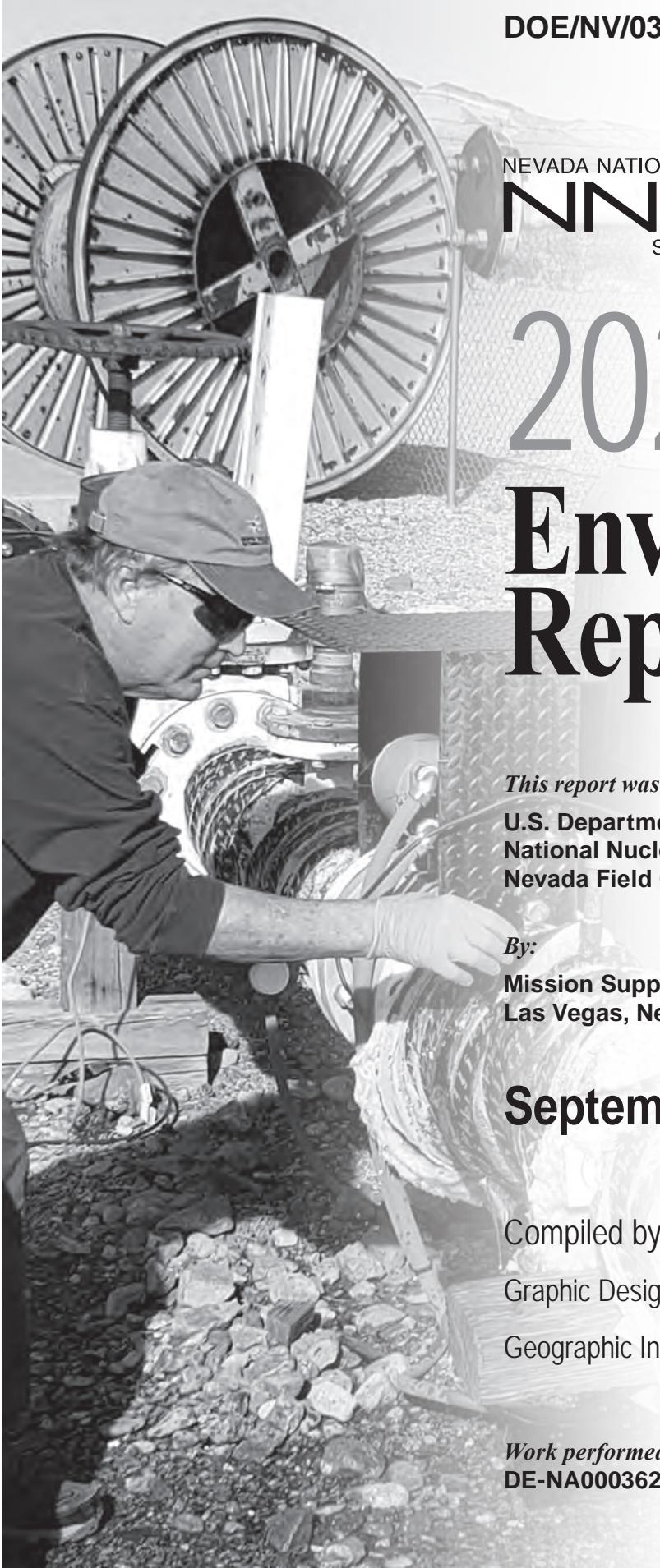


September 2023


2022

Environmental Report

DOE/NV/03624--1788

2022 Environmental Report

This report was prepared for:

**U.S. Department of Energy
National Nuclear Security Administration
Nevada Field Office**

By:

**Mission Support and Test Services LLC
Las Vegas, Nevada**

September 2023

Compiled by **Theodore Redding, Editor**

Graphic Designer: **Katina Loo**

Geographic Information System Specialist: **Ashley Burns**

*Work performed under contract number:
DE-NA0003624*

THIS PAGE INTENTIONALLY LEFT BLANK

Acknowledgements

The Environmental, Safety and Health (ES&H) group of Mission Support and Test Services, LLC (MSTS), is responsible for producing this document for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office. Each year, the production of the annual Nevada National Security Site (NNSS) Environmental Report (NNSSER) requires the knowledge, skill, experience, and cooperation of many people and organizations.

Contributing Subject Matter Experts

More than 30 individuals are subject matter experts from across multiple organizations and authored, co-authored, or contributed information to the chapters within this NNSSER. They are thanked and acknowledged for their support, and are identified at the beginning of each chapter.

Contributing Organizations

MSTS

Multiple departments and groups within MSTS provided subject matter experts to contribute text and data on the annual activities related to onsite radiological and non-radiological monitoring of air, water, and biota; radiological dose assessments; waste management; hazardous materials management; ecological monitoring; site sustainability; and occurrence reporting. MSTS subject matter experts also provided the descriptions of the hydrology, geology, and ecology of the NNSS, which are included in *Attachment A: Site Description*.

Navarro Research and Engineering, Inc. (Navarro)

Navarro provided input across numerous chapters and coordinated review and comment resolution with the DOE Environmental Management Nevada Program. Navarro provided data and discussion in Chapters 2, 5, and 11 regarding their design, sampling, and analysis results associated with groundwater sampling and monitoring at the NNSS, which addresses the legacy contamination of historical nuclear underground test areas (UGTAs). In Chapter 10, Navarro provided information on their administration of the Radioactive Waste Acceptance Program and related activities. In Chapter 11, Navarro provided summary information of their characterization and remediation work towards state-approved closure of UGTA, Industrial, and Soils corrective action sites, and post-closure monitoring activities. In Chapter 14, Navarro collaborated with MSTS in providing data quality assurance programmatic information and quality performance related to the UGTA groundwater samples.

Desert Research Institute (DRI)

The DRI Division of Hydrologic Sciences authored Chapters 7 and 15, reporting on their offsite radiological monitoring of air and groundwater within communities surrounding the NNSS, and on their data quality assurance program. The Division of Earth and Ecosystem Sciences authored Chapter 12, summarizing their annual activities managing cultural resources on the NNSS, and also provided the description of the prehistory and history of the NNSS, which is included in *Attachment A: Site Description*.

Nye County

Nye County provided the discussion in Chapter 7 of their sampling of wells under the Nye County Tritium Sampling and Monitoring Program.

National Oceanic and Atmospheric Administration Air Resources Laboratory, Special Operations and Research Division (NOAA/ARL/SORD)

NOAA/ARL/SORD provided summary descriptions of the NNSS climate that are included in *Attachment A: Site Description*.

U.S. Geological Survey (USGS)

The USGS provided discussion and data in Chapter 5 regarding their monitoring of NNSS groundwater levels and usage.

EnviroStat

Charles Davis of EnviroStat provided the statistical analyses, interpretation, and graphical presentations of the environmental radiological monitoring data collected by ES&H.

ES&H Support Staff

The following individuals within MSTS ES&H are responsible for the numerous tasks that are integral to the planning, collection, processing, quality assurance, and quality control of much of the environmental data provided in this NNSER.

Elizabeth Burns was responsible for planning and developing sampling documentation, radiological monitoring data verification, validation, and review; quality assurance oversight; administration of the data management system; and assisted with field sampling.

Martin D. Cavanaugh and **Dillon G. Dulay** conducted field sampling and supported work requested from other agencies/departments.

Catherine D. Castañeda was responsible for supporting laboratory processing and sample shipments to the commercial environmental analytical laboratories.

Lynn N. Jaussi assisted with sampling activities, and managed laboratory operations for sample screening and processing.

MSTS Report Production and Distribution Support Personnel

The following individuals were responsible for improving the quality, appearance, and timely production and distribution of this NNSER.

Ashley Burns of the Geographic Information Systems (GIS) group worked with the authors to produce the high-quality GIS-generated maps and figures (provided in map projection: Universal Transverse Mercator [Zone 11, meters] North American Datum 1983).

Elizabeth Burns and **Reginald Stewart** provided chapter-by-chapter review, edits, and supported version control and tracking to ensure the effort remained on schedule.

Thomas Breene provided a thorough comprehensive review of this document to ensure spelling, format, grammar, references, tables, figures, acronyms, table of contents, etc., were all in order.

Katina Loo designed the NNSER cover, and the layout of the NNSER Summary.

Pablo Mendez, Catherine Sedillo, and Mark Shaw produced high-quality hard copies of the NNSER, Attachment A, and the NNSER Summary under a tight production schedule.

