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Abstract

Autospectral Density (ASD), also referred to as Power-Spectral Density (PSD) is the most
common way of quantifying vibration for archival of test data and specifications for laboratory
tests. The original acceleration vs. time history is no longer available, especially as the ASDs are
used in subsequent mathematical processes such as probabilistic assessments leading to test
specifications. Later on, it is necessary to determine ASDs in coordinate systems that are oriented
at an angle w.r.to the original coordinate system. For instance, tests need to be run in component
coordinate axis vs. system coordinate axis in which data was collected and propagated.

This paper summarizes the necessary theoretical background of ASD transformation, as it relates
to both correlated and uncorrelated (random) vibration data. Equations are provided to allow the
user to calculate relevant ASDs in a transformed coordinate system. Also, the consequence of
alternative methods that are often used (such as enveloping the 2 orthogonal specifications or sum
of ASDs as upper limit) are explored and compared with more accurate methods and equations.
Finally, simulations with various angle of transform and relative phase of vibration in the two axes
are used to understand the implications and to quantify the levels of conservatism.
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Background

Auto-spectral Density (ASD) also known as Power-Spectral-Density (PSD) of an acceleration vs.
time provides an estimate of the energy content at each frequency. It is derived by multiplying
the Fourier transform of the acceleration vs. time with the conjugate of the Fourier transform,
and dividing by the bandwidth, thus resulting in real values at each frequency of interest [1].
Underwood and Keller [2] have discussed coordinate transform of acceleration (and rotation)
time histories to determine input and outputs for application in 6-Degree of Freedom (6-DOF)
shakers. Hale [3] have also described how to convert spectral density matrices of measured
accelerations into single-point-input spectral density matrices. This paper discusses the
conversion of ASDs from one set of coordinates to another when the underlying acceleration vs.
time data is not available.

The next section provides the theoretical background and equations. It will be followed by the
section on Numerical simulations and Recommendations.

Theoretical Background

This section provides the theoretical background on transformation of ASDs for each frequency
band. The frequency bands are constant (linear band) based on the duration of time-domain signal
converted into frequency domain.

Ay and A, are Fourier domain accelerations in the Y and Z (original coordinates)

A’y and 4, are Fourier domain accelerations in the Y’ and Z’ (new coordinates). New
coordinates are oriented at an angle & clockwise from original coordinates.

a, & b, are real and imaginary parts of 4, and a. & b, are real and imaginary parts of 4,
Ay =a,+ib,, A, = a, + ib,

Since ASD equals multiplying the Fourier transform of acceleration with its own conjugate,
ASD, = (a, + iby) (a,- ib,) = a,’ + b,?, & ASD, = a,> + b’ [1]
Taking components of accelerations to obtain accelerations 4, and 4’; in new coordinates,

A’y =Ay,cos0- A;sin6, A’.;= A, sin6 + A, cos [2a]
Combining equations 1 and 2a,

A’y = (a,+iby) cosO- (a, +ib;) sinf = [(a,cosO —a,sinb) +i [(b,cosO —b,sinb)] [2b]
A’;= (a,+ib,) sin@+ (a, + ib;) cos@ = [(aysin@ +a, cosO) +1i [(b,sin0 — b, cos )] [2¢]

Since ASD equals multiplying the Fourier transform of acceleration with its own conjugate,



ASD’, = [(aycos0 —a,sinb) +i [(b,cos@ —b,sinO)] x [(a,cosO —a,sin@) —i [(b, cosO — b, sin0)]
:ay2 cos’0 +a.? sin’0 —2ay a;sin@ cos O + by2 cos?0 +b.? sin’0 ~2by, b, sin6 cos O [3a]
ASD’; = [(aysin@ +a, cos@) +i [(b,sin6 +b. cos O)] x [(a, sinb +a, cosO) —i [(by,sinO +b, cos Q)]
=ay2 sin’ 0 +a,? cos* 0 +2ay a; sin@ cos O + byZ sin’@ +b,? cos* 0 +2by, b, sin@ cos 0 [3b]

Summing equations 3a and 3b, and comparing with equation 1,

ASD’y, + ASD’, = ay2(00s29 +sin’0) +a? (sin’ @ + cos’ 6) +
b,?(cos?0 +sin’ @) + b, (sin’ 0 + cos’6) =a,’ + a,’ + b’ + b,> = ASD, + ASD, [3c]

The equation above shows that the sum of the two ASDs is the same in both the original and the
new coordinate systems.

