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Abstract

Autospectral Density (ASD), also referred to as Power-Spectral Density (PSD) is the most 
common way of quantifying vibration for archival of test data and specifications for laboratory 
tests. The original acceleration vs. time history is no longer available, especially as the ASDs are 
used in subsequent mathematical processes such as probabilistic assessments leading to test 
specifications. Later on, it is necessary to determine ASDs in coordinate systems that are oriented 
at an angle w.r.to the original coordinate system. For instance, tests need to be run in component 
coordinate axis vs. system coordinate axis in which data was collected and propagated. 

This paper summarizes the necessary theoretical background of ASD transformation, as it relates 
to both correlated and uncorrelated (random) vibration data. Equations are provided to allow the 
user to calculate relevant ASDs in a transformed coordinate system. Also, the consequence of 
alternative methods that are often used (such as enveloping the 2 orthogonal specifications or sum 
of ASDs as upper limit) are explored and compared with more accurate methods and equations. 
Finally, simulations with various angle of transform and relative phase of vibration in the two axes 
are used to understand the implications and to quantify the levels of conservatism.
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Background

Auto-spectral Density (ASD) also known as Power-Spectral-Density (PSD) of an acceleration vs. 
time provides an estimate of the energy content at each frequency. It is derived by multiplying 
the Fourier transform of the acceleration vs. time with the conjugate of the Fourier transform, 
and dividing by the bandwidth, thus resulting in real values at each frequency of interest [1]. 
Underwood and Keller [2] have discussed coordinate transform of acceleration (and rotation) 
time histories to determine input and outputs for application in 6-Degree of Freedom (6-DOF) 
shakers. Hale [3] have also described how to convert spectral density matrices of measured 
accelerations into single-point-input spectral density matrices. This paper discusses the 
conversion of ASDs from one set of coordinates to another when the underlying acceleration vs. 
time data is not available.

The next section provides the theoretical background and equations. It will be followed by the 
section on Numerical simulations and Recommendations.

Theoretical Background

This section provides the theoretical background on transformation of ASDs for each frequency 
band. The frequency bands are constant (linear band) based on the duration of time-domain signal 
converted into frequency domain.

Ay and Az are Fourier domain accelerations in the Y and Z (original coordinates)

A’y and A’z are Fourier domain accelerations in the Y’ and Z’ (new coordinates). New 
coordinates are oriented at an angle  clockwise from original coordinates.

ay & by are real and imaginary parts of Ay and az & bz are real and imaginary parts of Az

Ay = ay + iby , Az = az + ibz 

Since ASD equals multiplying the Fourier transform of acceleration with its own conjugate,

ASDy = (ay + iby) (ay - iby) = ay
2

 + by
2

 , & ASDz = az
2

 + bz
2

 [1]

Taking components of accelerations to obtain accelerations A’y and A’z in new coordinates,

A’y=Ay cos - Az sin  A’z= Ay sin  Az cos a

Combining equations 1 and 2a, 

A’y = (ay + iby ) cos - (az + ibz ) sin = [(ay cos  az sin  i [(by cos  bz sin b

A’z = (ay + iby ) sin + (az + ibz ) cos = [(aysin  az cos  i [(by sin  bz cos c

Since ASD equals multiplying the Fourier transform of acceleration with its own conjugate,



ASD’y = [(ay cos  az sin  i [(by cos  bz sin] x [(ay cos  az sin  i [(by cos  bz sin

ay
2

 cos2  az
2

 sin2 ay az sin cos  by
2

 cos2  bz
2

 sin2 by bz sin cos a

ASD’z = [(ay sin  az cos  i [(by sin bz cos] x [(ay sin  az cos  i [(by sin bz cos]

ay
2

 sin2  az
2

 cos2 ay az sin cos  by
2

 sin2  bz
2

 cos2 by bz sin cos b

Summing equations 3a and 3b, and comparing with equation 1,

ASD’y + ASD’z = ay
2(cos2  sin2  az

2(sin2  cos2  
by

2(cos2  sin2  bz
2(sin2  cos2  ay

2
 + az

2
 + by

2
 + bz

2
  = ASDy + ASDz [3c]

The equation above shows that the sum of the two ASDs is the same in both the original and the 
new coordinate systems.

