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What is Molecular Dynamics Simulation?  ,.ica molecutar bynamics

* No electrons
* Interatomic potential

£ * Energy, forces, stress
Q H .
Quantum Molecular > Design * Describes complex
Dynamics properties and processes
, . v MESO * O(N) scaling
* Input:ion positions g - * N ~ millions, billions
* Qutput: Electronic structure /
* Energy, forces, stress ‘
* Sample simple bulk properties QM
* Expensive 5
* O(N~3) scaling
* N~ hundreds A m

constraints

atoms, Xl
positions, .
velocities = MD Engine

interatomic potential




What is LAMMPS?

Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org

Focus on materials modeling: soft matter or solids

Particle simulator at varying length and time scales
electrons = atoms = CG = mesoscale = continuum

Spatial-decomposition of domain for MPI parallelism

Support for GPUs & OpenMP via Kokkos (portability)

Can be coupled to other scales: QM, kMC, FE, CFD, ...

Open source, available on GitHub, GPL or LGPL

Ecosystem with hundreds of developers

-
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Feature article

LAMMPS - A flexible simulation tool for
particle-based materials modeling at the
atomic, meso, and continuum scales

Aidan P. Thompson 39 = H. Metin Aktulga b Richard Berger €, Dan S. Bolintineanu 2, W. Michael Brown d
Paul S. Crozier 2, Pieter J. in 't Veld €, Axel Kohlmeyer €, Stan G. Moore 2, Trung Dac Nguyen f, Ray Shan & Mark

Stevens 2, Julien Tranchida 2, Christian Trott 2, Steven ). Plimpton 2 A=

Four images for the journal cover visualizing representative
LAMMPS simulations of particle-based material models on a
range of length and time scales. a) atomic magnetic spin
configurations b) 2B atom simulation with SNAP carbon ML
potential c) coarse-grained molecular simulation of biological
vesicles fusing d) DEMSI simulation of arctic sea ice



New in LAMMPS

RHEO package, Joel Clemmer, Dan Bolintineanu, Thomas O’Connor (Sandia)
https://download.lammps.org/workshops/Aug21/day3/joel-clemmer.pdf

o New features from virtual LAMMPS workshop in August
» website: https://www.lammps.org/workshops/Aug21/
* 4-hour hands-on tutorial, 6 1-hour breakouts
4 invited talks on fun topics (ML, Covid modeling, etc)
e 20 short talks (15 min), 20 lightning talks (3 min)
* recordings of all talks available on website

o Python + LAMMPS: call either one from the other

o Inter-operability with OpenKIM database of potentials

o Machine-learning interatomic potentials

o Support for MDI (MolSSI Driver Interface) for code coupling



What is LAMMPS?

constraints

atoms, X] R
positions, :
velocities = MD Engine

interatomic potential




What is LAMMPS?

Initial positions Interatomic
and velocities potential

* Biomolecules

Polymers (soft
materials)

Materials science
(hard materials)

* Mesoscale to
continuum

Positions and
velocities at

Large-scale Atomic/Molecular
Massively Parallel Simulator

later times

%90 4”:"9

Thanks to AfdarFherpson 0}0.9,9



SNAP Training Workflow Fi t

https://github.com/FitSNAP/FitSNAP

energies
forces

stress tensors [
Model Form :

* Energy of atom i expressed as a basis expansion over K

components of the bispectrum (B,i()
optimize

Hyperparameter hyper-parameters

I _ 3.Bi+-B) o B Optimization /\
SNAP 2( ) (SOGA Genetic

Algorithm)
Regression Method )} FItSNAP.pY |«—>»

* B vector fully describes a SNAP potential OAKOTA
* Decouples MD speed from training set size

min(||w - DB — T — 7, ||B8]") U

energy and force errors
material property objective functions

Weights  Set of Descriptors

DFT Training o
Regularization

Penalty



Bispectrum Components as Descriptor

* Neighbors of each atom are mapped onto unit sphere in 4D
3D Ball: (r,0,¢),r < R,y = 4D Sphere: (6,,0,¢),0, =