Margaret Townsend conducted the necessary derivative classification review of this document, and in the process, made numerous improvements to its clarity, readability, and accuracy.

Table of Contents

Acknowledgements.....	iii
List of Figures	xii
List of Tables.....	xiv
Chapter 1: Introduction.....	1-1
1.1 Site Location	1-1
1.2 Environmental Setting	1-1
1.3 Site History	1-1
1.4 Mission.....	1-4
1.5 Primary Facilities and Activities	1-5
1.6 Scope of this Environmental Report.....	1-5
1.7 Populations Near the NNSS	1-7
1.8 Understanding Data in This Report	1-7
1.8.1 Scientific Notation.....	1-7
1.8.2 Unit Prefixes.....	1-7
1.8.3 Units of Radioactivity.....	1-8
1.8.4 Units of Radiological Dose	1-8
1.8.5 International System of Units for Radioactivity and Dose.....	1-8
1.8.6 Radionuclide Nomenclature.....	1-9
1.8.7 Units of Measurement.....	1-9
1.8.8 Measurement Variability.....	1-9
1.8.9 Mean and Standard Deviation.....	1-10
1.8.10 Standard Error of the Mean.....	1-10
1.8.11 Median, Maximum, and Minimum Values	1-10
1.8.12 Less Than (<) Symbol.....	1-11
1.8.13 Negative Radionuclide Concentrations.....	1-11
1.9 Document Availability.....	1-11
1.10 References.....	1-12
Chapter 2: Compliance Summary.....	2-1
2.1 Compliance with Requirements	2-2
2.2 Environmental Permits	2-13
2.3 National Environmental Policy Act Assessments	2-15
2.4 Hazardous Materials Control and Management	2-16
2.4.1 Hazardous Substance Inventory	2-16
2.4.2 Polychlorinated Biphenyls	2-16
2.4.3 Pesticides.....	2-17
2.4.4 Release and Inventory Reporting	2-17
2.4.4.1 The Emergency Planning and Community Right-to-Know Act	2-17
2.4.4.2 Nevada Chemical Catastrophe Prevention Act	2-19
2.4.4.3 Continuous Releases.....	2-19
2.4.5 Underground Storage Tank Management	2-19
2.5 Environmental Occurrences.....	2-20

2.6	Environmental Reports Submitted to Regulators	2-21
2.7	References.....	2-25
Chapter 3: Environmental Management System	3-1	
3.1	Environmental Policy	3-1
3.2	Significant Environmental Aspects	3-1
3.3	Environmental Objectives and Targets.....	3-2
3.4	Legal and Other Requirements.....	3-2
3.5	Environmental Management System Programs	3-3
3.5.1	Sustainability Division.....	3-4
3.5.2	Pollution Prevention and Waste Minimization (P2/WM)	3-7
3.6	EMS Competence, Training, and Awareness.....	3-8
3.7	Audits and Operational Assessments.....	3-8
3.8	EMS Effectiveness and Reporting.....	3-8
3.9	Awards, Recognition, and Outreach.....	3-8
3.10	Environmental Justice, Tribal and Stakeholder Engagement.....	3-9
3.11	References.....	3-11
Chapter 4: Air Monitoring	4-1	
4.1	Radiological Air Monitoring and Assessment	4-1
4.1.1	Monitoring System Design	4-2
4.1.2	Air Particulate and Tritium Sampling Methods	4-5
4.1.3	Presentation of Air Sampling Data.....	4-5
4.1.4	Air Sampling Results.....	4-6
4.1.4.1	Gross Alpha and Gross Beta	4-6
4.1.4.2	Americium-241	4-7
4.1.4.3	Plutonium Isotopes.....	4-9
4.1.4.4	Cesium-137	4-12
4.1.4.5	Uranium Isotopes	4-14
4.1.4.6	Tritium.....	4-14
4.1.5	Unplanned Releases.....	4-16
4.1.6	Estimate of Total NNSS Radiological Atmospheric Releases	4-17
4.1.7	Radiological Emissions Compliance	4-19
4.2	Nonradiological Air Quality Monitoring and Assessment.....	4-21
4.2.1	Permitted NNSS Facilities	4-21
4.2.2	Permit Maintenance Activities	4-21
4.2.3	Emissions of Criteria Air Pollutants and Hazardous Air Pollutants	4-22
4.2.4	Performance Emission Testing and State Inspection.....	4-22
4.2.5	Opacity Readings.....	4-22
4.2.6	Chemical Releases and Detonations Reporting.....	4-23
4.2.7	Ozone-depleting Substances Recordkeeping	4-23
4.2.8	Asbestos Abatement	4-23
4.2.9	Fugitive Dust Control	4-24
4.2.10	Environmental Impact of Nonradiological Emissions	4-24
4.3	References.....	4-24

Chapter 5: Water Monitoring	5-1
5.1 Radiological Monitoring	5-1
5.1.1 NNSA/NFO and EM Nevada Program Groundwater Sampling Design	5-1
5.1.1.1 Radionuclides of Interest	5-2
5.1.1.2 Sample Collection Methods	5-4
5.1.1.3 Detection Limits	5-4
5.1.2 Presentation of Water Sampling Data	5-5
5.1.3 Discussion of 2022 Sample Results	5-10
5.1.3.1 Closure Wells	5-10
5.1.3.2 Characterization Wells	5-11
5.1.3.3 Source/Plume Wells	5-11
5.1.3.4 Early Detection Wells	5-11
5.1.3.5 Distal Wells	5-12
5.1.3.6 Community Wells/Springs	5-12
5.1.3.7 NNSS Public Water System Wells	5-12
5.1.3.8 Compliance Wells/Groundwater Discharges	5-12
5.2 Nonradiological Drinking Water and Wastewater Monitoring	5-13
5.2.1 Drinking Water Monitoring	5-13
5.2.1.1 Results of Public Water System and Water-Hauling Truck Monitoring	5-16
5.2.1.2 State Inspections	5-17
5.2.2 Domestic Wastewater Monitoring	5-17
5.2.3 Industrial Wastewater Monitoring	5-17
5.2.3.1 Quarterly and Annual Influent Monitoring	5-19
5.2.3.2 Sewage System Inspections	5-19
5.2.4 E Tunnel Wastewater Disposal System Monitoring	5-19
5.3 Water-Level and Usage Monitoring	5-20
5.4 Water Monitoring Conclusions	5-21
5.5 References	5-22
Chapter 6: Direct Radiation Monitoring	6-1
6.1 Measurement of Direct Radiation	6-1
6.2 Thermoluminescent Dosimetry Surveillance Network Design	6-2
6.2.1 Data Quality	6-4
6.2.2 Data Reporting	6-4
6.3 Results	6-4
6.3.1 Background Exposure	6-4
6.3.2 Potential Exposure to the Public along the NNSS Boundary	6-8
6.3.3 Exposures from NNSS Operational Activities	6-9
6.3.4 Exposures from Radioactive Waste Management Sites	6-9
6.3.5 Exposures to NNSS Plants and Animals	6-11
6.3.6 Exposure Patterns in the Environment over Time	6-11
6.4 Environmental Impact	6-12
6.5 References	6-13

