This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in

the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Q: A Sound Verification Framework for Statecharts and
their Implementations

Samuel D. Pollard
Sandia National Laboratories
Livermore, California, USA
spolla@sandia.gov

John Bender*

Sandia National Laboratories
Livermore, California, USA

Karla V. Morris*

Sandia National Laboratories
Livermore, California, USA

Abstract

We present Q: a verification framework used at Sandia Na-
tional Laboratories. The Q framework is a collection of tools
used to verify safety and correctness properties of high-
consequence embedded systems and is designed to address
the issue of scalability which plagues many formal methods
tools. Q consists of two main workflows: 1) compilation of
temporal properties and state machine models (such as those
made with Stateflow) into SMV models and 2) generation of
ACSL specifications for the C code implementation of the
state machine models. These together prove a refinement
relation between the state machine model and its C code im-
plementation, with proofs of properties checked by NuSMV
(for SMV models) and Frama-C (for ACSL specifications).

CCS Concepts: « Theory of computation — Program
verification; Verification by model checking; - Software
and its engineering — Formal software verification;
State based definitions.

Keywords: formal methods, state machines, C, specification
languages, temporal logic, model checking

ACM Reference Format:
Samuel D. Pollard, Robert C. Armstrong, Jon M. Aytac, John Bender,
Geoffrey C. Hulette, Raheel S. Mahmood, Karla V. Morris, and Blake

“These authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

FTSCS °22, 7 Dec 2022, Auckland, NZ

© 2022 Association for Computing Machinery.

ACM ISBN XXX-XXXX-XXXXX/XXX...$15.00
https://doi.org/XXXXXXX.XXXXXXX

Robert C. Armstrong®
Sandia National Laboratories
Livermore, California, USA

Geoffrey C. Hulette”
Sandia National Laboratories
Livermore, California, USA

Jon M. Aytac”
Sandia National Laboratories
Livermore, California, USA

Raheel S. Mahmood*

Sandia National Laboratories
Livermore, California, USA

Blake C. Rawlings*
Sandia National Laboratories
Livermore, California, USA

C. Rawlings. 2022. Q: A Sound Verification Framework for State-
charts and their Implementations. In Proceedings of Formal Tech-
niques for Safety-Critical Systems (FISCS °22). ACM, New York, NY,
USA, 10 pages. https://doi.org/XXXXXXXXXXXXXX

1 Introduction

Sandia National Laboratories develops software for high-
consequence digital control systems. With embedded control
systems, bugs can have disastrous consequences [23]. And
so, the high-consequence nature of our work means that
it is worthwhile to spend significant effort to develop rela-
tively complex formal statements about required behavior
and verify an implementation against them.

Our approach to verifying implementations is subject
to two main design constraints. First, our models are con-
structed from interacting subsystems with different clock do-
mains, but requirements must apply to the system as a whole.
Therefore, we require reasoning about the asynchronous
composition of many interacting subsystems via system-level
temporal properties.

Second, our approach must integrate into existing engi-
neering code bases and workflows. At Sandia, system de-
signers already write specifications in an informal, but hier-
archical, state machine-like graphical language along with
English-language requirements documents. These specifica-
tions are then written in Stateflow [25]) and implemented in
C. We (the formal methods team or “analysts”) have the for-
tune of close communication with the system designers and
software engineers, which allows us to ensure a clean sepa-
ration of hardware interfacing (via API) and enforce coding
standards (such restricting what state functions may modify
or the structure of state machines). We later explain how
these restrictions enable our goal of automated verification.

Existing work does not satisfy the full contstraints of our
problem space. Verifying state machine abstractions of sys-
tems in modeling languages such as TLA+[20] have shown

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2022-12167C

https://orcid.org/0000-0002-3275-4064
https://orcid.org/0000-0002-2668-3693
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

FTSCS 22, 7 Dec 2022, Auckland, NZ

success in academia and industry. However, modeling lan-
guages do not establish whether an implementation matches
the model. This is not a strong enough correctness argu-
ment for our problem domain, especially considering the
complexities of C.

Separately, there has been extensive work to check tempo-
ral properties directly against implementations [4], but these
approaches do not support sound compositional reasoning
beyond an abstract specification of external behavior.

Lastly, significant work has been done to enable manual
proofs of labeled transition system specifications against
an implementation but the manual, time-intensive, nature
of these approaches and their sensitivity to code changes
would require more time and resources than we have to
dedicate [3, 19].

To address these gaps in the research we developed the
Q Framework, which compiles Stateflow diagrams to an in-
termediate representation, and then both to SMV for model
checking [15] and Frama-C ANSI C Specification language
(ACSL) specifications [16] for static analysis of the C code im-
plementation. If the temporal properties hold for the model
and the ACSL proof obligations can be discharged and proven
by Frama-C, Q provides strong, automated evidence that the
C implementation refines the model’s behavior and thus
satisfies the desired temporal properties.

Our paper is structured as follows. In Section 2, we de-
scribe the architecture of Q by way of modeling a coffee
maker. We then precisely describe our notion of a refinement
relation between the model (state machines) and implemen-
tation (C code), the compositionality of state machines, and
some mathematical arguments for why these definitions of
compositionality and refinement are sound (Section 3), and
last conclude with a discussion on related and future work
(Sections 4, 5).

2 Architecture

We now describe the Q framework at a high level. Figure 1
describes the overall architecture of Q, but before diving into
the architecture in detail, we first give some context. The
flow of Figure 1 roughly flows from the top-left downwards,
where the C source code and Stateflow models are built
based on requirements documents (written in English and
with informal diagrams). From these, we manually write the
desired linear temporal logic (LTL) and computation tree
logic (CTL) properties. Then, these are passed as input into
the various parts of Q (described later in this section). This
whole workflow is managed by QWorkflow, a set of scripts
that run model checking and static analysis tools and compile
results describing the coverage of the requirements. The final
outputs of the Q Framework are then: the C source with
ACSL specifications, the proofs that the C code matches the
specifications (via the back-ends of Frama-C), and the proofs

Pollard, Armstrong, Aytac, Bender, Hulette, Mahmood, Morris, Rawlings

Stateflow
Test Case

Counter-
example

Stateflow

Speckl
Models QSpeckler

obeys style

*":Q

QFst

NuSMV

spec1fy UB

Coq Alt-Ergo

Proof? Proof? Proof? SAT?

