972 nodes. The 1 billion atom simula-
tion has 82% parallel e�ciency when comparing 4,650 nodes to 64
nodes. The 10 million atom simulation has 41% parallel e�ciency
when comparing 512 nodes to 1 node.

Fig. 4 shows a breakdown of the timings as reported by the
LAMMPS log �le for di�erent sample sizes on the full machine. The
relative percentage of communication grows as the computational
load decreases, hence increasing the atom count per GPU increases
the e�ciency at full scale.

Fig. 5 shows weak scaling behavior using 373,248 atoms/node
(62k atoms/GPU), scaling from 1 to 4096 nodes and run for 100 MD
timesteps. There is a small drop in performance going from 8 to 64
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• Production simulations on entire Summit machine
• Simulation rate 25x greater than DeepMD
• Team from USF, Sandia, NERSC, NVIDIA, KTH : 

doi.org/10.1145/3458817.3487400

Gordon Bell Finalist

𝑣( =
7𝑘𝑚/𝑠

18.3 km/s 22.3 km/s

Inelastic front

Elastic front

1.5 𝜇m

0.5 𝜇m

Willman, Moore, and many more

• ~50x improvement 
over baseline

https://doi.org/10.1145/3458817.3487400


(a) Snapshot of an atomic

configuration.

(e) ML-DFT prediction of

the total energy for both

solid and liquid phases.

(d) ML-DFT prediction of

the local density of states

(LDOS) on Cartesian grid.

(c) Feed-forward neural

network.

(b) Bispectrum components

at each point on a Cartesian

grid

Atomic 

configuration

SNAP 

fingerprints

Machine-learning

 inference

Total 

energy
LDOS

Step 1
Fingerprint generation

Step 2 
Trained ML-DFT model

Step 3 
ML-DFT analysis

d0
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d2
:

f0
f1
f2
:

SNAP ML for LDOS, Electron Density, and Energy

• https://github.com/mala-project/mala
• Ellis et al. “Accelerating finite-temperature kohn-sham 

density functional theory with deep neural networks.” 
Phys. Rev. B (2021)

• Highly parallelizable
• Coming soon! Force inference in LAMMPS

Localization of electronic 
density around a stacking fault 
in beryllium (131072 atoms) 

https://github.com/mala-project/mala


Summary
• Machine-learning is revolutionizing atomistic simulation
• It has enabled the best of both worlds: quantum accuracy and classical scale
• Many challenges remain:

Robustness: 1-in-a-billion bad force predictions can ruin an entire simulation
On-the-fly accuracy estimate: hard, because no QM query on large-scale
Active learning: smart training data generation

https://github.com/FitSNAP/FitSNAP
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