Chapter 7: Community-Based Offsite Monitoring	7-1
7.1 CEMP Air Monitoring	7-2
7.1.1 Air Monitoring Equipment.....	7-2
7.1.2 Air Sampling Methods.....	7-4
7.1.3 Air Sampling Results.....	7-4
7.1.3.1 Gross Alpha and Gross Beta	7-4
7.1.3.2 Gamma Spectrometry	7-6
7.1.4 Environmental Dosimetry Results.....	7-6
7.1.5 Pressurized Ion Chamber Results	7-7
7.1.6 Environmental Impact.....	7-8
7.2 CEMP Groundwater Monitoring	7-9
7.2.1 Sample Locations and Methods.....	7-9
7.2.2 Results of Groundwater Monitoring.....	7-9
7.3 Nye County Tritium Sampling and Monitoring Program	7-11
7.4 References.....	7-14
Chapter 8: Radiological Biota Monitoring.....	8-1
8.1 Species Selection.....	8-1
8.2 Site Selection.....	8-3
8.3 Sampling and Analysis	8-5
8.3.1 Plants	8-5
8.3.2 Animals.....	8-7
8.4 Data Assessment.....	8-9
8.5 References.....	8-9
Chapter 9: Radiological Dose Assessment.....	9-1
9.1 Dose to the Public.....	9-1
9.1.1 Dose from Possible Exposure Pathways	9-1
9.1.1.1 Dose from NNSS Air Emissions	9-2
9.1.1.2 Dose from Ingestion of Game Animals from the NNSS	9-3
9.1.1.3 Dose from Ingestion of Plants from the NNSS	9-5
9.1.1.4 Dose from Drinking Contaminated Groundwater	9-5
9.1.1.5 Dose from Direct Radiation Exposure along NNSS Borders	9-5
9.1.2 Dose from Waste Operations	9-5
9.1.3 Total Offsite Dose to the Public from All Pathways	9-6
9.1.4 Collective Population Dose.....	9-7
9.1.5 Release of Property Containing Residual Radioactive Material	9-7
9.2 Dose to Aquatic and Terrestrial Biota	9-8
9.2.1 Site-Specific Biota Dose Assessment	9-9
9.3 Dose Assessment Summary	9-9
9.4 References.....	9-10
Chapter 10: Waste Management.....	10-1
10.1 Radioactive Waste Management	10-1
10.1.1 Area 5 Radioactive Waste Management Complex	10-4
10.1.2 Waste Examination Facility	10-4
10.1.3 Area 5 Hazardous Waste Storage Unit (HWSU).....	10-5
10.1.4 Area 3 Radioactive Waste Management Site	10-5

10.2	Waste Characterization	10-6
10.2.1	RWAP Activities.....	10-6
10.2.2	Mixed Waste and Classified Non-Radioactive Hazardous Waste Verification	10-7
10.2.3	Waste Receipt and Disposal Operations	10-7
10.3	Annual Performance Assessments and Composite Analyses.....	10-8
10.3.1	Groundwater Protection Assessment	10-9
10.3.2	Vadose Zone Assessment.....	10-9
10.4	Assessment of Radiological Dose to the Public	10-10
10.4.1	Dose from Air and Direct Radiation.....	10-10
10.4.2	Dose from Groundwater	10-11
10.5	Hazardous Waste Management	10-11
10.5.1	Hazardous Waste Activities	10-12
10.6	Solid and Sanitary Waste Management	10-12
10.7	References.....	10-13
Chapter 11: Environmental Corrective Actions		11-1
11.1	Corrective Actions Progress.....	11-2
11.2	Corrective Action Sites – Active Investigations.....	11-3
11.2.1	Underground Test Area Sites	11-3
11.2.2	Industrial Sites.....	11-8
11.3	Corrective Action Sites – Post-Closure Activities.....	11-10
11.3.1	Underground Test Area Sites	11-10
11.3.1.1	Frenchman Flat	11-10
11.3.1.2	Rainier Mesa/Shoshone Mountain Corrective Action Unit 99	11-12
11.3.1.3	Yucca Flat/Climax Mine Corrective Action Unit 97.....	11-12
11.3.2	Industrial Sites and Soils.....	11-12
11.3.3	Environmental Management Nevada Program Public Outreach.....	11-13
11.4	References.....	11-14
Chapter 12: Historic Preservation and Cultural Resources Management		12-1
12.1	Cultural Resources Inventories and NRHP Eligibility Evaluations.....	12-2
12.2	Mercury Modernization	12-6
12.3	Mitigation Projects	12-8
12.4	Other Cultural Resources Projects.....	12-11
12.5	Curation	12-12
12.6	American Indian Consultation Program	12-13
12.7	References.....	12-15
Chapter 13: Ecological Monitoring		13-1
13.1	Desert Tortoise Compliance Program.....	13-1
13.1.1	Desert Tortoise Surveys and Compliance	13-3
13.1.2	Desert Tortoise Conservation Projects.....	13-4
13.2	Biological Surveys at Proposed Project Sites.....	13-5

13.3	Sensitive and Protected/Regulated Species and Ecosystem Monitoring	13-5
13.3.1	Mule Deer and Pronghorn Antelope Distribution	13-8
13.4	Habitat Restoration Program.....	13-9
13.4.1	CAU 110, U-3ax/bl, Closure Cover.....	13-9
13.4.2	CAU 111, 92-Acre Area, Closure Covers.....	13-10
13.4.3	CAU 577 Cells 19/20 Revegetation and Monitoring.....	13-12
13.4.4	CAU 577 East and West Cover Cap Revegetation and Monitoring	13-13
13.4.5	Area 5 RWMC Cell Revegetation and Monitoring	13-14
13.4.6	Cheatgrass Control Research Trial	13-15
13.5	Wildland Fire Hazard Assessment.....	13-17
13.6	References.....	13-17
Chapter 14: Quality Assurance Program.....		14-1
14.1	Sampling and Analysis Plan.....	14-2
14.1.1	Precision.....	14-2
14.1.2	Accuracy	14-2
14.1.3	Representativeness.....	14-2
14.1.4	Comparability.....	14-3
14.1.5	Completeness	14-3
14.2	Environmental Sampling.....	14-3
14.2.1	Training and Qualification	14-3
14.2.2	Procedures and Methods.....	14-3
14.2.3	Field Documentation	14-3
14.2.4	Inspection and Acceptance Testing	14-4
14.3	Laboratory Analyses.....	14-4
14.3.1	Procurement	14-4
14.3.2	Initial and Continuing Assessment	14-5
14.3.3	Data Evaluation	14-5
14.4	Data Review	14-5
14.4.1	Data Verification	14-6
14.4.2	Data Validation.....	14-6
14.4.3	Data Quality Assessment (DQA)	14-6
14.5	Assessments	14-6
14.5.1	Programmatic	14-6
14.5.2	Measurement Data.....	14-6
14.5.2.1	Field Duplicates	14-6
14.5.2.2	Laboratory Control Samples (LCSs)	14-8
14.5.2.3	Blank Analysis	14-9
14.5.2.4	Matrix Spike Analysis	14-10
14.5.2.5	Proficiency Testing Program Participation	14-11
14.6	References.....	14-12
Chapter 15: Quality Assurance Program for the Community Environmental Monitoring Program		15-1
15.1	Data Quality Objectives.....	15-1
15.2	Measurement Quality Objectives (MQOs)	15-1
15.3	Sampling Quality Assurance Program.....	15-1

15.4	Laboratory QA Oversight	15-2
15.4.1	Procurement	15-2
15.4.2	Initial and Continuing Assessment	15-2
15.4.3	Laboratory QA Program	15-3
15.5	Data Review	15-3
15.6	QA Program Assessments	15-3
15.7	Sample QA Results	15-3
15.7.1	Field Duplicates (Precision)	15-4
15.7.2	Laboratory Control Samples (Accuracy)	15-4
15.7.3	Blank Analysis	15-5
15.7.4	Inter-laboratory Comparison Studies	15-5
15.8	References	15-6
Appendix A.	Las Vegas Area Support Facilities	A-i
Appendix B.	Glossary of Terms	B-1
Library Distribution List	DL-1	