Figure 1. Architectural overview of Q, managed in general
by QWorkflow. Ellipses are inputs, rectangles are tools, blue
text are developed by Sandia, and UB refers to both unspeci-
fied behavior and implementation-defined behavior.

the state machine models obey the LTL/CTL properties (via
NuSMV).

This process is iterative, since the system designers de-
scribe the requirements in English and Stateflow, then pass
the designs to the software engineers, who may find inconsis-
tencies or underspecifications. And further, system analysts
(users of Q) may find errors or further inconsistencies. This
is aided by a feedback loop in Q, as well, for if the SMV model
does not obey the desired properties, it emits a counterex-
ample from which we can then generate a Stateflow test
case, in order to further refine our LTL/CTL properties or
the Stateflow model itself.

Throughout this section, we use an illustrative model of
a “secure coffee maker.” At first blush, this example seems
somewhat contrived. However, the compositionality of sys-
tem designs allows systems of similar complexity to be used
in realistic designs. The structure of this section follows the
design of the coffee maker, showcasing the relevant parts of
Q. In brief,

§ 2.1 Modeling systems using Stateflow.

§ 2.2 QSpec: a statechart language which evolved from SCXML.

§ 2.3 QSpeckler: A tool to convert Stateflow models into
those compatible for QLang.

§ 2.4 LTL and CTL properties.

Q: A Sound Verification Framework for Statecharts and their Implementations

coffee_maker || View All

© | [simpie_cofteo » b cofee_maker ~la

(]
Q

Jopadsu) Aedoid

[confirmed]

floady Hbrew = 03}
1

fcoin] Brewing

[brew < 2]

[~confirmed...
Kbrew = brew +1;}

[~confirmed] && brew < 2]
2

1

[brew == 2]
Kbrew = 0;}

2

Figure 2. Stateflow model of a coffee maker with three states.

§ 2.5 QLang: the compiler from QSpec Statecharts into an
SMV model.

§ 2.6 QFact: a clang plugin to add ACSL annotations to C
code, as well as perform code transformations to en-
able verification.

§ 2.7 QWorkflow: scripts use to orchestrate the interaction
of the different verification approaches.

§ 2.8.3 : Our use of external tools and languages.

2.1 State Machines and Stateflow

Currently, state machine models are designed in Stateflow
from the requirements documents provided by system de-
signers along with domain knowledge of the system and
the C code implementation. While the Stateflow models and
LTL/CTL properties require some expertise in which proper-
ties can be formalized and proven, in our experience, system
analysts need not be formal methods experts to use Q. We
provide an example of a Stateflow model in Figure 2. It begins
in the Ready state, inserting a coin puts the machine in the
Confirm state, and a toggle button (confirm/cancel) begins
or ends the brew process, which takes two ticks of time.
Most realistic Stateflow models consist of interacting sub-
systems; for any verification framework of state machine-
like designs to be useful, it must support a notion of parallel
compositionality between state machines. For example, our
systems require parallel composition with different clock
rates of the corresponding systems. To accomplish this, we
also include stutter steps [9], which are self-transitions that
do nothing (we elide these in our figures). We explain the
intricacies of compositionality further in Section 3.

2.2 QSpec
We developed QSpec because of our need for an extensible
language to model our particular flavor of state machines.
QSpec was inspired by SCXML [5], and has evolved so it
is no longer completely compatible. We show an abridged
version of the coffee maker SCXML in Figure 3, but remark
that in general, QSpec files are not written by hand.

We also use namespaces and file inclusions to manage the
complexity of state machines, as shown in Line 32. We do
not show the contents of assertions.qi (qi short for “Q

O 0 N N R W N =

W W W W DN NN DN DN DN DN DN DN DN = e e e e e e e e e
W N = O O 0 O U & W N = O OV 0 N O U b W N = O

FTSCS ’22, 7 Dec 2022, Auckland, NZ

<?xml version="1.0" encoding="UTF-8"?>

<gspec>

<datamodel>

<data id="brew" type="int" range="(range 1 20)"/>
<data id="coin" type="bool" intent="input"/>

<data id="confirmed" type="bool"
</datamodel>
<sequential>
<initial> <!--ready--> </initial>
<state id="Ready"> <!--transitions--> </state>
<state id="Confirm"> <!--transitions--> </state>
<state id="Brewing">
<transition label="Brewing_Brewing"

intent="input"/>

target="Brewing">
<guard name="check_brewing"
predicate="(< brew 2)"/>
<assign location="brew" expr="(+ brew 1)"/>
</transition>
<transition label="Brewing_Done"
target="Ready">
<guard name="check_confirmed"
predicate="(= brew 2)"/>
<assign location="brew" expr="0"/>
</transition>
<transition label="Brewing_Confirm"
target="Confirm">
<guard name="check_confirmed"
predicate="(/\ (~ confirmed) (< brew 2))"/>
</transition>
</state>
</sequential>
<xi:include href="assertions.qi"/>
</qspec>

Figure 3. The coffee maker state machine modeled in
SCXML, with most state transitions elided.

Include”), but they are essentially SCXML representations
of LTL/CTL properties. These properties are described fur-
ther in Section 2.4. Additionally, the sequential portion
here simply means a “normal” state machine, which is also
known as a region or container within a potential parallel
composition construct.