Reorganizing equations 3a and 3b,

ASD’, = (ayz + byz) cos’0 + (a + b,°) sin’@ — 2sin cos b (aya, +byb,; )=

ASD, c0s20 +ASD, sin’ 0 — 2sinf cos (aya; +b,b,) [4a]
ASD’, = (a + b.%) cos’6 + (ayz + byz) sin’0 + 2sin0cos 0 (aya, +byb;)=

ASD, cos’ 0 +ASD,, sin’ @ + 2sin@ cos 6 (aya, +byb,) [4Db]
If 4, & A, are amplitudes and ¢, & ¢. phase of accelerations in Y and Z

Ay =\/ASDy & A, =NASD.,, a, = A, cospy, b, = A, sing,, a, = A. cos¢., b. = A. sing. [5]
Combining equations 4a, and 4b with 5

ASD’, = ASD, cos?0 +ASD, sin’6 — 2sin6 cos 6 (4, cosP, A. cosp. + Ay, sing, A. sing, ) =
ASD,, cos’6 +ASD, sin’ 0 — 2sin6 cos 0 \/(ASDy ASD.)( cosp, cos@. + sing, sing. ) =

ASD, cos?@ + ASD, sin’ @ — sin2 0 \N(ASD,, ASD,) cos(¢, - 4.) [6a]
ASD’, = ASD, cos* 6 +ASD,, sin’0 + 2sinf cos O (4, cosd, A. cosp. + A, sing, A. sing. ) =
ASD, cos’6 +ASD,, sin’@ + 2siné cos 6 \/(ASDyASDZ)(cos¢y cosg, + sing, sing. ) =

ASD, cos’ 0 + ASD,, sin’ @ + sin2 0 \N(ASD,, ASD.) cos(¢, - 4.) [6b]

Only the last part of equations 6a and 6b capture the effect of relative phase (hence correlation)
between the Y and Z accelerations.

If the original accelerations 4, and 4, are uncorrelated the expected value of cos (¢, - ¢.)1s 0,
ASD’, = ASD, cos?6 + ASD, sin’0 and ASD’, = ASD, cos’ 0 + ASD,,sin’ 0 [7]



If the original accelerations Ay and A, are correlated the extreme values of cos (¢, - ¢.)is +1

Then the Maximum value of ASD’, = ASD, cos’0 + ASD. sin’@ +sin20N(ASD, ASD,) and

Maximum value of ASD’, = ASD. cos’ 6 +ASD,, sin0 +sin20 (ASD, ASD.) [8]

The following equations pertain to comparison of actual transformed ASDs vs. envelope of
original ASDs.

for instance, for the example shown below, If ASD,, = n x ASD, , (n>1, i.e. ASD,,is higher)
from [Eq 8] maximum value of ASD", = (n cos’0 + sin’0 +\nx sin20) ASD, [9a]
and maximum value of ASD’, = (cos?0 + n sin’0 +\n x sin20) ASD, [9b]

Therefore, maximum value of 45D’ relative to the maximum of ASD, and ASD, (=ASD, in the
example below where ASD,>ASD;)

= (n cos’0 + sin’0 +\n x sin26))/n [10]
The ratio of the Maximum value of ASD y relative to the sum of the 2 ASDs is
= (n cos’ 0 + sin’0 +\n x sin26))/(n+1) [11]

Equations 7 & 8 can be used to determine ASDs in new coordinate system depending on
expectations of relative phase. Equations 9-11 can be used to determine overestimation if sum of
ASDs or max of the 2 original ASDs is used instead of Equations 7 & 8.