Reorganizing equations 3a and 3b,

ASD’y = (ay
2 + by

2) cos2  (az
2 + bz

2) sin2   sin cos  ay az + by bz   

ASDy cos2  ASDz sin2   sin cos  ay az + by bz  [4a]

ASD’z = (az
2 + bz

2) cos2  (ay
2 + by

2) sin2   sin cos  ay az + by bz   

ASDz cos2  ASDy sin2   sin cos  ay az + by bz  [4b]

If Ay & Az are amplitudes and y & z phase of accelerations in Y and Z

Ay =√ASDy & Az =√ASDz, ay = Ay cosy, by = Ay siny, az = Az cosz, bz = Az sinz [5]

Combining equations 4a, and 4b with 5

ASD’y = ASDy cos2  ASDz sin2   sin cos  Ay cosy Az cosz + Ay siny  Az sinz   

ASDy cos2  ASDz sin2   sin cos √(ASDy ASDz cosy cosz + siny  sinz  

ASDy cos2  ASDz sin2  sin2 √(ASDy ASDz cos(y - z [6a]

ASD’z = ASDz cos2  ASDy sin2   sin cos  Ay cosy Az cosz + Ay siny  Az sinz   

ASDz cos2  ASDy sin2   sin cos √(ASDyASDz cosy cosz + siny  sinz   

ASDz cos2  ASDy sin2  sin2 √(ASDy ASDz cos(y - z [6b]

Only the last part of equations 6a and 6b capture the effect of relative phase (hence correlation) 
between the Y and Z accelerations. 

If the original accelerations Ay and Az are uncorrelated the expected value of cos (y - z is 0, 
ASD’y = ASDy cos2  ASDz sin2  and  ASD’z  ASDz cos2  ASDy sin2 



If the original accelerations Ay and Az are correlated the extreme values of cos (y - z is ±1

Then the Maximum value of ASD’y = ASDy cos2  ASDz sin2   sin2 √(ASDy ASDz and

Maximum value of ASD’z  ASDz cos2  ASDy sin2   sin2 √(ASDy ASDz 

The following equations pertain to comparison of actual transformed ASDs vs. envelope of 
original ASDs.

for instance, for the example shown below, If ASDy = n x ASDz ,  (n>1, i.e. ASDy is higher) 

from [Eq 8] maximum value of ASD’y = (n cos2   sin2   √n x sin2 ) ASDz [9a] 

and maximum value of ASD’z = (cos2   n sin2   √n x sin2 ) ASDz [9b] 

Therefore, maximum value of ASD’y relative to the maximum of ASDy and ASDz (=ASDy  in the 
example below where ASDy>ASDz)

= (n cos2   sin2  √n x sin2 ))/n [10]

The ratio of the Maximum value of ASD’y relative to the sum of the 2 ASDs is 

= (n cos2   sin2  √n x sin2 ))/(n+1) [11]

Equations 7 & 8 can be used to determine ASDs in new coordinate system depending on 
expectations of relative phase. Equations 9-11 can be used to determine overestimation if sum of 
ASDs or max of the 2 original ASDs is used instead of Equations 7 & 8.

If however, the original accelerations Ay and Az are uncorrelated (random) the expected value of 
cos (y - z is 0, then

Maximum value of ASD’y relative to the max of ASDy and ASDz = (n cos2   sin2)/n [12]

This represents how much the envelope (=ASDy for n>1) overestimates the actual ASD

When the two ASDs are equal (n=1), the transformed ASDs will off-course also be the same and 
this ratio =1. The ratio decreases with increasing n, approaching cos2 for n= and a lowest value 
of 0.5 at =45◦.