2.3 QSpeckler

We mentioned that QSpec models are not written by hand:
QSpeckler is the tool that generates QSpec from a particular
Stateflow model and LTL/CTL properties about it (which
both are typically hand-written). The challenge of this trans-
lation lies in intricacies of Stateflow; for example, one trans-
formation we must perform is from the MATLAB expression
language in Stateflow into the S-expressions required for
QLang. In actuality, we use a separate tool, but conceptually
this occurs alongside QSpeckler.

FTSCS 22, 7 Dec 2022, Auckland, NZ

Another feature of QSpecker is its test case generation:
since it understands Stateflow models, provided a counterex-
ample (that is, an execution where the LTL or CTL properties
do not hold for a given SMV model), QSpeckler can generate
the corresponding Stateflow test case, which allows feed-
back to system designers of incorrect behavior, or to system
analysts to indicate potential specification bugs.

2.4 LTL and CTL Properties

There are many different safety and liveness properties we
may want to state for our secure coffee maker. We state one
safety and one liveness property below in English and CTL.
We do not describe the translation from CTL into QSpec,
but it is straightforward, only requiring an intermediate
conversion to an S-expression.

1. Safety: the coffee maker should never go back to the
confirm state when coffee is done brewing. In CTL:
AG !(state = confirm & brew = 2).

2. Liveness: the coffee maker should eventually be able to

reach the confirm state. In CTL: EF (state = confirm).

We next briefly explain these CTL properties. CTL is a
branching-time temporal logic that combines temporal op-
erators with path quantifiers; a temporal operator describes
an execution path in terms of the states along that path,
and a path quantifier describes a state in terms of the paths
that begin in that state. The path operator G means “in each
state (Globally)” and F means “in some Future state”. The
path quantifier A means “for All paths” and E means “there
Exists a path”. Thus, in the preceding examples, AG represents
invariance—a safety property—and EF represents reachabil-
ity—a liveness property. We do not focus on the details of
model checking, other than we delegate the model checking
to NuSMV, which supports both LTL and CTL properites.
More information is available from Clarke, Henzinger, and
Veith [15].

2.5 QLang

QLang is a software tool that soundly transforms a QSpec
specification into 1) an SMV model with temporal properties,
2) a C include file with an ACSL-encoded transition system
to validate a C implementation, and 3) a set of first-order
“proof obligations” that must hold for the model to be self-
consistent and also for the SMV and ACSL outputs to be
consistent with each other—that is, the ACSL model is a re-
finement of the SMV model (refinement is further discussed
in Section 3.2). The proof obligations are checked via direct
calls to NuSMV or to Frama-C’s back-ends (which are typi-
cally SMT solvers) and no other output is generated if they
cannot be discharged.

Conceptually and in practice, QLang reduces a QSpec’s
structured state machines to a more universal “flat” transition
system representation according to Q’s semantics for those

Pollard, Armstrong, Aytac, Bender, Hulette, Mahmood, Morris, Rawlings

operators. This process yields a (much) larger but semanti-
cally equivalent state machine that is easy to output directly
as an SMV model and ACSL predicates (see Section 3.2).

In QLang, a “flat” state machine (a set of labeled states
and transitions without nesting or parallel composition) is
called a Machine. The model part of a QSpec (the structured
state machine) is called a Chart and is an inductively-defined
structure that is either the parallel composition of two or
more Charts or else a nested composition consisting of a
“parent” Machine with a map from each state to zero or
one Chart (the “children”). We omit the formal semantics
for space; roughly speaking, parallel composition is (recur-
sively) defined as the product of its child transition systems,
while nesting is defined as a (recursive) “embedding” of the
mapped child transition systems into the parent state. In an
embedding, transitions into the parent state are composed
with the child’s initial transitions, self-transitions on the par-
ent are composed with each of the child’s inner transitions,
and transitions out of the parent are composed with the
child’s terminal transitions. In addition we support “abort”
transitions, which are composed with every transition and
can exit the child machine from any of its states.

In a QSpec, transitions are simply relations on states and
model variables with syntactic sugar to express operations
like assignment and transition guards. Relations are expressed
in a simple first-order logic as predicates over model vari-
ables. The logic supports a minimal set of data types in-
cluding booleans, integers, and sets of symbolic constants
(we plan to add support for user-defined types like sums
and products). Because this logic is so simple, it is easy to
translate to both SMV and ACSL.

The “flattening” process used in QLang grows the size of
the state machine exponentially and this is often a practical
issue, even for relatively small models with more than two or
three parallel states. SMV output, for example, is sometimes
many gigabytes in size. The advantage of this approach is
in its simplicity and resulting clarity of QLang’s implemen-
tation; we are thus confident that transformed models are
correct with respect to QSpec’s semantics. We are currently
working on adding support within QLang for more efficient
ways of encoding the state machine operators within SMV
and ACSL, while keeping the semantics equivalent.

2.6 QFact

QFact is a clang tool which annotates a given C program with
its ACSL specification. QFact also generates frame conditions,
which are additional constraints on the transition between
two system states and provide further ACSL specifications.
One other issue which complicates verification of C code is
its large amount of implementation-defined or unspecified
behavior (for example, the size of machine integers). Many
discrepancies in C are not interesting from a theoretical and
optimization sense, and merely complicate the verification
process. To address this, we leverage a simplified C language

Q: A Sound Verification Framework for Statecharts and their Implementations

int foo(void){
printf("foo");

return 40; . .
int main(...){

register int $69;
register int $68;

3
int bar(void){
printf("bar");

register int $67;
return 2;

3 $67 = foo();
. . . $68 = bar();
t t tb
int sum(int a, in o $69 = sum($67,$68);
return a + b;
) return $69;
return 0;

int main(...){

return sum(foo(),

bar ();

Figure 4. C (left) has unspecified behavior for the order of
evaluation of function arguments; Clight (right) specifies
this.

used in the CompCert C compiler, called Clight. A benefit of
Clight is it has a formal semantics [7]. And so, we employ a
“trick” to more easily analyze C code without requiring extra
effort from the software engineers: we convert from C into
Clight, and then back into C again, via a modified branch of
CompCert.