/[

Rcut

« Expand density around each atom in a basis of 4D hyperspherical
harmonics,

» Bispectrum components of the 4D hyperspherical harmonic
expansion are used as the geometric descriptors of the local
environment

* Preserves universal physical symmetries
* Rotation, translation, permutation
» Size-consistent (extensible)

uj m’ Uiz,m’ (0’ 07 O) + Z fC<7aii’)wiUil,m/ (907 (97 ¢)

m’
T; / <Recut

L. . = Jlm1m1 U u ’
J1,325] ]2m2m/2 m1 ml m2,my
mi1 m1=—]1 m2 m2=—J2 m,m/=

o BJhJ%J _ BJ,Jz,Jl _ thj,jz
Symmetry relation: 25 +1 2, +1 2p+1

SNAP, SOAP, Steinhardt, Behler, and many other descriptors are all related to 8
the atomic cluster expansion (Ralf Drautz Phys.Rev.B 2019)



Screw Dislocation Dipole in Tantalum

: : VASP DFT
SNAP Tantalum i by N<100
* Training data:

* Energy’ force, stress Weinberger, Turckrrr,rar;(ri -
363 configurations el FRCE0ES)

» Deformed crystals phases i
» Generalized stacking faults 70
. S.urf?aces _g_ o
* Liquid v
L Eso
 Peierls barrier is the activation energy 5 =—DFT
to move a screw dislocation 'S 40 S
® SNAP
* Not included in training data Eiﬂ «=+Zhou (EAM)
* SNAP post-diction agrees well with E 20 = ADP
DFT calculations -
0

0 0.2 0.4 0.6 0.8 1
Reaction Coordinate

A. P. Thompson, L.P. Swiler, C.R. Trott, S.M.

Foiles, and G.J. Tucker, J. Comp. Phys., 285 316 9
(2015) .



SNL Involved, Independent

‘ SNAP Applications

Descriptors

2014 Dislocation motion SNL, Thompson 31 363 Linear
InP 2015 Radiation damage, defects SNL, Thompson 31 665 Linear
WBeHe 2017 Plasma facing materials SNL, Wood 56 25,052 Linear
Mo 2017 Phase diagram prediction UCSD, Ong 31 1000 Linear
Actinides 2018 Shock, phase transitions SNL/LLNL 56 20,000 Quadratic
NiMo 2018 Phase diagram prediction UCSD, Ong 31 2,000 Linear
LiN 2019 Super-lonic Conductor UCSD, Ong 31 3,000 Lin+Charge
Various 2020 Accuracy/Cost comparison UCSD/SNL 10-130 1,000 Lin, Quad
InP 2020 Radiation damage, defects SNL, Cusentino 241 1,000 EME
AINbTI 2020 High entropy alloy design SNL, Tranchida 1596 7,250 Quadratic
Si 2020 Neural network SNAP UNLV, Zhu 1596 >5,000 NN
Al 2021 Predicting electron density SNL, Ellis 91 30 NN
Fe 2021 Magnetic phase transition SNL, Nikolov 1596 683 Quad+Spin



‘ SNAP Applications SNL Involved, Independent
11

(more in the literature, not an exhaustive list)

Descriptors

WBeHN - Plasma facing materials SNL, Cusentino 56* >40,000 Linear
C - Planetary impacts, shock USF, Willman 1596 30,000 Quadratic
C,V 2021 Metal plasmas SNL, Wood 1596 10,000 Quadratic
MoNbTaTi - HEA alloy design SNL, McCarthy - >5,000 EME
GeSe - Vitrification UCD, Sievers - >5,000 EME
LiMoS - Li-ion batteries UConn, Dongarre - >5,000 -
SiGeSnPb - Thermoelectric materials GWU, Li - >5,000 -
W - Model form selection LANL/SNL - 330,000 NN

So what should you train a ML-IAP on? How do you recognize failures (poor extrapolations)?

* Growing evidence that SNAP is a general use material model form, unlike any
interatomic potential used in MD to date

* SNAP model training software now incorporated in Materials Design Inc. products



https://www.materialsdesign.com/

. | Materials for Fusion Energy cusentino oot

Difficult to develop materials to handle
extreme conditions within tokamak

Large heat loads of 10-20 MW/m3

High particles fluxes of ~10%* m2s! of
mixed ion species (H/He/Be/N etc.)