If however, the original accelerations Axand A, are uncorrelated (random) the expected value of
cos (¢y - ¢,) is 0, then

Maximum value of ASD’y relative to the max of ASDy and ASD, = (n cos?0 + sin’0)/n [12]
This represents how much the envelope (=ASD, for n>1) overestimates the actual ASD

When the two ASDs are equal (n=1), the transformed ASDs will off-course also be the same and
this ratio =1. The ratio decreases with increasing n, approaching cos?0 for n=cc and a lowest value
of 0.5 at 6=45-.

As an example, for n=2, for 6 = 30, this ratio = 0.875, vs. cos230° =0.867. So, when the phase is
uncorrelated (random), the maximum of the two original ASDs can significantly overestimate the
maximum of the two transformed ASDs (by a factor =1/ cos*0 , use the smaller angle, i.e. 0<45).
1t is best to use Equation 7 to calculate the ASDs in the transformed coordinate axes.

Whether or not the original accelerations in Y and Z were correlated depends on the underlying
phenomena. For instance, vibration from an engine could be correlated whereas that from road
noise could be uncorrelated. In the absence of the original accelerations, a test may be conducted



to reveal the correlation. Else, assuming they are corelated will lead to a conservative but
overestimated answer.

Numerical Simulations

The objectives of numerical simulations are listed below:

i.  To validate the equations provided above to transform ASDs from one coordinate system
to another.
1.  To evaluate the extent of overestimation or underestimation if one were to use the sum of
ASDs or envelope of original ASDs instead of using the equations provided here.
iii.  To further illustrate the value of Equations [10-12] in evaluating how the coordinate
transformation angle #and the ratio of original ASDs 7 influences the results.

Numerical simulations were conducted with various values of ASDs and relative phase to
examine the result depicted in Equations [7] and [8] using the following steps:

e Start with some value of ASD, and ASD; in the original coordinate system

e Generate corresponding acceleration time history with random phase 4, and 4.

e Compute the acceleration time history in the transformed coordinates to obtain 4°, & 4,
e Using A4’y and 4’, compute 4SD’, and ASD’; in the transformed coordinate system

e Compare the results from those in Equations [8-10].

e Monte-carlo simulations were done by generating various acceleration vs. time histories

for the same ASDs with various relative phase. This was done to validate the accuracy of
the ASD transformation equations [Eq.7&8] for the uncorrelated and correlated cases.

Example 1: ASDX>ASD7

ASD, was obtained by multiplying ASD,, with a random number <1.0 to ensure that ASD,>ASD,
for all frequencies. Figure 1a shows the ASDs in the original coordinates Y & Z; Figure 1b shows
a segment of the corresponding acceleration vs. time. Figure 2 shows that the sum of the ASDs is
the same in both coordinate systems (6=30- in this simulation) as proven by [Eq 3c].

Figure 3a shows the maximum possible value (upper bound) of 45D’ calculated using [Eq.8]
(when phase is correlated) along with the original 4SD),, and ASD.. It can be seen that the possible
upper bound of ASD,, is significantly higher than the envelope of the original ASDs.

Note that from [Eq. 10], for 0 = 30, this ratio (upper bound of ASD",/ASD,) = 1.87 for n=1 (two
ASDs are equal), which is the case at 120Hz. The ratio = 1.49 for n=2 (at 220 Hz). So, when the
phase is correlated, the maximum (envelope) of the two original ASDs is significantly lower than
the maximum possible transformed ASD (by up to a factor of 2 for 68 = 45° when n=1).
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Figure 3b shows the maximum possible value (upper bound) of ASD,, calculated using [Eq.8] (for
the situation when phase is correlated) along with the sum of ASD, & ASD.. It can be seen that the
possible upper bound of 4SD), is almost the same as the sum of the two ASDs. Note that per [Eq.
11] for 6 = 30¢, this ratio = 0.93 for n=1 (two ASDs are equal), and = 0.99 for n=2. So, when the
phase is correlated, the sum of the two original ASDs is always greater than and close to the
maximum possible transformed ASD. However, the envelope of original ASDs is unconservative.