There are several differences between C and Clight, for
example, assignments only exist as statements (and not ex-
pressions), and all unspecified or implementation-defined
behavior is made explicit; we show an example in Figure 4.
Further, the benefit of a clang plugin is our control over the
AST of a C program; this is the perfect place to annotate the
C program with the ACSL we need to build a correspondence
to QSpec. However, the C source input to QFact is somewhat
restricted; we discuss this further in Sections 3 and 2.8.3.

2.7 QWorkflow

Now that we have outlined the individual parts of Q, we dis-
cuss its usage as a tool. QWorkflow is a collection of scripts
use to coordinate the interaction between the different verifi-
cation approaches (e.g. model checking of the state machine
models and Frama-C static analysis of the C implementation).
The input to QWorkflow is a configuration file with path
information for all the different artifacts needed to run the
workflow: requirements documents (Microsoft Word and Vi-
sio files), QSpec file(s) for the corresponding Stateflow model
under analysis, the CTL and LTL properties file(s), and the
C code implementation of the design. These are subseques-
ntly used to run NuSMV on the model generated by QLang
and Frama-C on the C code with ACSL annotations. Each
requirement in the Word documents has a unique identifier
and a specified labeling convention is used to reference each
of the LTL/CTL properties (which are manually generated).

FTSCS ’22, 7 Dec 2022, Auckland, NZ

The Stateflow models are also annotated with similar labels
(not shown in Figure 2). Both of these labels are used by
QWorkflow to collect the results obtained with NuSMV and
Frama-C and report the status of each requirement in the
original Word document. This makes coordinating with the
many designers feasible and allows cross-referencing all of
the parts of Q.

2.8 Tool Usage

We now describe our usage of existing tools and program-
ming languages.

2.8.1 NuSMV. NuSMV [14] is an open source model check-
ing solver that applies symbolic algorithms [12] based on
binary decision diagrams (BDDs) [11]. It supports both LTL
and CTL model checking. The key limitations with NuSMV
(and with BDD-based model checking in general) are that
the model must have a finite state space and that the so-
called “state-explosion problem” [15] can lead to intractable
model checking problems even when only relatively few
components are combined in the system to be analyzed.

2.8.2 Frama-C. Frama-C is a tool for the analysis of C pro-
grams. There are many different plugins for Frama-C, which
range from simple callgraph visualizations, to abstract inter-
pretation, to deductive provers. We focus on the deductive
provers, which are realized with the Weakest Precondition
(WP) plugin. With WP, the ACSL specifications essentially
consist of pre-conditions to be verified (requires clauses) and
post-conditions to be checked (ensures clauses).

One powerful feature of Frama-C is its support for multiple
provers: all proof obligations are converted to an intermedi-
ate language WhyML and are passed into Why3 [8] (elided
in Figure 1 for simplicity). Why3 then attempts to prove the
given goal using one or several different provers.

For our use of Frama-C, we treat API contracts as ax-
iomatic. While this is an opportunity for specification bugs,
it allows us the necessary separation between the state ma-
chine semantics and the systems-level C and hardware in-
terfacing that does not map nicely to statecharts.

There are more features of ACSL, such as user-defined
functions, assertions, and axioms, but these all help towards
the goal of proving post-conditions hold given a set of pre-
conditions. One feature that Q uses heavily is Frama-C’s
support for ghost states. These allow Frama-C to store vari-
ables which are not used in the C code, but are updated along
with some C function call or statement. Thus, QSpec state-
charts can be aligned with their C implementation. QLang
automatically adds these ghost states to the C code, matching
them with the correct QSpec variables.

2.8.3 C Coding Standards and Considerations. It is
worth mentioning the less interesting, but still equally im-
portant, coding considerations to achieve the automatic veri-
fication provided by Q. For one, we must describe a mapping

FTSCS 22, 7 Dec 2022, Auckland, NZ

from Stateflow into C variables. As mentioned previously,
any hardware access (via registers or memory-mapped I/O,
for example), must be separated into separate API function
calls and axiomatized with ACSL. Further restrictions with
our tool is that pure functions in these APIs must also be
annotated with Frama-C annotations. However, for our state
machines we only desire the observable behavior, so relaxing
this restriction is feasible and part of our future work.

3 Design

Q decomposes the goal of proving system-level temporal
properties into two steps. The first is to prove that the tem-
poral safety properties hold for system specifications given
as QSpecs, which are hierarchical compositions of state ma-
chines (see Section 2.2). The second is to prove that a given C
program implements (refines) a given component within the
QSpec, called the “program component,” such that temporal
safety properties of the system as a whole are preserved.

As described in Section 2, the first step is completed by
generating a transition relation over the states and variables
of the system-level QSpec, along with initial conditions and
other constraints, and encoding this system as an SMV model.
We use NuSMV’s bounded model checking to show that the
model has the desired system level temporal properties.

In this section we focus on how we accomplish the second
step. At a high level, we proceed by automatically generating
ACSL function contracts from the program component, and
then use Frama-C to prove that the C code implements those
contracts. The function contracts are carefully constructed so
as to witness the desired refinement (Section 3.1). Crucially,
we choose our notions of refinement and composition such
that the system composed of the program component and
the rest of the system preserves the temporal properties
established in the first step (see Section 3.2). Taken together,
these steps ensure that temporal safety properties which are
shown to hold for a QSpec system-level specification will
also hold for an implementation of that specification.

3.1 Refinement to C

We show that a QSpec model refines the program compo-
nent inductively through a proof of simulation. A simulation
proof requires a relation between abstract source and con-
crete target states; the user must provide this relation and Q
provides a syntax for doing so.