Complex chemical/physical processes

Joint European Torus (JET)

Molecular dynamics is well suited to study
initial implantation, diffusion, material
deformation, and surface response of
plasma facing materials

Need accurate interatomic potentials

We have published potentials for:
* Helium/Tungsten
* Beryllium/Tungsten

In progress:
* Hydrogen/Tungsten
* Nitrogen/Tungsten
e ZrC/Tungsten

Eventually: H/He/N/ZrC/W



Dispersoid-strengthened Tungsten

The W-ZrC SNAP potential is trained on ~8,000 structures including bulk, surfaces,
interfaces, as well as ab initio molecular dynamics.

e ©¢ @@ &® © © € ¢

e ©6 @ &® © © © @

Hydrogen uptake in
polycrystalline tungsten

Bulk Surfaces

Interfaces

A genetic algorithm is used to optimize hyper-parameters for low force, energy, and
material property errors.

Potentials are narrowed down based on material properties like bulk modulus (GPa)
and surface energy (eV/A2) and stability in NVT simulations.

Zirconium carbide
dispersoid nanoparticle in
tungsten
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s Saikat C-terminated interface during tensile test @ 2500K

Just before fracture
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‘ Other Advanced Materials icCarthy, Nikolow Wood

o
=]

hé: . Nikolov et. al. J. Mat. Sci.
* Many materials are absent from MD %30— ‘\‘ === Spin Cond.
literature due to viability/availability of IAP % 20k ‘*h\ === Phonon Cond.
* (Right) SNAP ML-IAP with explicit treatment [N ,,:--..__1__‘:\_“_
of magnetic spin dynamics 2t . u ':::_?':_t'iiiﬁn
0 Y N

T A Y T T P O S L
400 600 800 1000 1200
Temperature, K

* (Below) MoNbTaTi HEA displaying short
range chemical order near grain boundaries 1.2

[ Nikolov et. al. npj Comp.Mat.

\

\
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}

B SRR 0 500 1000
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‘ Magnetic Materials Simulations Tranchida (CEA

Chemical, Functional Complexity e Molecular Dynamics

* Electronic structure or Spin-Lattice — Atoms interact via nonmagnetic interatomic potential, U(R)
simulations have been the only options for

many decades.
* Former lacks scalability, latter lacks any real e Spin Dynamics
dynamic or finite temperature effects — Atoms interact via exchange Hamiltonian

.2
- Hyp = Zi%+U(R)

- g =3 R[5 — 1] -3 KR [ 5) — 1]

— Momentumless damped dynamics (Landau—Lifshitz—Gilbert)

Molecular-Spin Dynamics
.2 — —
- Husp = Hi+Hs = Zigl_m+ U(R) _ZIin]ij(R)[Si -5 —1] -

VKR [(s1-5) - 1]

— Parallel symplectic time integration implemented in LAMMPS

— Energy and magnetization conservation ~ O(dt*2) for NVE

— Tranchida et al., J. Comp. Phys. (2018)




‘ Magnetic Materials Simulations Tranchica, Nikoloy, Wooc

First-Principles Training Set

/DFT Calculations ) (Spin Spirals ) I
Sww o 2p i -
WA HIL o : -
R I /i‘% $3s3 * Transformational capability to study
/h\ @ MY = @ RS magnetic materials at the grain scale
2 Vg @7 & § IS * Explicit treatment of spin dynamics
< o captures the second order phase transition
(2 .
& at Curie temperature
@5‘ & Spin Hamiltonian
Y PP
Q/( mag = Zj(r,,) [si-s;—1]
< i 1.2 .
SNAP Potential *_);,_K(rij) [(Si-s]-)zfl] [ Nikolov et. al. npj Comp.Mat. : 80+
f///o::?‘ )} DAKOTA ~
B ! ,',/fr_';l\/‘ o I¥ 60_
28 \\(\AX(:‘/ : /9(6’)0, T. i
_ e, [
P> DAKOTA %0 % S 40-
- IOERRBRRRBEEOR* I
-
'(2:@5’0 Spin Lattice Dyr;lvamics 8— 20
Q%/fL E=Ye(lryn)
N =17 ()

