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Motivation
Vacuum arcs have been studied for many years, but many
phenomena are still missing a satisfactory answer.

There are multiple hypothesized models, including unipolar
arcs, thermofield runaway with whisker/protrusion growth, and
explosive electron emission (ectons).

Many of these processes have been simulated, but the costs can become enormous.

Most models begin with a cathode plasma that grows to the anode.

As part of an effort to better understand the expansion properties of a purported cathode 
plasma (generated by any of the above mechanisms), we study some aspects of this vacuum 
plasma expansion.

Our study is intentionally a simplification of a full vacuum arc – we are interested only in 
expansion of a model cathode plasma.
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Experimental Observations
The experiment in [1] describes a set 
of gap lengths and operating 
conditions. The experiments support:
1. The anode material does not 

influence breakdown time (voltage 
collapse).

2. Breakdown times across multiple 
gap sizes indicate a cathode 
plasma expansion speed of 
~20,000 m/s.

3. Electron impact on the anode is 
not sufficient to thermally 
desorb/ablate anode material.

4. Anode material is provided 
through sputtering due to ions 
from the cathode plasma.

Image reproduced from [1]. Pulse voltage is 40 kV 
for 5 µs. tAG – tCG ~300 ns.

[1] Z. Zhou, et al., “Effect of the anode material on the evolution 
of the vacuum breakdown process”, J. Phys. D: Appl. Phys. 
54 (2021)



4

Aleph Simulation Tool

• 1, 2, or 3D Cartesian
• Unstructured FEM (compatible with CAD)
• Massively parallel
• Hybrid PIC + DSMC (PIC-MCC)
• Electrostatics
• Fixed B field
• Solid conduction
• Advanced surface (electrode) models
• e- approximations (quasi-neutral ambipolar, Boltzmann)
• Collisions, charge exchange, chemistry, excited states, ionization
• Photon transport, photoemission, photoionization
• Advanced particle weighting methods
• Dual mesh (Particle and Electrostatics/Output)
• Dynamic load balancing (tricky)
• Restart (with all particles)
• Agile software infrastructure for extending BCs, post-processed quantities, etc.
• Currently utilizing up to 64K processors (>200M elements, >1B particles)
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Aleph Simulation Tool

Basic algorithm for one time step of length      :
1. Given known electrostatic field     , move each particle for      via:

2. Compute intersections (non-trivial in parallel).
3. Transfer charges from particle mesh to static mesh.
4. Solve for          ,

5. Transfer fields from static mesh to dynamic mesh.
6. Update each particle for another       via:

 

7. Perform DSMC collisions: sample pairs in element, determine cross section and probability of collision.  
Roll a digital die, and if they collide, re-distribute energy.

8. Perform chemistry: for each reaction, determine expected number of reactions.  Sample particles of those 
types, perform reaction (particle creation/deletion).

9. Reweight particles.
10. Compute post-processing and other quantities and write output.
11. Rebalance particle mesh if appropriate (variety of determination methods).

p1

p2 p3

p4
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1D Model Description

cathode anode

L = 100 µm

• V = 0
• Reflecting 

boundary for all 
species

• Plasma source region is 1 µm wide
• Plasma repopulated every timestep
• ne = ni = 0.2 x 1022/m3,

1.0 x 1022/m3, or
5.0 x 1022/m3 (factors of 5x and 25x)

• Te = 5 eV, Ti = 8,000 K

• V = 6,000 V – IAR
• IA from Shockley-Ramo model
• R = 1,000 Ω
• Assumed arc radius = 25 µm
• Absorbing boundary for all 

species

• Nanbu collisions: e- + e-, e- + Cu+, 
Cu+ + Cu+ (ln(Λ) = 4.0 to 7.6)
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Simulation Parameters
Assuming maximum density ne = 5 x 1022/m3, and Te = 5 eV,

Plasma electron period = 79.3 fs, and
Debye length = 74.3 nm.

Used Δx = 50 nm (100 nm for ne = 1 x 1022/m3
 and ne = 0.2 x 1022/m3).

Used Δt = 6.5 fs.

Used particle weight of 5 x 1011 yielding 5,000 particles/cell at highest density and 400 
particles/cell at lowest density.

CFL satisfied for e- energy <= 667 V. This is violated but only in the non-interacting low density 
expansion region.

48 hours on 144 MPI cores for ne = 5 x 1022/m3 simulation. 32 and 72 cores for the smaller 
scenarios.
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Results: Base Case, ne = 1 x 1022/m3

t = 12.3 ps t = 1.01 ns t = 10.0 ns

t = 20.0 ns t = 50.0 ns t = 100.0 ns
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Results: Base Case, ne = 1 x 1022/m3

t = 82.5 ns t = 84.0 ns t = 85.0 ns

t = 87.0 ns t = 88.0 ns t = 89.0 ns
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Voltage Oscillations (V = 6 kV – IAR)

ni = ne = 0.2 x 1022/m3 ni = ne = 1.0 x 1022/m3 ni = ne = 5.0 x 1022/m3
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Resolution Results
Most challenging simulation is ne = 5 x 1022/m3, 

t = 96.8 nst = 96.8 ns
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Summary
Have simulated simple scenario of a constant density cathode plasma expanding in vacuum.

Results show a periodic solution with oscillations. Oscillations are sometimes seen in vacuum 
arc initiations, but no claims are made as to the realism of the simulations presented here.

Next steps:
• Include sputtering and other boundary behaviors at the anode
• Go to higher densities – as high as 1028/m3 perhaps

Want to collaborate on models or experiments? Go to https://www.sandia.gov/prf/.

Upcoming conference: 30th International Symposium on Discharges and Electrical Insulation in 
Vacuum (ISDEIV 2023). Go to http://isdeiv2023.w3.kanazawa-u.ac.jp/.

Contact: mmhopki@sandia.gov

https://www.sandia.gov/prf/
http://isdeiv2023.w3.kanazawa-u.ac.jp/
mailto:mmhopki@sandia.gov