Simulation is defined on transition systems and we can-
not analyze a C program as a transition system directly.
Instead, we synthesize separation logic conditions to “lift”
the C program’s behavior with respect to observables at
function boundaries into a transition system. These condi-
tions are designed to be discharged by Frama-C’s weakest
precondition (WP) plugin [6]. Effectively, we view the imple-
mentation semantics via a predicate transformer semantics,
in which states are a pair of a program location and sets

Pollard, Armstrong, Aytac, Bender, Hulette, Mahmood, Morris, Rawlings

of execution states of the C program. These sets of states
are the atomic propositions of ACSL predicates, while the
program locations are the entry and exit points of function
calls.

More precisely,

ProgState = EnvProp X PLoc, (1)

where

EnvProp =~ P (ExecState) (2)

is a predicate on the execution state of the C program (that
is, an ACSL predicate) and PLoc is a program location.

Because we annotate terms in C which may represent
more than one state transition in the C semantics (practi-
cally, the terms are the whole of a function body due to the
limitations of Frama-C) the C term may visit many interven-
ing states where the model would make a single transition, so
proof of the ACSL contracts must demonstrate a stuttering
backward simulation [10] between the implementation and
the model:

Impl < Model ::=
Vo € Obs, t1 t, € Imp, 3 5152 € Model,

o
1 —> b
=>51Rt1

*x 0 %
= 8§ D> S5 Asy Riy,

where and ty, t; are states in the implementation Imp and
s1, 52 states in the model. Note that both the Imp and model
transitions must share the same member o from the set of
observables Obs. The source is allowed “wait” for the related
C term, complete its transition and then wait further for
the C term to complete. As we will discuss in Section 3.2,
separation logic over program states alone cannot express
the notion of observable, so Q uses “ghost state” to capture
externally observable behaviors and match them with the
model.

In contrast to prior efforts in this vein (see Section 4), we
aim to minimize the proof effort required of the user. To
achieve this we require the user to explicitly articulate the
following aspects of the simulation relation R:

1. A mapping between the states of the model and states
of the implementation, a simulation relation, R C Statex
ProgState (the same ProgState from (1)).

2. The behaviors that the state machine performs which
are considered observable, Obs

3. A mapping between observables and terms, map :
Obs — EnvProp.

The user provides this information to Q in a simple JSON
format.

Q: A Sound Verification Framework for Statecharts and their Implementations

We fold over this structure to construct a map of states
Qstate : State — P(ProgState) and a map of observables
®obs : Exp(Obs) — EnvProp. !

Thus we obtain a map from the transition relation to sep-
aration triples:

State X Exp(Obs) x State — P (ProgState X ProgState) (3)

of the form

(s, 1, 3,) = {(Qspre: Pobs A ¢post)
¢pre € Pstate($),
$obs = @obs(1),

Q{)State € @State(s,)}~

Since ProgState = EnvProp X PLoc, this gives a set of pre-
condition/post-condition pairs of predicates and program
locations. As WP is aimed at the predicate transformer se-
mantics of functions, this will result in the two clauses

assumes envProp(dpre);

ensures envProp(¢ops A Ppost);

in a named behavior for the function at program location
pLoc(¢pre). We clarify here our notation: the typewriter font

envProp : ProgState — EnvProp and
pLoc : ProgState — PLoc

simply refer to the canonical projections out of the product
type ProgState.

These annotations are merged into ACSL specifications for
the behavior of every function in the C program. QFact then
absorbs these specifications and the C program’s Makefile,
normalizes the code via the C to Clight to C transpilation,
annotates the normalized code with the synthesized specifi-
cations, does some simple static analysis to generate the nec-
essary assigns and requires annotations. Every function
is annotated with the ACSL complete behaviors; annota-
tion, so that proof of the ACSL obligations gives a proof that
every observed behavior of every function in the C program
corresponds, up to stuttering, via the simulation relation,
to a behavior allowed by the specification, completing our
proof of stuttering simulation.

3.2 Refinement and Composition

The proofs of the full QSpec’s temporal properties combined
with the proof that the C program refines the program com-
ponent to together yield a proof of the temporal properties
for the system implementation. There is a subtlety in this

1Since our refinement argument factors through a map of an alphabet
constructed inductively from the data of a mapping from expressions over
observables to ACSL predicates, we have a side obligation, discharged
automatically via Z3 [17], that the map is indeed a Galois connection of
term languages.

FTSCS ’22, 7 Dec 2022, Auckland, NZ

argument, however. The C program is shown to meet its spec-
ification as a sequential program, and the system correctness
properties are correctness as a distributed system.

Recall in Section 3.1, the Hoare triple {P} f{Q} (and their
corresponding separation triple (3))) witnesses only that, in
a state satisfying precondition P, the function call may visit
arbitrarily many states before returning in a state satisfying
postcondition Q, or else it may never terminate at all. Thus
Hoare triple partial correctness assertions can only support
stuttering simulation relations?.

So proof of the Hoare triples witnesses a stuttering re-
finement between the observable behavior of the abstract
C specification as a labeled transition system C4 and the
observable behavior of the C program Cc; we denote this
refinement relation C4 > Cc. However, while the alphabet
of observables is part of the data of C4 as a labeled transition
system, it is not directly present in Hoare logic. Q plays a
key role in bridging this gap.

We described above how we map from transitions into
Hoare triples factored through a map from expressions over
observables @ops : Exp(Obs) — EnvProp into pairs of pro-
gram states P (ProgState X ProgState). This map into ACSL
expressions alone does not suffice, however, since the notion
of external observables, fundamental to the specification as a
labeled transition system, has no corresponding notion in
the Hoare Logic, where we have only predicates over the
state of the C program. This problem is solved by writing
predicates over an extension of the state of the C program
by ghost state, which is used to axiomatize the behavior of
these observables.