"Data-driven magneto-elastic predictions
with scalable classical spin-lattice
dynamics." , NPJ

. 285 Bl 0
F=Y 7 () 0 500 1000 0 500 1000
\ Lattice Temp. T, (K) Lattice Temp. T, (K)




‘ Magnetic Materials Simulations Tranchida,Nikoloy, Wooc

501 . .
E E Nikolov et. al. J. Mat. Sci.
Finite Temperature Magnetism & [ ™
= 401 A\ mmmm= Spin Cond.
» Hot/cold regions are spaced 28.8 nm apart = f " mmm=m Phonon Cond.
« Thermal gradient established by setting hot % 30:— L3
region to Ty = 1.08 T Trin © 300 - = ‘\x
1200K S 20 Y
- .\'\
- X
Hot region E 10F " oy ‘;—-..i___'”_’:..‘t“____ .
2 | R TR R
P I R A .~ | ]
400 600 800 1000 1200
Cold region Temperature, K

* Magnon-phonon scattering
significantly reduces conductivity

* Magnons more conductive than
phonons where T < 0.5T¢ie

Temperature
T B T,



. | High Pressure Carbon

Training Data
Multiple phases of Carbon from 0-4TPa, 0-15,000K

8 I ! I ! I
6 @ Hydrostatic Diamond
L @ Hydrostatic USPEX
4 @ Uniaxial Diamond
— <« Uniaxial USPEX
E B Vv Shear Diamond
(@) 2 @ GSF Diamond
‘a i — Diamond Binding Energy
~
> 0
0] L
N~
> 2
ol |
o -4
= s
o
-8
-10

4 5 6
Volume (A3/at0m)

Wood, Oleynik, Willman, Nguyen, U. of South Florida

Matches DFT melt curves (two-phase method) for cubic

diamond, BC8, and simple cubic phases up to 5 TPa

Temperature (K)

20000

15000

10000 -

5000

0
0

Diamond

SNAP: diamond
SNAP: bc8
SNAP: sc
SNAP: hugoniot
DFT: diamond
DFT: be8
DFT: sc

DFT: hugoniot

1000

2000

3000

Pressure (GPa)

4000 5000



.| Accuracy and Scale doi.org/10.1145/3458817.3487400

Oleynik group, U. of South Florida

s 2.6 billion atom diamond sample, 0.5X1.5 um

m  Shock wave in <110> direction initiated by piston, v, = 7 km/s.

m  Novel mechanism of inelastic deformations observed for the 15t time — multiple cracks create multiple sound waves which interfere while
propagating towards the elastic front


http://doi.org/10.1145/3458817.3487400

23 How Does SNAP Compare!

* SNAP is competitive with the best approaches world
wide

* Ina 2020 independent study of 4 leading approaches
(left), quadratic SNAP achieved good cost/accuracy
balance on all 6 elements

* Also showed best stability in extrapolation

* We continue to evolve the training algorithms for more
robust prediction

“Performance and Cost Assessment of Machine Learning

Interatomic Potentials” Zuo, Chen, Li, Deng, Chen, Behler, Csanyi,
Shapeev, Thompson,Wood, and Ong. |.Phys.Chem A. 2020.

SNAP provides a good tradeoff between accuracy
and performance

Molybdenum . .
—~10 Y * Algorithmic improvements have greatly boosted
= 0 @ performance on pre-exascale hardware
2 \ m
T s \
\
> X% NNP
(O} \ @ . ial
< \ - World Map of Leading ML Potentials
5 K
\

= 9 @ ANI,HIPNN DeepMD i
o 4 MTP T SNAP o GAP (Smith,  (WeinanE, sAP Ga"‘zs'a" ;
— N ‘. i Princeton U.) rocess (Csanyi, U.\MTP
I75) ubbers C%OH 7 cambridge)
o224 0000000000 Te-___ ‘ ChIMES o LANL) ambridge ¢ Moment
e (Goldman, ‘ B Tensor

10° 10° 107 10° 1072 LLNL) SNAP NNP Neural . (Shapeev,

_ Network Potential Skoltech)
Computational cost s/(MD step - atom) (Thompson, (Bl
Sandia) e

Gottingen)
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Test RMSE (meV/atom)

Maybe ACE is Better?