Figure 4a and 4b show the maximum possible value (upper bound) of ASD,, and 4SD, calculated
using [Eq.8] (for the situation when phase is correlated) along with the transformed 45D, and
ASD’;. It can be seen that the possible upper bound of 45D, is significantly greater since the actual
accelerations in Y and Z were uncorrelated.
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Example 2: Monte-Carlo Simulation

The process described above was repeated with 100 acceleration vs. time data generated from the
same ASDs. The phase at each frequency is randomly generated, so ¢@,-¢#. remains constant for the
entire duration for each run. Sampling rate was 8192 for a total duration of 8.0 sec. The results are
shown in Figures 5a and S5b. The black lines are the upper-bound ASDs in the transformed
coordinates Y’ & Z’ [Eq. 8], the red lines are a single simulation and the cyan depicts the 100
simulations with random phases. This confirms the upper bound as the upper limit of possible
values of the ASDs. Any one of the 100 simulations may touch the black line (upper limit) at a

particular frequency when coincidentally the phase in Y and Z are equal (¢,=¢.).
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Example 3: ASD,=ASD,

The goal of this simulation was to examine the overestimation caused when the sum of the ASDs
is used instead of the upper limits provided in [Eq.8]. The discussion pertaining to Figure 3b will
be further illustrated based on [Eq. 11] with varying values of n=ASD,/ASD, at different
frequencies and for different values of 6. Figure 6a shows the results of [Eq. 11] (45D, -max)/
sum of ASDs) for various n & 6. As to be expected, the result is symmetric about =45 and for
reciprocal values of n (=0.5 vs. 2.0). So, only the left half of the plot (£<45¢°) is sufficient.

ASD, was changed by multiplying the previous ASD, with 2 to make ASD, more similar in
magnitude to the new ASD, (called z2). Figure 6b shows the maximum possible value (upper
bound) of ASD,, calculated using [Eq.8] (for the situation when phase is correlated) along with the

sum of ASD, & ASD,. As expected, based on Figure 6a, at 104Hz, n=1.0 and ratio=0.93, at 120Hz,
n=0.68 and ratio=0.88, at 130Hz, n=2.0 and ratio=0.99, at 136Hz, n=0.61 and ratio=0.98.
Therefore, [Eq. 11] or Figure 6a can be used to determine by how much the sum of the two original
ASDs exceeds the maximum possible transformed ASD:s.
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Figure 7a and 7b compares an additional 100 simulations with the upper bound of 4SD’, for the
uncorrelated case [Eq.7]. The duration each acceleration was increased to 80 seconds to obtain
enough data segments for the expected value of cos (@, - ¢.) to reach 0. As a result, the 100
simulations were very similar (the cyan lines are in a very narrow band vs. those in Figures 5a and
5b). This confirms the accuracy of [Eq.7] for the uncorrelated case for sufficiently long duration.
Using the correlated upper bound would result in a factor of 2 (=3dB) overestimation.
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Conclusions

1. Equations were provided to rotate a pair of orthogonal ASDs from one coordinate system
to another if phases of the ASDs are known. [Eq. 6a & 6b].

ii.  Equations were provided to calculate maximum envelopes for the ASDs in a rotated
coordinate system if phases of the ASDs are assumed to be correlated or uncorrelated. [Eq.
7 & 8].

iii.  Equations were provided [Eq. 10-12] to evaluate the extent of overestimation or
underestimation if one were to use the sum of ASDs or envelope of original ASDs instead
of using the equations provided here. This allows one to evaluate how the coordinate
transformation angle #and the ratio of original ASDs n influences the results.

iv.  Numerical simulations were conducted with various values of ASDs and relative phase to
validate the various Equations towards their intended applications.
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