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• Purpose: sensor protection using optical shutter

• Normal operation: scene light reaches optical sensor

• High intensity light: can overwhelm or damage sensor

• Ideal scenario: passively switch the shutter on and 
block/reflect the high intensity light

• Utilize VO2:
• Phase change material: thermally triggered

• Insulating (monoclinic) phase: low-loss, semi-

transparent

• Metallic (rutile) phase: lossy, reflective

• Figures of merit

• Extinction ratio:

• Transmittance on / Transmittance off

• Bigger is better

• Temperature rise:

• Efficiently switch on

• Bigger is better
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Design considerations

Can we find a pixelated design that maximizes temperature rise for a given extinction ratio?

Topology Optimization



• Goal: Optimization of optical switch using 

phase change material (VO2) using machine 

learning

• Plan:

• Perform simple modeling to generate data

• Optimize using a completely machine 

learning (ML) approach
• Check using FEA

• Fabricate/test at Sandia National Lab
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Approach - Traditional Topology Optimization

• Discretize problem:

• Write governing equation, set boundary 
conditions, discretize domain

• Finite element setup

• Allocate a given amount of material across the points

• Density function (rho)

• Rho = 0 means no material, 1 means material

• Discrete = Tough

• Use continuous

• Determine objective (cost) function to minimize; e.g. 
compliance (structural) or band gap (EM)

• In our case, extinction ratio and temperature rise 
targets

• Iterate, determine gradient, adjust, repeat

• Requires costly finite element solver calls 
each iteration

Source: Bensoe and Sigmund, "Topology Optimization: Theory, Methods, and Applications", 2003
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• Neural Networks (NNs) for topology optimization:

• Collection of variables that get changed to perform a 
task

• Image classification, regression, etc.

• Allow for accurate and cheap prediction of device 
performance

• Can be trained to provide design performance (FEA) 
and density function (material distribution)

• Utilize Convolutional Neural Networks (CNNs) to bypass 
COMSOL model after training (Performance Neural Network 
- PerfNet)

• Heavily used for image recognition

• Scanning an image, looking for patterns

• Excels at image/pattern recognition

• Dot product between kernel (filter) and feature combine 
to create feature map

• Utilizing Pytorch, an open source ML package

• Train model using labeled data (supervised model)
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Optimization using ML

S A N D  # :  X 1 2 3 4 5 6 7 8 9

Source: https://medium.com/analytics-vidhya/everything-you-need-to-know-

about-convolutional-neural-networks-cnns-3a82f7aa29c5

Source: Chandrasekhar and Suresh, "TOuNN: Topology Optimization using 

Neural Networks," https://doi.org/10.1007/s00158-020-02748-4
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Generating Training Data with COMSOL

• Generate designs (symmetric 
about x and y axis)

• Run frequency domain model in 
insulating phase: 
• Trins

• Using insulating absorptance 
(total power dissipation density), 
run time domain model: 
• Temp rise

• Run frequency domain model in 
metallic phase: 
• Trmet

• Calculate Extinction Ratio

Variable Value

Insulating Tambient 273.15 K

(0 deg C)

Metallic Tambient 373.15 K

(100 deg C)

Time 10 us

Incident power flux 1 kW/cm2

Wavelength 2.7 um

Unit cell dimensions 2 x 2 um

Number of sub-pixels 20 x 20

Pixel dimensions 0.1 x 0.1 um

Stack-up Substrate +

400 nm VO2 + 

240 nm SiO2

Number of sims ~15K
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Convert Physical Design to Input Image for PerfNN

• Only need one corner 
of design (symmetry 
about horizontal and 
vertical axis)

• Height of layer [nm] at 
given point is image 
pixel value

• 2 channels = 2 layers 
(VO2 + SiO2)
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Training the Performance Neural Network

• Train performance neural network

• Determining what filters to use to best predict performance

• Backpropogation (automatic differentiation)

• Trained performance

• Avg abs error: ~13% ext, ~.04% temp

• Maximum difference: ~1.5 dB ext, ~1.6 K temp
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Topology Optimization Neural Network (TopOpt NN)
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• Training TopOpt NN

• Each epoch adjusts weights to 

predict material density at each 

point



Test data generated with arbitrary cost function shows good performance

Training the Topology Optimization Neural Network
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• TopOpt NN minimizes loss function and provides a proposed (non-unique) solution

• COMSOL confirms that proposed design exceeds performance of training data

Training the Topology Optimization Neural Network
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• Fabrication and testing of (3x) designs

• Transfer learning: use simple model to pre-train performance NN 
and use with more complex coupled EM/thermal time domain 
simulation

• Expand on use of NN's to solve the inverse design / optimization 
problem
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Progress / Future Work
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Training Data
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