“Performant implementation of the atomic cluster expansion

(PACE),” Lysogorskiy et al., npj Comput. Mater. 7 (2021) 97

10.0 1
{ % % ACE © NNP
1Y e O GAP O SNAP
50{ | O MIP @ qSNAP
. ‘ .
1
1
& ©
%3 ) O
LAY
| AN O
Y D =
! O
1.0' *\ é\\ . 8 .
i " ™ O o O
| [Cu %, < =
1 i \\ .
0.5' "‘-* Q_-"‘O ——————————— .
1072 1071 10°

Computational cost (ms/(MD step - atom))

Atomic Cluster Expansion
(Ralf Drautz, ICAMS, Germany)

DeepMD )
i aussian
ANI (Weinan E, _
(Smith,  Princeton U.) s (QRanyi, U.mTP
M R LANL) o Moment
(Goldman, .
LLNL) T (Shapeev,
(Thompson ial Skoltech)
Sandia)

Gottingen)



New Descriptor: Atomic Cluster Expansion (ACE)

Atomic Cluster Expansion (ACE) 2,3,...,N-

body irreducible scalar invariants
Drautz, Phys.Rev.B, 2019

Willatt, Musil, Ceriotti, J.Chem.Phys. 2019

Seko, Togo, Tanaka, Phys.Rev.B 99, 2019

Local environment expanded in atomic basis

Generates very general set of 2, 3, ...N-body irreducible scalar
invariants

Superset of many previous descriptors (SNAP, GAP, MTP, BP)
For example, SNAP bispectrum components can be expressed in
the ACE form

Available in LAMMPS as the ML-PACE package

Ported to KOKKOS package for GPUs (Stan Moore, Sandia)
Prototype training in FitSNAP (James Goff, Sandia)

Ai,unlm — Z Z;Mz (T’ji)YVZm('f‘ji)

J

Radial basis Angular basis

N
N l
BI(MIZ'MLLR - (L LR) H Ai#knklk

N k=1

25



Sandia . e . .
National Exceptional service in the national interest

Laboratories

ACE models: powerful but challenging to define analytically
Current basis of ACE descriptors is overcomplete

Powerful descriptors, but with linear Use symmetry arguments to select unique

dependence descriptors a priori
Single bond
basis @_ - -@ Imposing invariance w.r.t. rotations and

permutations introduces linear dependencies

Form a complete, orthogonal N-bond

tensor product basis Semi-numerical methods Permutation-adapted method

N=1 N=2 N=3 N=4 N=5 N

=6 | SO, _ o(m)
LY o o 7 \ W =W,
-@ -@ -® ) o D'(l)
SRS E e S| [ | | | | [ Y
® ® | o

Impose invariance w.r.t. rotations

..
- \ \ Permutation
. symmetries of W;"
and permutations indeperidentral Independent nl

e 2 (TIED  EIED




Sandia . . . . .
National Exceptional service in the national interest

Laboratories

Unique descriptor labels, ni
Using symmetries of binary trees

6cee “eece ©00® 6000 E;ﬁfﬁ%i ;ﬁﬁ I{h\

e N\ N

Find equivalent L trees Find unique Ltrees Find unique nl trees Apply valid internal nodes

\ J J J y,
e N\ N\ N\ N
Gy = syl,(Sy) + -+ Symmetric orbits of Sortn, L; tuples in lterated triangle conditions
Grow group of automorphisms ‘unrllqui / tr:eeT- ElnCOdEd thke;f[ame symmetric PA .gli' l];j’.tl.‘k)
(equivalent tree permutations) N0 a foung lableau oroits artty conditions