List of Figures

Figure 1-1.	NNSS vicinity map.....	1-2
Figure 1-2.	Major topographic features, calderas, and hydrographic subbasins of the NNSS.....	1-3
Figure 1-3.	NNSS operational areas, principal facilities, and past nuclear testing areas	1-6
Figure 4-1.	Sources of radiological air emissions on the NNSS in 2022	4-3
Figure 4-2.	Radiological air sampling network on the NNSS in 2022	4-4
Figure 4-3.	Concentrations of ^{241}Am in air samples collected in 2022.....	4-8
Figure 4-4.	Concentrations of ^{238}Pu in air samples collected in 2022.....	4-10
Figure 4-5.	Concentrations of $^{239+240}\text{Pu}$ in air samples collected in 2022	4-11
Figure 4-6.	Average trends in $^{239+240}\text{Pu}$ in air annual means, 1971–2022	4-12
Figure 4-7.	Concentrations of ^{137}Cs in air samples collected in 2022.....	4-13
Figure 4-8.	Concentrations of ^3H in air samples collected in 2022 with the average air temperature near the Schooner sampler during the collection period.....	4-15
Figure 4-9.	Concentrations of ^3H in air and amount of precipitation at Schooner during the sample collection period.....	4-16
Figure 4-10.	Average trend lines for annual mean ^3H air concentrations for Area groups, 2003-2022	4-16
Figure 5-1.	NNSA/NFO and EM Nevada Program water sampling network	5-3
Figure 5-2.	Tritium concentration categories at NNSA/NFO and EM Nevada Program sampling locations	5-6
Figure 5-3.	Water supply wells and drinking water systems on the NNSS	5-15
Figure 5-4.	Active permitted sewage disposal systems on the NNSS	5-18
Figure 5-5.	Annual withdrawals from the NNSS, 1951 to 2022	5-21
Figure 6-1.	Locations of TLDs on the NNSS.....	6-3
Figure 6-2.	Estimated exposures on the NNSS by location type.....	6-8
Figure 6-3.	2022 annual exposures in and around the Area 3 RWMS and at background locations	6-10
Figure 6-4.	2022 annual exposures around the Area 5 RWMS and at background locations.....	6-11
Figure 6-5.	Trends in direct radiation exposure measured at TLD locations	6-12
Figure 7-1.	2022 CEMP Air Surveillance Network	7-3
Figure 7-2.	CEMP station in Tonopah, Nevada	7-4
Figure 7-3.	An example of the effect of meteorological phenomena on background gamma readings at the Alamo, Nevada, CEMP station for July 29 through 31, 2022	7-8
Figure 7-4.	2022 CEMP water monitoring locations.....	7-10
Figure 7-5.	2022 Nye County TSaMP water monitoring locations.....	7-12
Figure 8-1.	Radiological biota monitoring sites on the NNSS	8-4
Figure 8-2.	E Tunnel Pond basins	8-5
Figure 8-3.	Concentration in vegetation sampled at the E Tunnel Ponds, 1999–2022	8-7
Figure 9-1.	Comparison of radiation dose to the MEI from the NNSS and natural background (% of total) in 2022.....	9-7
Figure 10-1.	Waste disposal facilities on the NNSS.....	10-2
Figure 10-2.	Area 5 RWMC facilities	10-3
Figure 10-3.	Disposal Cells of the Area 3 RWMS.....	10-5

Figure 11-1.	Annual cumulative totals of FFACO CAS closures	11-2
Figure 11-2.	Map of FFACO closure status for UGTA, Industrial Sites, and Soils CASs	11-4
Figure 11-3.	UGTA CAUs.....	11-5
Figure 11-4.	Contaminant boundary ensemble	11-7
Figure 11-5.	Soils and Industrial Sites active and post-closure CASs.....	11-9
Figure 11-6.	Boundaries and monitoring wells for closed UGTA CAUs.....	11-11
Figure 12-1.	Huron King Test Chamber.....	12-3
Figure 12-2.	Pluto Compressor Building after construction, December 28, 1959	12-4
Figure 12-3.	Pluto Compressor Building in 2022	12-4
Figure 12-4.	EMAD Rolling Stock NERVA engine on the RTS	12-5
Figure 12-5.	Building 23-109, Mercury, when it was used as a maintenance building, facing northeast, August 8, 1962	12-8
Figure 12-6.	Area 6 Control Point entrance, facing west toward the fenced compound with CP-1 at right.....	12-9
Figure 12-7.	Historic 138-kilovolt high tension suspension structure on hill crest at Checkpoint Pass, facing north-northwest.....	12-10
Figure 12-8.	TPC representatives at a boulder with rock writing at the Big George Cave and Petroglyph Site	12-14
Figure 13-1.	Tortoise distribution and abundance.....	13-2
Figure 13-2.	Constructed pen kept in-place during winter months to protect a hibernating tortoise from project activities.	13-4
Figure 13-3.	Plant community established on the U3ax/bl cover cap consisting primarily of shadscale and Nevada jointfir.....	13-10
Figure 13-4.	South Cover on the “92-Acre Area” with an abundance of old saltlover plants from previous years and some new plants from this year.....	13-11
Figure 13-5.	Broadcast seeding CAU 577 Cells 19/20 with drill seeder and chain harrow.....	13-12
Figure 13-6.	Irrigation system in operation at CAU 577 19/20	13-13
Figure 13-7.	CAU 577 East Cover, June 2022.....	13-14
Figure 13-8.	Final plot layout for cheatgrass control research trial.....	13-16
Figure 13-9.	Aerial view of cheatgrass control research trial study plots taken with a drone	13-16

List of Tables

Table 1-1.	Unit prefixes.....	1-7
Table 1-2.	Units of radioactivity	1-8
Table 1-3.	Units of radiological dose	1-8
Table 1-4.	Conversion table for SI units.....	1-8
Table 1-5.	Radionuclides and their half-lives (in alphabetical order by symbol)	1-9
Table 1-6.	Metric and U.S. customary unit equivalents	1-10
Table 1-7.	Document OSTI website links	1-11
Table 2-1.	Federal, state, and local environmental laws and regulations applicable to NNSA/NFO	2-2
Table 2-2.	Environmental permits for NNSA/NFO operations at NNSS, NLVF, and RSL-Nellis	2-13
Table 2-3.	NNSS NEPA compliance activities.....	2-16
Table 2-4.	Emergency Planning and Community Right-to-Know Act reporting criteria.....	2-17
Table 2-5.	Compliance with EPCRA reporting requirements.....	2-18
Table 2-6.	Summary of reported releases at the NNSS subject to EPCRA Section 313	2-18
Table 2-7.	Environmental occurrence in 2022 reportable under DOE O 232.2A	2-20
Table 2-8.	List of environmental reports submitted to regulators for activities in 2022	2-21
Table 3-1.	Environmental Objectives and Targets	3-2
Table 3-2.	DOE Sustainability Goals	3-4
Table 4-1.	Concentration limits for radionuclides in air.....	4-2
Table 4-2.	Gross Alpha radioactivity in air samples collected in 2022	4-6
Table 4-3.	Gross Beta radioactivity in air samples collected in 2022	4-7
Table 4-4.	Concentrations of ²⁴¹ Am in air samples collected in 2022.....	4-8
Table 4-5.	Concentrations of ²³⁸ Pu in air samples collected in 2022.....	4-9
Table 4-6.	Concentrations of ²³⁹⁺²⁴⁰ Pu in air samples collected in 2022	4-10
Table 4-7.	Concentration of ¹³⁷ Cs in air samples collected in 2022	4-13
Table 4-8.	Concentrations of ³ H in air samples collected in 2022	4-15
Table 4-9.	Total estimated NNSS radionuclide emissions for 2022	4-17
Table 4-10.	Radiological atmospheric releases from the NNSS for 2022	4-18
Table 4-11.	Maximum Concentration of Detected Man-Made Radionuclides in Second Quarter 2022 Samples.....	4-19
Table 4-12.	Sums of fractions of compliance levels for man-made radionuclides at critical receptor samplers in 2022.....	4-19
Table 4-13.	Criteria air pollutants and HAPs released (in tons ^[a]) on the NNSS over the past 5 years	4-22
Table 5-1.	Definitions and objectives for radiological water sample types	5-2
Table 5-2.	Radionuclides analyzed for each sample source type	5-4
Table 5-3.	Tritium concentration categories	5-5
Table 5-4.	Tritium concentrations for the most recent sample at wells near and downgradient of historical underground nuclear test locations	5-7
Table 5-5.	Sample analysis results from NNSS PWS wells and Compliance wells/surface waters in 2022	5-9
Table 5-6.	Current sampling requirements for permitted NNSS PWSs and water-hauling trucks	5-16
Table 5-7.	Water quality and flow monitoring results for NNSS sewage lagoon influent waters	5-19
Table 5-8.	Nonradiological results for E Tunnel Wastewater Disposal System discharge samples	5-20
Table 6-1.	Annual direct radiation exposures measured at TLD locations on the NNSS.....	6-5
Table 6-2.	Summary statistics for mean annual direct radiation exposure by TLD location type	6-7
Table 6-3.	Summary statistics for exposure history of background TLD locations	6-7