For instance, a C function may interact with memory-
mapped I/O through a volatile variable. The C standard
specifies the semantics of volatile variable accesses to be
completely non-deterministic. As every interaction with a
volatile variable is observable and side-effectful, normaliza-
tion into Clight will replace every volatile variable access
with a function call. The user must annotate this function
call with pre-conditions and post-conditions modeling the
effect of accessing the volatile as changes to global ghost
state. For volatile variables, the only suitable axiomatiza-
tion is the totally non-deterministic relation. Thus, the map
®ops used to rewrite transitions into Hoare triples is more
fully understood as a map into predicates over the prod-
uct of the C program’s execution state and the ghost state
®ops : Expr(Obs) — (ExecState X GhostState — Prop). Thus
our Hoare triples are never over the program state alone. We
consider now what this means for our simulation proof.

The non-deterministic model of observables in global
ghost state amounts to composing Cc with the most abstract

%In fact, divergence-blind stuttering simulation relations, and our <=<gpss.
Proof-carrying C compilers [22] preserve termination improving stuttering
simulation <;;ss, which is subsumed by divergence-blind stuttering simu-
lation <;j5s==gpss, S0 our soundness extends beyond the C to the actual
behavior of the compiled binaries.

FTSCS 22, 7 Dec 2022, Auckland, NZ

transition system over the interface, that is, the completely
non-deterministic transition system 14 with state * and max-
imally non-deterministic transition relation * X A X . Since
this transition system is terminal in the refinement pre-order
of transition systems, we refer to 14 as the terminal machine
for observables A. We choose as our parallel composition the
asynchronous composition, where the asynchronous com-
position C and D is the most abstract common stuttering
refinement of components, which we write C||,D.

Thus our WP proof witnesses that C4||s1p, = Ccllalp,-
Since, for any D4 with the same interface alphabet, 1p, >
Dgy.

In fact, it is the product in the category of transition sys-
tems and divergence-blind stuttering simulations, and so we
obtain the inference

CA”alA z Cc”alA 1a = Dy
CallaDa = C¢|laDa

from this argument, if we were moreover given a proof of
refinement of the rest of the design by its implementation,
we would obtain a system-level refinement proof

Cp>C.Dy > D,
CallDa = C¢|ID,

and for any safety property Psp, we can use a proof of
Psafe (CallaDa) to infer Psafe(CC”aDC), as

CA = Cc DA = Dc Psafe(CA”aDA)
Psafe (CC”aDC)

Q guarantees this congruence by construction, since it in-
terprets specifications and simulation maps consistently in
both SMV and ACSL. The asynchronous composition is ac-
complished by rendering components into SMV with addi-
tional external non-determinism, such that any state in a
component may transition into itself under any letter in the
alphabet not owned by the component.

4 Related Work

Model checking has a long history in formal verification
of software systems [1, 12, 13, 18]. Well-known industrial
uses of model checking gain value with models that are
divorced from implementation [24]. We consider these use
cases a good start, but in our setting we aim to go one step
further and take invariant properties proven for the model
and ensure they apply to their implementation (e.g., in C).
Tools like SLAM [4] have had significant impact in indus-
trial uses by checking for proper integration of device drivers
with the Windows kernel. More broadly, model checking
programs directly is a well studied technique [21]. These ap-
proaches assume the behavior of the larger system is encoded
soundly in assumptions of their specification. For example,
in the case of SLAM’s driver verification tool SDV they spec-
ify a set of API usage rules that can be seen as approximating
environmental behavior and constraints. By contrast in our

Pollard, Armstrong, Aytac, Bender, Hulette, Mahmood, Morris, Rawlings

approach we use our theory of refinement (Section 3.1) and
assume the composed environment Q to be fully unbound
in its behavior. In practice this means that the state machine
model uses variables that are unbound within their type that
are conceptually the interface between the specification and
its environment. At the C level these are volatile variables
that are used as a communication medium by other system
components and do not have unbounded behavior. More-
over, our models exist outside the process of verifying their
refinement to C so it is an important feature of our approach
that we be able to take a model distinct from the C and verify
properties against it and then demonstrate a refinement to
the C implementation.

Several works have explicitly aimed to bridge the gap
between state-machine-like specifications and real imple-
mentations. Broadly they have focused on generality where
the user can arrive to the tool with a program and a spec and
eventually derive a proof of simulation. As a consequence
they require a large amount of user intervention. In the case
of Ironfleet [19] a separate intermediate refinement in the
form of a protocol must be designed and proved. In the case of
DeepSpec, [26] a “linear” specification is designed along with
an intermediate “implementation” specification. The coin-
ductive ITree specifications are infinite state while ours are
infinite-state with finite representation as practical matter
for checking temporal properties against our model. Similar
to Ironfleet, refinement is demonstrated through the interme-
diate specification but here the proof takes place in the Coq
proof assistant and the final refinement to C is demonstrated
using the Hoare logic at the heart of the Verified Software
Toolchain [2].

The foundational nature of proofs in DeepSpec are notable
because semantics underlying VST for C come from the
CompCert compiler and are verified in Coq. As a result the
proofs are foundational and they are carried all the way
down to the point of assembly generation.

By contrast, we have aimed to facilitate automation of
refinement proofs for programs fitting a particular form.
With respect to DeepSpec, the key ideas and the architecture
of our tool are such that we can produce VST obligations to
provide similar foundational guarantees via a new back-end
and this is planned as future work.

5 Future Work

The Q framework is a mature enough project that it sees
industrial use-cases at Sandia today. However, it is just one
part in our ultimate goal (similar to the DeepSpec project),
to have “One Q.E.D”—a single proof of correctness, from the
functional (or state-machine) specifications, to the high-level
programming language implementation, to the generated
binary, all the way down to the hardware being executed. To
this end, we wish to extend the Q framework for hardware

Q: A Sound Verification Framework for Statecharts and their Implementations

verification, instead of treating access to the hardware (or
ISA) as axiomatic in ACSL.