As an example, for n=2, for  = 30◦, this ratio = 0.875, vs. cos2◦ =0.867. So, when the phase is 
uncorrelated (random), the maximum of the two original ASDs can significantly overestimate the 
maximum of the two transformed ASDs (by a factor =1/ cos2 , use the smaller angle, i.e. <45). 
It is best to use Equation 7 to calculate the ASDs in the transformed coordinate axes.

Whether or not the original accelerations in Y and Z were correlated depends on the underlying 
phenomena. For instance, vibration from an engine could be correlated whereas that from road 
noise could be uncorrelated. In the absence of the original accelerations, a test may be conducted 



to reveal the correlation. Else, assuming they are corelated will lead to a conservative but 
overestimated answer.

Numerical Simulations

The objectives of numerical simulations are listed below:

i. To validate the equations provided above to transform ASDs from one coordinate system 
to another.

ii. To evaluate the extent of overestimation or underestimation if one were to use the sum of 
ASDs or envelope of original ASDs instead of using the equations provided here.

iii. To further illustrate the value of Equations [10-12] in evaluating how the coordinate 
transformation angle  and the ratio of original ASDs n influences the results.

Numerical simulations were conducted with various values of ASDs and relative phase to 
examine the result depicted in Equations [7] and [8] using the following steps:

 Start with some value of ASDy and ASDz in the original coordinate system 
 Generate corresponding acceleration time history with random phase Ay and Az

 Compute the acceleration time history in the transformed coordinates to obtain A’y & A’z 
 Using A’y and A’z compute ASD’y and ASD’z in the transformed coordinate system
 Compare the results from those in Equations [8-10].
 Monte-carlo simulations were done by generating various acceleration vs. time histories 

for the same ASDs with various relative phase. This was done to validate the accuracy of 
the ASD transformation equations [Eq.7&8] for the uncorrelated and correlated cases.

Example 1: ASDy>ASDz

ASDz was obtained by multiplying ASDy with a random number <1.0 to ensure that ASDy>ASDz 
for all frequencies. Figure 1a shows the ASDs in the original coordinates Y & Z; Figure 1b shows 
a segment of the corresponding acceleration vs. time. Figure 2 shows that the sum of the ASDs is 
the same in both coordinate systems (=30◦ in this simulation) as proven by [Eq 3c].

Figure 3a shows the maximum possible value (upper bound) of ASD’y calculated using [Eq.8] 
(when phase is correlated) along with the original ASDy and ASDz. It can be seen that the possible 
upper bound of ASDy is significantly higher than the envelope of the original ASDs.

Note that from [Eq. 10], for  = 30◦, this ratio (upper bound of ASD’y/ASDy) = 1.87 for n=1 (two 
ASDs are equal), which is the case at 120Hz. The ratio = 1.49 for n=2 (at 220 Hz). So, when the 
phase is correlated, the maximum (envelope) of the two original ASDs is significantly lower than 
the maximum possible transformed ASD (by up to a factor of 2 for  = 45◦ when n=1).



 

Figure 1a ASDs in Original Coordinates Y&Z     Figure 1b. Corresponding Acceleration vs. time 

Figure 2. Sum of ASDs in Original and Transformed Coordinates

Figure 3b shows the maximum possible value (upper bound) of ASDy calculated using [Eq.8] (for 
the situation when phase is correlated) along with the sum of ASDy & ASDz. It can be seen that the 
possible upper bound of ASDy is almost the same as the sum of the two ASDs. Note that per [Eq. 
11] for  = 30◦, this ratio = 0.93 for n=1 (two ASDs are equal), and = 0.99 for n=2. So, when the 
phase is correlated, the sum of the two original ASDs is always greater than and close to the 
maximum possible transformed ASD. However, the envelope of original ASDs is unconservative.

Figure 4a and 4b show the maximum possible value (upper bound) of ASDy and ASDz calculated 
using [Eq.8] (for the situation when phase is correlated) along with the transformed ASD’y and 
ASD’z. It can be seen that the possible upper bound of ASDy is significantly greater since the actual 
accelerations in Y and Z were uncorrelated.