Table 7-1.	Gross alpha results for the CEMP offsite ASN in 2022.....	7-5
Table 7-2.	Gross beta results for the CEMP offsite ASN in 2022	7-6
Table 7-3.	Dosimeter monitoring results for the CEMP offsite ASN in 2022.....	7-6
Table 7-4.	PIC monitoring results for the CEMP offsite ASN in 2022	7-7
Table 7-5.	Average natural background radiation (excluding radon) for selected U.S. cities	7-8
Table 7-6.	CEMP water monitoring locations sampled in 2022	7-9
Table 7-7.	Nye County TSaMP water monitoring locations, results, and dates sampled.....	7-13
Table 8-1.	NNSS animals monitored for radionuclides.....	8-2
Table 8-2.	Plant samples.....	8-6
Table 8-3.	Concentrations of man-made radionuclides in plants	8-6
Table 8-4.	Animal samples	8-8
Table 8-5.	Concentrations of man-made radionuclides in animals	8-8
Table 9-1.	Distance between critical receptor air monitoring stations and nearest points of interest	9-2
Table 9-2.	CEDE from ingesting game animals on the NNSS	9-4
Table 9-3.	Maximum CEDEs to a person hypothetically ingesting NNSS game animals sampled from 2001–2022	9-5
Table 9-4.	Estimated radiological dose to hypothetical MEI of the general public from 2022 NNSS activities	9-6
Table 9-5.	Allowable total residual surface contamination for property released off the NNSS	9-8
Table 9-6.	Site-specific dose assessment for terrestrial plants and animals	9-9
Table 10-1.	Total waste volumes received and disposed at the Area 5 RWMS in 2022.....	10-4
Table 10-2.	Calendar Year 2022 summary of RWAP evaluation activities	10-7
Table 10-3.	Key documents required for Area 3 RWMS and Area 5 RWMS disposal operations	10-8
Table 10-4.	Area 5 groundwater monitoring results	10-9
Table 10-5.	Highest annual mean concentrations of radionuclides detected at Area 3 and Area 5 RWMS.....	10-11
Table 10-6.	Hazardous waste managed at the NNSS	10-12
Table 10-7.	Quantity of solid wastes disposed in NNSS SWDSs.....	10-13
Table 11-1.	UGTA documents regarding Pahute Mesa investigations and modeling published in 2022	11-8
Table 12-1.	2022 cultural resources inventories, eligibility evaluations, and finding of effect reports	12-2
Table 12-2.	2022 buildings evaluated for individual NRHP eligibility and mitigated pursuant to the Mercury programmatic agreement	12-6
Table 12-3.	FY2022 annual cultural resource reports	12-11
Table 12-4.	AICP reports.....	12-15
Table 13-1.	Cumulative totals and permit limits for tortoise habitat disturbance and take of large tortoises (>180 mm).....	13-3
Table 13-2.	Activities conducted in 2022 for important species and ecosystem monitoring on the NNSS	13-6
Table 14-1.	Summary of field duplicate samples for 2022.....	14-7
Table 14-2.	Summary of laboratory control samples for 2022	14-8
Table 14-3.	Summary of laboratory method blank samples for 2022	14-9
Table 14-4.	Summary of matrix spike samples for 2022.....	14-10
Table 14-5.	Summary of 2022 Mixed Analyte Performance Evaluation Program reports.....	14-11
Table 14-6.	Summary of inter-laboratory comparison TLD samples (UD-802 dosimeters) for 2022	14-11

Table 15-1.	Summary of 2022 field duplicate samples for CEMP monitoring	15-4
Table 15-2.	Summary of 2022 laboratory control samples for CEMP monitoring.....	15-4
Table 15-3.	Summary of 2022 laboratory blank samples for CEMP monitoring	15-5
Table 15-4.	Summary of 2022 in-house performance evaluation for CEMP subcontract dosimetry lab	15-6

Chapter 1: Introduction

Theodore J. Redding

Mission Support and Test Services, LLC

Charles B. Davis

EnviroStat

1.1 Site Location

The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) directs the management and operation of the Nevada National Security Site (NNSS). The NNSS is located in Nye County in south-central Nevada (Figure 1-1). The southeast corner of the NNSS is about 88 kilometers (km) (55 miles [mi]) northwest of the center of Las Vegas in Clark County. By highway, it is about 105 km (65 mi) from the center of Las Vegas to Mercury. Mercury, at the southern end of the NNSS, is the main base camp for worker services and administrative operations at the NNSS.

The NNSS encompasses about 3,522 square kilometers (km²) (1,360 square miles [mi²]) based on the most recent land survey. It varies from 46 to 56 km (28 to 35 mi) in width from west to east and from 64 to 88 km (40 to 55 mi) from north to south. The NNSS is surrounded on all sides by lands managed by the federal government. It is bordered on the west and north by the Nevada Test and Training Range (NTTR), on the east by an area used by both the NTTR and the Desert National Wildlife Refuge, and on the south and southwest by lands managed by the Bureau of Land Management. The combination of the NTTR and the NNSS represents one of the largest unpopulated land areas in the United States, comprising some 14,200 km² (5,470 mi²).

1.2 Environmental Setting

The NNSS is located in the southern part of the Great Basin, the northern-most subprovince of the Basin and Range Physiographic Province. NNSS terrain is typical of the Basin and Range Physiographic Province, characterized by generally north-south trending mountain ranges and intervening valleys. These mountain ranges and valleys, however, are modified on the NNSS by very large volcanic calderas. The principal valleys are Frenchman Flat, Yucca Flat, and Jackass Flats (Figure 1-2). Yucca and Frenchman Flat are topographically and hydrographically closed and contain dry lake beds, or playas, at their lowest elevations. Jackass Flats is topographically and hydrographically open, and surface water from this basin flows off the NNSS to the south via the Forty-mile Wash. The dominant highlands are Pahute Mesa and Rainier Mesa (high volcanic plateaus), Timber Mountain (a resurgent dome of the Timber Mountain caldera complex), and Shoshone Mountain. In general, the highland areas are steep and dissected, and the slopes in the lowland areas are gentle. The lowest elevation on the NNSS is 823 meters (m) (2,700 feet [ft]) in Jackass Flats in the southeast, and the highest elevation is 2,341 m (7,680 ft) on Rainier Mesa in the north-central region.

The topography of the NNSS has been altered by historical DOE actions, particularly underground nuclear testing. The principal effect of testing was the creation of numerous collapse sinks (subsidence craters), the majority of which are in the Yucca Flat basin, with fewer on the Pahute and Rainier mesas. Shallow detonations that created surface disruptions were also performed during the *Plowshare Program* to explore the potential uses of nuclear devices for large-scale excavation.

Throughout this document, the definition of word(s) in ***bold italics*** may be found by referencing the Glossary, Appendix B.

The reader is directed to *Attachment A: Site Description*, a document posted to the website <https://nsss.gov/publication-library/environmental-publications/>, where the geology, hydrology, climatology, ecology, and cultural resources of the NNSS are further described.

1.3 Site History

The history of the NNSS and its current missions direct the focus and design of environmental monitoring and surveillance activities on and near the site. Between 1940 and 1950, the area known as the NNSS was under the jurisdiction of Nellis Air Force Base and was part of the Nellis Bombing and Gunnery Range. In 1950, the site was established as the primary location for testing the nation's nuclear explosive devices. It was named