One limitation of Q is its strict requirement on the struc-
ture of the C implementation. As mentioned in Section 3, the
current state of Q poses somewhat strict limitations on the
state machines and C code. However, we are interested in us-
ing the the Verified Software Toolchain’s (VST) [2] symbolic
executor to automatically generate the ACSL specifications
to allow more complex functions to be annotated automat-
ically with ACSL. Lastly, we plan to extend our notion of
modularity one step futher: we plan to extend Q to allow
verification of both nested and parallel composition of state
machines. This would further expand the class of state ma-
chines, and corresponding C code, that can be verified.

6 Conclusion

We presented Q, a verification framework to verify the cor-
rectness of digital control systems. Q works by linking to-
gether state machines (expressed in Stateflow) with a source
code implementation (in C), and proving that implementa-
tion is a refinement of the model and that it obeys some set
of requirements expressed as temporal properties. This allow
us to verify deep temporal properties about systems. Q was
designed around the idea that high-consequence embedded
control software has complex requirements, and that it is
worth significant effort to ensure the software upholds these
requirements.

Acknowledgments

Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology & Engineer-
ing Solutions of Sandia, LLC, a wholly owned subsidiary
of Honeywell International Inc., for the U.S. Department of
Energy’s National Nuclear Security Administration under
contract DE-NA0003525. SAND No. XXXX-XXXXXXX.

References

[1] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Thai Son
Hoang, Farhad Mehta, and Laurent Voisin. 2010. Rodin: an open toolset
for modelling and reasoning in Event-B. STTT 12, 6 (2010), 447-466.

[2] Andrew W. Appel. 2011. Verified Software Toolchain. In Proceedings of
the 20th European Conference on Programming Languages and Systems
(ESOP/ETAPS (LNCS 6602)). Springer-Verlag, Saarbriicken, Germany,
1-17. http://dl.acm.org/citation.cfm?id=1987211.1987212

[3] Andrew W. Appel, Lennart Beringer, Adam Chlipala, Benjamin C.
Pierce, Zhong Shao, Stephanie Weirich, and Steve Zdancewic. 2017.
Position paper: The Science of Deep Specification. In Verified Trustwor-
thy Software Systems (Philosophical Transactions of the Royal Society A).
The Royal Society, London, UK. http://doi.org/10.1098/rsta.2016.0331

[4] Thomas Ball, Byron Cook, Vladimir Levin, and Sriram K. Rajamani.
2004. SLAM and Static Driver Verifier: Technology Transfer of For-
mal Methods inside Microsoft. In Integrated Formal Methods, Eerke A.
Boiten, John Derrick, and Graeme Smith (Eds.). Springer Berlin Hei-
delberg, Berlin, Heidelberg, 1-20.

[5] Jim Barnett, Rahul Akolkar, R. J. Auburn, Michael Bodell, Daniel C.
Burnett, Jerry Carter, Scott McGlashan, Torbjorn Lager, Mark Helbing,

FTSCS ’22, 7 Dec 2022, Auckland, NZ

Rafah Hosn, T. V. Raman, Klaus Reifenrath, No’am Rosenthal, and Jo-

han Roxendal. 2015. State Chart XML (SCXML): State Machine Notation

for Control Abstraction. Technical Report Version 1.0. WC3: The World

Wide Web Consortium. Available at https://www.w3.org/TR/scxml/.

Patrick Baudin, Francois Bobot, Loic Correnson, Zaynah Dargaye, and

Allan Blanchard. 2022. WP Plug-in Manual. Available at http://frama-

c.com/download/frama-c-wp-manual.pdf.

Sandrine Blazy and Xavier Leroy. 2009. Mechanized Semantics for the

Clight Subset of the C Language. Journal of Automated Reasoning 43

(Oct. 2009), 263-288. Issue 3. https://doi.org/10.1007/s10817-009-9148-

3

Francois Bobot, Jean-Christophe Filliatre, Claude Marché, and Andrei

Paskevich. 2011. Why3: Shepherd Your Herd of Provers. In Boogie 2011:

First International Workshop on Intermediate Verification Languages.

Wroclaw, Poland, 53-64. https://hal.inria.fr/hal-00790310.

[9] M.C. Browne, E.M. Clarke, and O. Grumberg. 1988. Characterizing
finite Kripke structures in propositional temporal logic. Theoretical
Computer Science 59, 1 (1988), 115-131. https://doi.org/10.1016/0304-
3975(88)90098-9

[10] Michael C. Browne, Edmund M. Clarke, and Orna Griimberg. 1988.
Characterizing finite Kripke structures in propositional temporal logic.
Theoretical computer science 59, 1-2 (1988), 115-131.

[11] Randal E. Bryant. 1986. Graph-Based Algorithms for Boolean Function
Manipulation. IEEE Trans. Comput. C-35, 8 (1986), 677-691. https:
//doi.org/10.1109/TC.1986.1676819

[12] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L.
Dill, and L. J. Hwang. 1992. Symbolic Model Checking: 10%° States
and Beyond. Information and Computation 98 (1992), 142-170. https:
//doi.org/10.1016/0890-5401(92)90017-A

[13] Kaustuv Chaudhuri, Damien Doligez, Leslie Lamport, and Stephan
Merz. 2010. The TLA + Proof System: Building a Heterogeneous
Verification Platform. In Theoretical Aspects of Computing — ICTAC
2010, Ana Cavalcanti, David Deharbe, Marie-Claude Gaudel, and Jim
Woodcock (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 44—
44,

[14] Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia, Fausto
Giunchiglia, Marco Pistore, Marco Roveri, Roberto Sebastiani, and Ar-
mando Tacchella. 2002. NuSMV 2: An OpenSource Tool for Symbolic
Model Checking. In Proceedings of the 14th International Conference on
Computer Aided Verification (CAV ’02). Springer-Verlag, Berlin, Heidel-
berg, 359-364.