. J . J \_ J J
- _________________________________________________________|



Sandia . e . .
National Exceptional service in the national interest

Laboratories

Results and demonstration
Descriptor labels for a single element system

Descriptor counts

N deg./N |#All Sy [lexico. [# PA-RPI|lex/PA-
RPI
: , 4 2 3 3 1 3.0
[ ] =
Exhaustive descriptor counts for Ny g = 4, 3 70 26 " I8
lnax = 4 4 2330 (786|605 |13
8 19712 |7088  [4308 |16
® Significant reduction in the number of basis functions | 2 6 6 2 30
) 3 11 (338 (152 |22
to evaluate compared to numerical methods 4 02960  |7907. |366s |22
8 505856 120172 |35768 3.4
® Symmetry reduction becomes more significant at larger |6 2 15 15 1 15.0
ranks (scales with the size of G py) 3 19882 = 12241 1330 68
4 577578 85692 [14512 |59
8 15704064 | 1993592 | 175800 |11.3

For many practical ACE applications, this provides a significant reduction in computational
cost



MLIAPs Available in LAMMPS

Native LAMMPS

ML-SNAP

LAMMPS Interfaces

ML-HDNNP: Singraber, N2P2, Behler-Parrinello
Descriptors, ANN Potentials

ML-QUIP: Bartok, Csanyi, GAP Potentials, SOAP
Descriptors

ML-PACE: Lysogorskiy, Drautz, Atomic Cluster
Expansion

ML-RANN: Dickel, NN potential with fast
fingerprints

KIM: Tadmor, many ML potentials: DUNN, hNN,
PANNA

USER-DEEPMD: Zhang, E, Car, Deep Network
Potentials

USER-MLIP: Shapeev, Moment Tensor
Potentials

USER-MLIP: Seko, Machine Learning Potential
Repository

* USER-PINN: Mishin, Physically informed neural

network potential

* USER-ANI: Barros, Smith, Lubbers, ANl ANN

Potentials

* USER-AENET: Artrith, Behler-Parrinello

Descriptors, ANN Potentials

* FLARE++: Sparse Gaussian process, ACE



LAMMPS MLIAP Interface: Overview

MLIAP Approach
* Provide a common APl for many methods

Decompose ML potential into three independent objects:
Descriptor Model Data

* Descriptor generates local fingerprint for each atom

* Model computes energy as function of descriptors

* Data handles LAMMPS interface

* Data also handles intermediate quantities e.g. gradients

* Descriptor and Model insulated from LAMMPs and each other

Pair MLIAP

Inputs Outputs
Atoms Energy

* Allows mix-and-matching of Models and Descriptors

Elements Force
Neighbors Stress

Descriptor

Data Model 30



LAMMPS MLIAP Interface:

Completed

* All SNAP variants Coming Soon!! (LAMMPS + FitSNAP)
* Python and PyTorch models now enabled « ACE Descriptors

» SO(3) Descriptors (Qiang Zhu, UNLV) * Non-linear models (PyTorch)

* Native NN Energy Model (Qiang Zhu, UNLYV) « HIPPYNN (Lubbers, LANL)

« PyTorch models

« Python models

 Entropy maximization (Danny Perez, LANL) Natoms Kc"mp"”e"“aDj,k 0%f(D;y)  OF;
Z Z or; 0D, .90 0

Force Gradient (Training MLIAP)

Force (Running MLIAP Simulation) J “

Algorithm 1: Npaganss X Npescriprors )
descs = Desc.getDescs(atoms) descs = Desc.getDescs (atoms) d f(Dj,k)
modelCGrads = Model. getGradS (deSCS) gradGrads = Model.getGradGrads (descs) aDkae

forceGrads = Desc.getForceGrads (gradGrads) e
forces = Desc.getForces(modelGrads) _

Algorithm 2: Nyggrs X Npescriprors

descGrads = Desc.getDescGrads () aDj,k
. . . forceGrads = Model.getForceGrads (descGrads)
https://lammps.sandia.gov/doc/pair mliap.html & ar;

Algorithm 3: Autodiff on Loss Function

31


https://lammps.sandia.gov/doc/pair_mliap.html
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SNAP GPU Performance

GPU Performance Optimization

Highly collaborative effort involving: Sandia,
LANL, NERSC, NVIDIA, several hackathons
and a lot of experimentation

Created stripped-down proxy code
(TestSNAP)

Completely rewrote TestSNAP to reduce flops
and memory

Explored many different GPU strategies,
using OpenACC, CUDA, and Kokkos

break up the force kernel into sub-kernels
and pushing atom/neighbor parallelism into
the sub-kernels

Ported best implementation back to
production code with Kokkos

Further improvements in memory access

Speed [katom-step/sec]

1000 .
NVIDIA V100
300k SNAP Tungsten i
2k atoms
600 .
400 =
200 .
0 o .