Figure 1-1. NNSS vicinity map

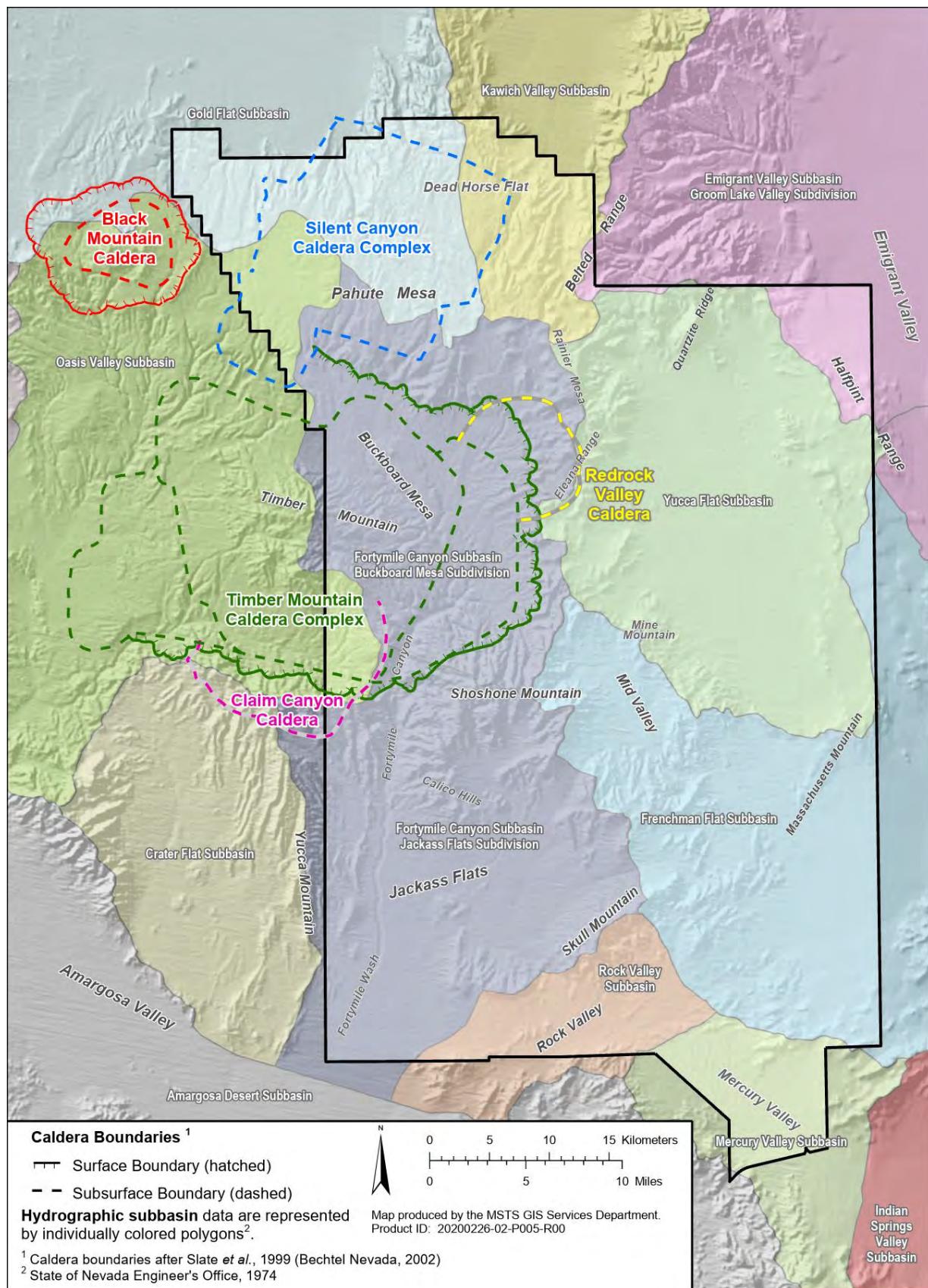


Figure 1-2. Major topographic features, calderas, and hydrographic subbasins of the NNS

the Nevada Test Site (NTS) in 1951 and supported nuclear testing from 1951 to 1992. The types of tests conducted during this period are briefly described below. In 2010, the NTS was renamed the NNSS to reflect the diversity of nuclear, energy, and homeland security activities now conducted at the site. Experiments involving nuclear material are conducted at the NNSS, and are currently limited to ***subcritical experiments***.

Atmospheric Tests – The first test, an atmospheric nuclear explosive test, was conducted on the NTS in 1951. Tests conducted through the 1950s were predominantly atmospheric tests. They involved a nuclear explosive device detonated either on the ground surface, on a steel tower, suspended from tethered balloons, dropped from an aircraft, or placed on a rocket. Several tests, categorized as “safety experiments” and “storage-transportation tests,” involved the destruction of a nuclear device with non-nuclear explosives. Some of these resulted in the dispersion of plutonium in the test vicinity. One of these test areas lies just north of the NNSS boundary at the south end of the NTTR, and four others are at the north end of the NTTR. The last above-ground test occurred in 1962.

Underground Tests – The first underground nuclear explosive test was a cratering test conducted in 1951. The first contained underground test was in 1957. Testing was discontinued during a bilateral moratorium that began October 1958, but was resumed in September 1961, after the Union of Soviet Socialist Republics resumed nuclear testing. After late 1962, nearly all tests were conducted in sealed vertical shafts drilled into Yucca Flat and Pahute Mesa or in horizontal tunnels mined into Rainier Mesa and Shoshone Mountain. From 1951 to 1992, a total of 828 underground nuclear tests were conducted at the NNSS. Approximately one-third of them were detonated near or in the ***saturated zone***.

Cratering Tests – Five earth-cratering (shallow-burial) nuclear explosive tests were conducted from 1962 through 1968 as part of the Plowshare Program that explored peaceful uses of nuclear explosives. The first and highest yield Plowshare crater test, Sedan, was detonated at the northern end of Yucca Flat. The second highest yield crater test was Schooner, located on Pahute Mesa. Mixed fission products, ***tritium***, and plutonium from these tests were entrained in the soil ejected from the craters and deposited on the ground surrounding the craters.

Other Tests – Other nuclear-related experiments at the NNSS have included the BREN [Bare Reactor Experiment–Nevada] series in the early 1960s, conducted in Area 4. These tests were performed with a 14-million electron volt neutron generator mounted on a 465 m (1,527 ft) steel tower to produce neutron and gamma radiation for the purpose of estimating the radiation doses received by survivors of Hiroshima and Nagasaki. The tower was moved in 1966 to Area 25 and used for conducting Operation HENRE [High-Energy Neutron Reactions Experiment], jointly funded by the U.S. Department of Defense (DoD) and the Atomic Energy Commission (AEC) to provide information for the AEC’s Division of Biology and Medicine. From 1959 through 1973, open-air nuclear reactor, nuclear engine, and nuclear furnace tests were conducted in Area 25, and tests with a nuclear ramjet engine were conducted in Area 26. Erosion of metal cladding on the reactor fuel released some fuel particles that caused negligible deposition of ***radionuclides*** on the ground. Most of the radiation released from these tests were gaseous radioactive fission products.

Fact sheets on many of the historical tests mentioned above can be found at <https://nnss.gov/publication-library/fact-sheets/>. All nuclear device tests are listed in *United States Nuclear Tests, July 1945 through September 1992* (NNSA/NFO 2015).

1.4 Mission

NNSA/NFO directs facility management and program operations at the NNSS, North Las Vegas Facility (NLVF) and the Remote Sensing Laboratory–Nellis (RSL-Nellis) in Nevada and as well as selected operations at five sites outside of Nevada: RSL-Andrews in Maryland, Livermore Operations and the Special Technologies Laboratory in California, and Los Alamos Operations and Sandia National Laboratories in New Mexico. Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and Sandia National Laboratories are the principal organizations that sponsor and implement the nuclear experiments programs at the NNSS. Mission Support and Test Services, LLC, is the Management and Operating Contractor accountable for the successful execution of work and ensuring compliance with environmental regulations. The three major NNSS missions currently include National Security/Defense, Environmental Management, and Nondefense. The programs that support these missions are listed in the following text box.

NNSS Missions and Programs

National Security/Defense Missions

Stockpile Stewardship and Management Program – Conducts operations in support of defense-related nuclear and national security experiments and maintains the capability to resume underground nuclear weapons testing, if directed.

Nuclear Emergency Response, Nonproliferation, and Counterterrorism Programs – Provides support facilities, training facilities, and capabilities for government agencies involved in emergency response, nonproliferation technology development, national security technology development, and counterterrorism activities.

Strategic Partnership Program – Provides support facilities and capabilities for other DOE programs and federal agencies/organizations involved in defense-related activities.

Environmental Management Missions

Environmental Restoration Program – Characterizes and remediates the environmental legacy of nuclear explosive and other testing at NNSS and NTTR locations, and develops and deploys technologies that enhance environmental restoration.

Waste Management Program – Manages and safely disposes of **low-level waste**, **mixed low-level waste**, and classified waste/matter received from DOE- and DoD-approved facilities throughout the United States and wastes generated in Nevada by NNSA/NFO. Safely manages and characterizes **hazardous** and **transuranic wastes** for offsite disposal.

Nondfense Missions

General Site Support and Infrastructure Program – Maintains the buildings, roads, utilities, and facilities required to support all NNSS programs and to provide a safe environment for NNSS workers.

Conservation and Renewable Energy Programs – Operates the pollution prevention program and supports renewable energy and conservation initiatives at the NNSS.

Other Research and Development – Provides support facilities and NNSS access to universities and organizations conducting environmental and other research unique to the regional setting.