[15] Edmund M. Clarke, Thomas A. Henzinger, and Helmut Veith. 2018.
Introduction to Model Checking. In Handbook of Model Checking,
Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick
Bloem (Eds.). Chapter 1, 1-26. https://doi.org/10.1007/978-3-319-
10575-8_1

[16] Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto,
Julien Signoles, and Boris Yakobowski. 2012. Frama-C. In Software
Engineering and Formal Methods (SFEM (LNCS 7504)), George Elefther-
akis, Mike Hinchey, and Mike Holcombe (Eds.). Springer, Thessaloniki,
Greece, 233-247.

[17] Leonardo Mendonca de Moura and Nikolaj Bjerner. 2008. Proofs
and Refutations, and Z3. In 7th International Workshop on the Imple-
mentation of Logics at the 15th International Conference on Logic for
Programming, Artificial Intelligence and Reasoning (IWIL LPAR 2008).
Doha, Qatar. http://ceur-ws.org/Vol-418/paper10.pdf

[18] E. Allen Emerson. 2008. The Beginning of Model Checking: A Personal
Perspective. Springer Berlin Heidelberg, Berlin, Heidelberg, 27-45.
https://doi.org/10.1007/978-3-540-69850-0_2

[19] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan
Parno, Michael L. Roberts, Srinath Setty, and Brian Zill. 2015. IronFleet:
Proving Practical Distributed Systems Correct. In Proceedings of the
25th Symposium on Operating Systems Principles (Monterey, California)
(SOSP ’15). Association for Computing Machinery, New York, NY, USA,

G

—

7

—

8

—

http://dl.acm.org/citation.cfm?id=1987211.1987212
http://doi.org/10.1098/rsta.2016.0331
https://www.w3.org/TR/scxml/
http://frama-c.com/download/frama-c-wp-manual.pdf
http://frama-c.com/download/frama-c-wp-manual.pdf
https://doi.org/10.1007/s10817-009-9148-3
https://doi.org/10.1007/s10817-009-9148-3
https://hal.inria.fr/hal-00790310
https://doi.org/10.1016/0304-3975(88)90098-9
https://doi.org/10.1016/0304-3975(88)90098-9
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1016/0890-5401(92)90017-A
https://doi.org/10.1016/0890-5401(92)90017-A
https://doi.org/10.1007/978-3-319-10575-8_1
https://doi.org/10.1007/978-3-319-10575-8_1
http://ceur-ws.org/Vol-418/paper10.pdf
https://doi.org/10.1007/978-3-540-69850-0_2

FTSCS 22, 7 Dec 2022, Auckland, NZ

[20]

[21]

[22]

[23]

1-17. https://doi.org/10.1145/2815400.2815428

Leslie Lamport. 2002. Specifying Systems: The TLA+ Language and
Tools for Hardware and Software Engineers. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA. 364 pages.

Rustan Leino. 2010. Dafny: An Automatic Program Veri-
fier for Functional Correctness. In 16th International Confer-
ence, LPAR-16, Dakar, Senegal (16th international conference,
Ipar-16, dakar, senegal ed.). Springer Berlin Heidelberg, 348-
370. https://www.microsoft.com/en-us/research/publication/dafny-
automatic-program-verifier-functional-correctness-2/

Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. Com-
mun. ACM 52, 7 (July 2009), 107-115. https://doi.org/10.1145/1538788.
1538814

N. G. Leveson and C. S. Turner. 1993. An investigation of the Therac-25
accidents. Computer 26, 7 (July 1993), 18-41. https://doi.org/10.1109/
MC.1993.274940

Pollard, Armstrong, Aytac, Bender, Hulette, Mahmood, Morris, Rawlings

[24]

[25]

[26]

Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc
Brooker, and Michael Deardeuff. 2015. How Amazon Web Services
Uses Formal Methods. Commun. ACM 58, 4 (mar 2015), 66-73. https:
//doi.org/10.1145/2699417

The MathWorks, Inc. 2022. Stateflow: Model and Simulate Decision
Logic Using State Machines and Flow Charts. Available at https:
//www.mathworks.com/products/stateflow.html.

Hengchu Zhang, Wolf Honoré, Nicolas Koh, Yao Li, Yishuai Li, Li-
Yao Xia, Lennart Beringer, William Mansky, Benjamin Pierce, and
Steve Zdancewic. 2021. Verifying an HTTP Key-Value Server with
Interaction Trees and VST. In 12th International Conference on Inter-
active Theorem Proving (ITP 2021) (Leibniz International Proceedings
in Informatics (LIPIcs), Vol. 193), Liron Cohen and Cezary Kaliszyk
(Eds.). Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl,
Germany, 32:1-32:19. https://doi.org/10.4230/LIPlcs.ITP.2021.32

https://doi.org/10.1145/2815400.2815428
https://www.microsoft.com/en-us/research/publication/dafny-automatic-program-verifier-functional-correctness-2/
https://www.microsoft.com/en-us/research/publication/dafny-automatic-program-verifier-functional-correctness-2/
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1109/MC.1993.274940
https://doi.org/10.1109/MC.1993.274940
https://doi.org/10.1145/2699417
https://doi.org/10.1145/2699417
https://www.mathworks.com/products/stateflow.html
https://www.mathworks.com/products/stateflow.html
https://doi.org/10.4230/LIPIcs.ITP.2021.32

	Abstract
	1 Introduction
	2 Architecture
	2.1 State Machines and Stateflow
	2.2 QSpec
	2.3 QSpeckler
	2.4 LTL and CTL Properties
	2.5 QLang
	2.6 QFact
	2.7 QWorkflow
	2.8 Tool Usage

	3 Design
	3.1 Refinement to C
	3.2 Refinement and Composition

	4 Related Work
	5 Future Work
	6 Conclusion
	Acknowledgments
	References

