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Motivation

Vacuum arcs have been studied for many years, but many
phenomena are still missing a satisfactory answer.

There are multiple hypothesized models, including unipolar
arcs, thermofield runaway with whisker/protrusion growth, and
explosive electron emission (ectons).

Many of these processes have been simulated, but the costs can become enormous.

Most models begin with a cathode plasma that grows to the anode.

As part of an effort to better understand the expansion properties of a purported cathode
plasma (generated by any of the above mechanisms), we study some aspects of this vacuum

plasma expansion.

Our study is intentionally a simplification of a full vacuum arc — we are interested only in
expansion of a model cathode plasma.




Experimental Observations

The experiment in [1] describes a set
of gap lengths and operating
conditions. The experiments support:

1. The anode material does not
influence breakdown time (voltage
collapse).

2. Breakdown times across multiple
gap sizes indicate a cathode
plasma expansion speed of
~20,000 m/s.

3. Electron impact on the anode is
not sufficient to thermally
desorb/ablate anode material.

4. Anode material is provided
through sputtering due to ions
from the cathode plasma.
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Image reproduced from [1]. Pulse voltage is 40 kV
for 5 us. ty,g — tog ~300 ns.

[1] Z. Zhou, et al., “Effect of the anode material on the evolution
of the vacuum breakdown process”, J. Phys. D: Appl. Phys.
54 (2021)



Aleph Simulation Tool

* 1,2, or 3D Cartesian

e Unstructured FEM (compatible with CAD)

* Massively parallel

e Hybrid PIC + DSMC (PIC-MCC)

* Electrostatics

* Fixed B field

* Solid conduction

» Advanced surface (electrode) models

* e- approximations (quasi-neutral ambipolar, Boltzmann)
* Collisions, charge exchange, chemistry, excited states, ionization

* Photon transport, photoemission, photoionization

* Advanced particle weighting methods

* Dual mesh (Particle and Electrostatics/Output)

* Dynamic load balancing (tricky)

* Restart (with all particles)

* Agile software infrastructure for extending BCs, post-processed quantities, etc.
* Currently utilizing up to 64K processors (>200M elements, >1B particles)




Aleph Simulation Tool

Basic algorithm for one time step of length At:
1. Given known electrostatic field E* move each particle for 2 Via
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2. Compute intersections (non-trivial in parallel).
3. Transfer charges from particle mesh to static mesh.
4. Solve for E"
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5. Transfer fields from static mesh to dynamic mesh.
6. Update each particle for another % via:
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7. Perform DSMC collisions: sample pairs in element, determine cross section and probability of collision.
Roll a digital die, and if they collide, re-distribute energy.

8. Perform chemistry: for each reaction, determine expected number of reactions. Sample particles of those
types, perform reaction (particle creation/deletion).

9. Reweight particles.

10. Compute post-processing and other quantities and write output.

11. Rebalance particle mesh if appropriate (variety of determination methods).



1D Model Description

L =100 uym
N

cathode {—/} anode

/  Nanbu collisions: e- + e-, e- + Cu+,

V=0

* Reflecting
boundary for all
species

Cu+ + Cu+ (In(A) = 4.0 to 7.6)

* Plasma source region is 1 ym wide
* Plasma repopulated every timestep
*n,=n;=0.2 x 1022/m3,

1.0 x 10%2/m3, or

5.0 x 1022/m3 (factors of 5x and 25x)
«T.,=5eV, T,=8,000 K

«V=6,000V-I/,R

* |, from Shockley-Ramo model

« R=1,000 Q

 Assumed arc radius = 25 um

» Absorbing boundary for all
species




Simulation Parameters E
Assuming maximum density n, =5 x 1022/m3,and T, =5 eV,
Plasma electron period = 79.3 fs, and
Debye length = 74.3 nm.
I
Used Ax = 50 nm (100 nm for n, = 1 x 1022/m3and n, = 0.2 x 1022/m?) I
Used At =6.5 fs.

Used particle weight of 5 x 10" yielding 5,000 particles/cell at highest density and 400
particles/cell at lowest density. |

CFL satisfied for e- energy <= 667 V. This is violated but only in the non-interacting low density
expansion region.

48 hours on 144 MPI cores for n, = 5 x 10%2/m3 simulation. 32 and 72 cores for the smaller
scenarios.
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Voltage Oscillations (V=6 kV - |,R)
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Resolution Results

Most challenging simulation is n, = 5 x 1022/m3,
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Summary

Have simulated simple scenario of a constant density cathode plasma expanding in vacuum.

Results show a periodic solution with oscillations. Oscillations are sometimes seen in vacuum
arc initiations, but no claims are made as to the realism of the simulations presented here.

Next steps:
* Include sputtering and other boundary behaviors at the anode
» Go to higher densities — as high as 1028/m3 perhaps

Want to collaborate on models or experiments? Go to https://www.sandia.gov/prf/.

Upcoming conference: 30t International Symposium on Discharges and Electrical Insulation in
Vacuum (ISDEIV 2023). Go to http://isdeiv2023.w3.kanazawa-u.ac.jp/.

Contact: mmhopki@sandia.gov
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