1.5 Primary Facilities and Activities

NNSS facilities and centers that support the National Security/Defense missions include the U1a Complex, Big Explosives Experimental Facility, Device Assembly Facility (DAF), Dense Plasma Focus (DPF) Facility, Joint Actinide Shock Physics Experimental Research (JASPER) Facility, Nonproliferation Test and Evaluation Complex (NPTEC), the National Criticality Experiments Research Center (located within the DAF), the Radiological/Nuclear Countermeasures Test and Evaluation Complex (RNCTEC), and the Radiological/Nuclear Weapons of Mass Destruction Incident Exercise Site (known as the T-1 Site). NNSS facilities that support Environmental Management missions include the **Area 5 Radioactive Waste Management Complex (RWMC)** and the Area 3 Radioactive Waste Management Site (RWMS) (Figure 1-3).

The primary NNSS activity in 2022 continued to be ensuring that the U.S. stockpile of nuclear weapons remains safe and reliable. Other 2022 NNSS activities included experiments aimed at improving arms control and nonproliferation treaty verification; weapons of mass destruction first responder training; the controlled release and monitoring of hazardous material; remediation of legacy contamination sites; processing of waste destined for the Waste Isolation Pilot Plant in Carlsbad, New Mexico, or the Idaho National Laboratory in Idaho Falls, Idaho; and disposal of low-level and mixed low-level radioactive waste.

1.6 Scope of this Environmental Report

This report summarizes the NNSA/NFO environmental protection and monitoring programs data and the compliance status for calendar year 2022 at the NNSS and at its two support facilities, the NLVF and RSL-Nellis. This report also addresses environmental restoration projects conducted by the Environmental Management Nevada Program Office.

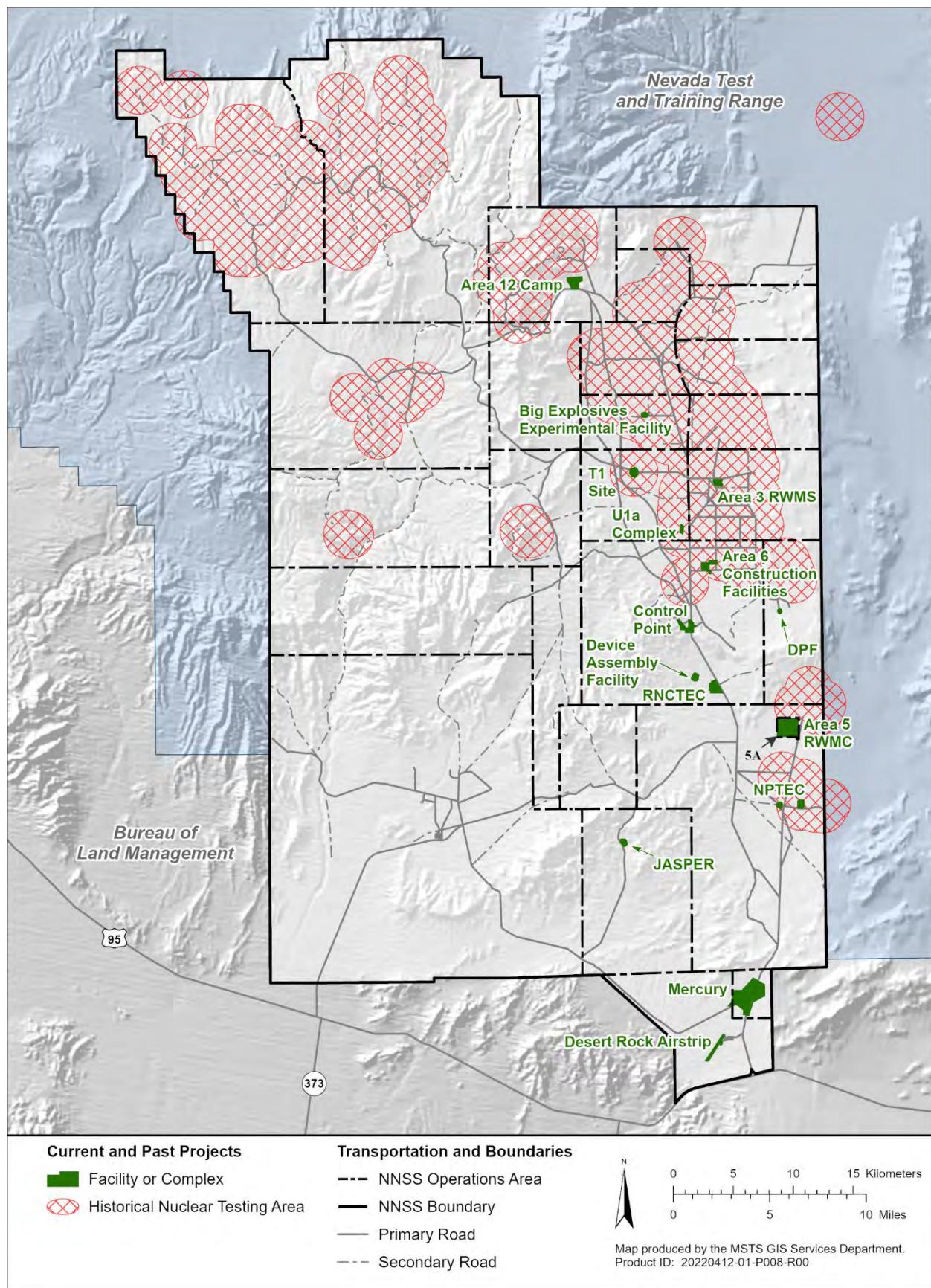


Figure 1-3. NNSS operational areas, principal facilities, and past nuclear testing areas

The Environmental Management Nevada Program Office is responsible for addressing environmental restoration sites on the NNSS, NTTR, and Tonopah Test Range (TTR) if they are listed in the Federal Facility Agreement and Consent Order. The DOE/NNSA Sandia Field Office produces the TTR annual site environmental reports, which are posted at <https://www.sandia.gov/news/publications/environmental-reports/>.

1.7 *Populations Near the NNSS*

The population of the area surrounding the NNSS is predominantly rural. The most recent population estimates for Nevada communities are for 2022 and are provided by the Nevada State Demographer's Office (2022). The most recent population estimate for Nye County is 51,334, and the largest Nye County community is Pahrump (42,828), located approximately 80 km (50 mi) south of the NNSS Control Point facility (near the center of the NNSS). Other Nye County communities include Tonopah (2,493), Amargosa (1,783), Beatty (1,059), Round Mountain (765), Gabbs (223), and Manhattan (142). Lincoln County to the east of the NNSS includes a few small communities, including Caliente (1,167), Panaca (861), Pioche (1,020), and Alamo (721), and Esmeralda County includes Goldfield (324) and Silver Peak (88). Clark County, southeast of the NNSS, is the major population center of Nevada and has an estimated population of 2,338,127. The total annual population estimate for all Nevada counties, cities, and towns is 3,204,105.

The Mojave Desert, which includes Death Valley National Park, lies along the southwestern border of Nevada. This area is still predominantly rural; however, tourism at Death Valley National Park increases the population during holiday periods when the weather is mild.

The extreme southwestern region of Utah is more developed than the adjacent portion of Nevada. The latest population estimates for Utah communities are taken from the U.S. Census Bureau (2022) of the U.S. Department of Commerce. Southern Utah's largest community is St. George, located 220 km (137 mi) east of the NNSS, with an estimated population of 102,519. The next largest town, Cedar City, is located 280 km (174 mi) east-northeast of the NNSS and has an estimated population of 38,692.

The northwestern region of Arizona is mostly rangeland except for that portion in the Lake Mead recreation area. In addition, several small communities lie along the Colorado River. The largest towns in the area are Bullhead City, 165 km (103 mi) south-southeast of the NNSS, with an estimated population of 42,601, and Kingman, 280 km (174 mi) southeast of the NNSS, with an estimated population of 34,669 (Arizona Department of Administration 2022).

1.8 *Understanding Data in This Report*

1.8.1 *Scientific Notation*

Scientific notation is used in this report to express very large or very small numbers. A very small number is expressed with a negative exponent, for example 2.0×10^{-5} . To convert this number from scientific notation to a more traditional number, the decimal point must be moved to the left by the number of places equal to the exponent (5 in this case). The number thus becomes 0.00002.

Very large numbers are expressed in scientific notation with a positive exponent. The decimal point should be moved to the right by the number of places equal to the exponent. The number 1,000,000,000 could be presented in scientific notation as 1.0×10^9 .