 

Figure 3a. ASD’y Maximum vs. Original ASDs     Figure 3b. ASD’y Maximum vs. Sum of ASDs

 

   Figure 4a. ASD’y Max & Transformed ASDs        Figure 4b. ASD’z Max & Transformed ASDs

Example 2: Monte-Carlo Simulation

The process described above was repeated with 100 acceleration vs. time data generated from the 
same ASDs. The phase at each frequency is randomly generated, so y-z remains constant for the 
entire duration for each run. Sampling rate was 8192 for a total duration of 8.0 sec. The results are 
shown in Figures 5a and 5b. The black lines are the upper-bound ASDs in the transformed 
coordinates Y’ & Z’ [Eq. 8], the red lines are a single simulation and the cyan depicts the 100 
simulations with random phases. This confirms the upper bound as the upper limit of possible 
values of the ASDs. Any one of the 100 simulations may touch the black line (upper limit) at a 
particular frequency when coincidentally the phase in Y and Z are equal (y=z.



 

     Figure 5a. ASD’y Max & 100 Simulations            Figure 5b. ASD’z Max & 100 Simulations

Example 3: ASDy≈ASDz

The goal of this simulation was to examine the overestimation caused when the sum of the ASDs 
is used instead of the upper limits provided in [Eq.8]. The discussion pertaining to Figure 3b will 
be further illustrated based on [Eq. 11] with varying values of n=ASDy/ASDz at different 
frequencies and for different values of . Figure 6a shows the results of [Eq. 11] (ASD’y -max)/ 
sum of ASDs) for various n & . As to be expected, the result is symmetric about =45◦ and for 
reciprocal values of n (=0.5 vs. 2.0). So, only the left half of the plot (<45◦) is sufficient.

ASDz was changed by multiplying the previous ASDz with 2 to make ASDy more similar in 
magnitude to the new ASDz (called z2). Figure 6b shows the maximum possible value (upper 
bound) of ASDy calculated using [Eq.8] (for the situation when phase is correlated) along with the 
sum of ASDy & ASDz. As expected, based on Figure 6a, at 104Hz, n=1.0 and ratio=0.93, at 120Hz, 
n=0.68 and ratio=0.88, at 130Hz, n=2.0 and ratio=0.99, at 136Hz, n=0.61 and ratio=0.98. 
Therefore, [Eq. 11] or Figure 6a can be used to determine by how much the sum of the two original 
ASDs exceeds the maximum possible transformed ASDs. 

  

  Figure 6a. Ratio of ASD’y Max to sum of ASDs        Figure 6b. ASD’y Max vs. sum of ASDs  



Figure 7a and 7b compares an additional 100 simulations with the upper bound of ASD’y for the 
uncorrelated case [Eq.7]. The duration each acceleration was increased to 80 seconds to obtain 
enough data segments for the expected value of cos (y - z to reach 0. As a result, the 100 
simulations were very similar (the cyan lines are in a very narrow band vs. those in Figures 5a and 
5b). This confirms the accuracy of [Eq.7] for the uncorrelated case for sufficiently long duration. 
Using the correlated upper bound would result in a factor of 2 (≈3dB) overestimation.

    Figure 7a. ASD’y Max Uncorrelated (<700Hz)      Figure 7b. ASD’y Max Uncorrelated (>700Hz)  
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Conclusions

i. Equations were provided to rotate a pair of orthogonal ASDs from one coordinate system 
to another if phases of the ASDs are known. [Eq. 6a & 6b].

ii. Equations were provided to calculate maximum envelopes for the ASDs in a rotated 
coordinate system if phases of the ASDs are assumed to be correlated or uncorrelated. [Eq. 
7 & 8].

iii. Equations were provided [Eq. 10-12] to evaluate the extent of overestimation or 
underestimation if one were to use the sum of ASDs or envelope of original ASDs instead 
of using the equations provided here. This allows one to evaluate how the coordinate 
transformation angle  and the ratio of original ASDs n influences the results.

iv. Numerical simulations were conducted with various values of ASDs and relative phase to 
validate the various Equations towards their intended applications.
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