GPU Performance Timeline
Gayatri, Moore, Weinberg et al. (2020)
https://arxiv.org/abs/2011.12875

~50x improvement over baseline

| | | |
gt _QQX%NO g _2()\%3“ 0'20\9060’20X9 30\'20203‘&\’202\
Timeline


https://arxiv.org/abs/2011.12875

SNAP GPU Performance
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* Excellent strong scaling on Summit
e Leadership DOE Computing Platform (ORNL)
* 4608 nodes, 6 NVIDIA v100s/node, 200 petaFlops

e Comparison of EAM and SNAP Simulation Speed vs.
Summit Node Count

'1 | llO | l(l)O
Summit Nodes

| LB L L
1000 E atoms 3
- EAM Copper OO 4 atome, HAM. ]
[ 4M atoms |
— 100 —@/@/Q ;
_§‘ Best Speed
E 80 ns/day .
— 10¢ 4M atom/node 3
O . ]
3 -
3 i ]
SNAP Tungsten |
N i i |
1E AM atoms Best Speed
: 4 ns/day
30 katoms/node
0.1¢ 3
|



. ‘ Exascale ML-MD

* Production simulations on entire Summit machine
e Simulation rate 25x greater than DeepMD

* Team from USF, Sandia, NERSC, NVIDIA, KTH :
doi.org/10.1145/3458817.3487400

8.3 km/s | 22.3 km/s

1.5 um

0.5 um

]

[a—

Willman, Moore, and many more

1000

800

600

400

Speed [katom-step/sec]

200

| over baseline

~50x improvement

hd |

0 1 | L L
Apt _QQX%O " _'20\%“ “‘20\9060‘20\9 3“\’2‘0203 3“202\

Timeline

Performance

4650 nodes

@)
S T

Matom-steps/node-s
[\ e

20e 109aton{s :

10 100
nodes

1000

10000


https://doi.org/10.1145/3458817.3487400

‘ SNAP ML for LDQOS, Electron Density, and Energy

Step 1 Step 2 Step 3 I
Fingerprint generation Trained ML-DFT model ML-DFT analysis

Atomic SNAP Machine-learning Total
) . ' . X LDOS
configuration fingerprints inference energy

63300 ©  DFTLDOS Targets
§ ©  ML-Hybrid Predictions
— Liquid/Solid Snapshots

M= A

&% o

m)

)

-63200

63100
o
3:68383080

63000
o g0
8oe80
-62900{ ° o8fe

Total Energy (meViat

WILRT
¥o ©

Materials Learning Algorithms

(a) Snapshot of an atomic (b) Bispectrum components  (c) Feed-forward neural (d) ML-DFT prediction of  (e) ML-DFT prediction of
3 configuration. at each point on a Cartesian network. the local density of states  the total energy for both
I]. U H N T U M E S P R E 5 S [] grid (LDOS) on Cartesian grid.  solid and liquid phases.

Localization of electronic
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» https://github.com/mala-project/mala

» Ellis et al. “Accelerating finite-temperature kohn-sham

density functional theory with deep neural networks.”
Phys. Rev. B (2021)

« Highly parallelizable
» Coming soon! Force inference in LAMMPS


https://github.com/mala-project/mala

Summary
* Machine-learning is revolutionizing atomistic simulation
« It has enabled the best of both worlds: quantum accuracy and classical scale
* Many challenges remain:
Robustness: 1-in-a-billion bad force predictions can ruin an entire simulation
On-the-fly accuracy estimate: hard, because no QM query on large-scale
Active learning: smart training data generation
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https://github.com/FitSNAP/FitSNAP
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