Table 1-1. Unit prefixes

Prefix	Abbreviation	Meaning
mega-	M	$1,000,000 (1 \times 10^6)$
kilo-	k	$1,000 (1 \times 10^3)$
centi-	c	$0.01 (1 \times 10^{-2})$
milli-	m	$0.001 (1 \times 10^{-3})$
micro-	μ	$0.000001 (1 \times 10^{-6})$
nano-	n	$0.000000001 (1 \times 10^{-9})$
pico-	p	$0.000000000001 (1 \times 10^{-12})$

1.8.2 *Unit Prefixes*

Units for very small and very large numbers are commonly expressed with a prefix. The prefix signifies the amount of the given unit. For example, the prefix k, or kilo-, means 1,000 of a given unit. Thus 1 kg (kilogram) is 1,000 g (grams). Other prefixes used in this report are listed in Table 1-1.

1.8.3 Units of Radioactivity

Much of this report deals with levels of **radioactivity** in various environmental media. The basic unit of radioactivity used in this report is the **curie** (Ci) (Table 1-2). The curie describes the amount of radioactivity present, and amounts are usually expressed in terms of fractions of curies in a given mass or volume (e.g., picocuries per liter). The curie is historically defined as 37 billion nuclear disintegrations per second, the rate of nuclear disintegrations that occur in 1 gram of radium-226. For any other radionuclide, 1 Ci is the quantity of the radionuclide that decays at this same rate. Nuclear disintegrations produce spontaneous emissions of **alpha** or **beta particles**, **gamma radiation**, or combinations of these.

1.8.4 Units of Radiological Dose

The amount of **ionizing radiation** energy absorbed by a living organism is expressed in terms of radiological **dose**. Radiological dose in this report is usually written in terms of **effective dose equivalent (EDE)** and reported numerically in units of millirem (mrem) (Table 1-3). Millirem is a term that relates ionizing radiation to biological effect or risk to humans. A dose of 1 mrem has a biological effect similar to the dose received from an approximate 1-day **exposure** to natural **background** radiation. An acute (short-term) dose of 100,000 to 400,000 mrem can cause radiation sickness in humans. An acute dose of 400,000 to 500,000 mrem, if left untreated, results in death approximately 50% of the time. Exposure to lower amounts of radiation (1,000 mrem or less) produces no immediate observable effects, but long-term (delayed) effects are possible. The average person in the United States receives an annual dose of approximately 300 mrem from exposure to naturally produced radiation. Medical and dental X-rays, air travel, and tobacco smoking add to this total.

The unit “**rad**,” for radiation **absorbed dose**, is also used in this report. The rad is a measure of the energy absorbed by any material, whereas a “**rem**,” for “roentgen equivalent man,” relates to both the amount of radiation energy absorbed by humans and its consequence. A **roentgen (R)** is a measure of radiation exposure. Generally speaking, 1 R of exposure will result in an EDE of 1 rem. Additional information on radiation and dose terminology can be found in the Glossary (Appendix B).

1.8.5 International System of Units for Radioactivity and Dose

In some instances in this report, radioactivity and radiological dose values are expressed in other units in addition to Ci and rem. These units are the **becquerel (Bq)** and the **sievert (Sv)**, respectively. The Bq and Sv belong to the **International System of Units (SI)**, and their inclusion in this report is mandated by DOE. SI units are the internationally accepted units and may eventually be the standard for reporting both radioactivity and radiation dose in the United States. One Bq is equivalent to one nuclear disintegration per second.

Table 1-2. Units of radioactivity

Symbol	Name
Ci	curie
cpm	counts per minute
mCi	millicurie (1×10^{-3} Ci)
μ Ci	microcurie (1×10^{-6} Ci)
nCi	nanocurie (1×10^{-9} Ci)
pCi	picocurie (1×10^{-12} Ci)

Table 1-3. Units of radiological dose

Symbol	Name
mrad	millirad (1×10^{-3} rad)
mrem	millirem (1×10^{-3} rem)
R	roentgen
mR	milliroentgen (1×10^{-3} R)
μ R	microroentgen (1×10^{-6} R)

Table 1-4. Conversion table for SI units

To Convert From	To	Multiply By
becquerel (Bq)	picocurie (pCi)	27
curie (Ci)	becquerel (Bq)	3.7×10^{10}
gray (Gy)	rad	100
millirem (mrem)	millisievert (mSv)	0.01
millisievert (mSv)	millirem (mrem)	100
picocurie (pCi)	becquerel (Bq)	0.03704
rad	gray (Gy)	0.01
sievert (Sv)	rem	100

The unit of radiation absorbed dose (rad) has a corresponding SI unit called the **gray (Gy)**. The roentgen measure of radiation exposure has no SI equivalent. Table 1-4 provides the multiplication factors for converting to and from SI units.

1.8.6 Radionuclide Nomenclature

Radionuclides are frequently expressed with the one- or two-letter chemical symbol for the element. Radionuclides may have many different **isotopes**, which are usually shown by a superscript to the left of the symbol. This number is the atomic weight of the isotope (the number of protons and neutrons in the nucleus of the **atom**). Radionuclide symbols, many of which are used in this report, are shown in Table 1-5 along with the **half-life** of each radionuclide. The half-life is the time (measured in years [yr], days [d], hours [h], or seconds [s]) required for one-half of the radioactive atoms in a given amount of material to decay. For example, after one half-life, half of the original atoms will have decayed; after two half-lives, three-fourths of the original atoms will have decayed; and, after three half-lives, seven-eighths of the original atoms will have decayed, and so on. The notation $^{226+228}\text{Ra}$ and similar notations in this report (e.g., $^{239+240}\text{Pu}$) are used when the analytical method does not distinguish between the isotopes, but reports the total amount of both.

1.8.7 Units of Measurement

Both metric and non-metric units of measurement are used in this report. Metric system and U.S. customary units and their respective equivalents are shown in Table 1-6.

1.8.8 Measurement Variability

There is always **uncertainty** associated with the measurement of environmental contaminants. For radioactivity, a major source of uncertainty is the inherent randomness of **radioactive decay** events.

Uncertainty in analytical measurements is also a consequence of variability related to collecting and analyzing the samples. This variability is associated with reading or recording the result, handling or processing the sample, calibrating the counting instrument, and numerical rounding.

The uncertainty of a measurement is denoted by following the result with an uncertainty value, which is preceded by the plus-or-minus symbol, \pm . This uncertainty value gives information on what the measurement might be if the same sample were analyzed again under identical conditions. The uncertainty value implies that approximately 95% of the time, the average of many measurements would give a value somewhere between the reported value minus the uncertainty value and the reported value plus the uncertainty value. If the reported concentration of a given constituent is smaller than its associated uncertainty (e.g., 40 ± 200), then the sample may not contain that constituent.

Table 1-5. Radionuclides and their half-lives (in alphabetical order by symbol)

Symbol	Radionuclide	Half-Life ^(a)
^{241}Am	americium-241	432.2 yr
^7Be	beryllium-7	53.22 d
^{14}C	carbon-14	5.70×10^3 yr
^{36}Cl	chlorine-36	3.01×10^5 yr
^{134}Cs	cesium-134	2.1 yr
^{137}Cs	cesium-137	30.2 yr
^{51}Cr	chromium-51	27.7 d
^{60}Co	cobalt-60	5.3 yr
^{152}Eu	euroium-152	13.5 yr
^{154}Eu	euroium-154	8.6 yr
^{155}Eu	euroium-155	4.8 yr
^3H	tritium	12.3 yr
^{129}I	iodine-129	1.6×10^7 yr
^{131}I	iodine-131	8 d
^{40}K	potassium-40	1.3×10^8 yr
^{85}Kr	krypton-85	10.8 yr
^{212}Pb	lead-212	10.6 hr
^{238}Pu	plutonium-238	87.7 yr
^{239}Pu	plutonium-239	2.4×10^4 yr
^{240}Pu	plutonium-240	6.5×10^3 yr
^{241}Pu	plutonium-241	14.4 yr
^{226}Ra	radium-226	1.6×10^3 yr
^{228}Ra	radium-228	5.75 yr
^{220}Rn	radon-220	56 s
^{222}Rn	radon-222	3.8 d
^{103}Ru	ruthenium-103	39.3 d
^{106}Ru	ruthenium-106	373.6 d
^{125}Sb	antimony-125	2.8 yr
^{113}Sn	tin-113	115 d
^{90}Sr	strontium-90	28.8 yr
^{99}Tc	technetium-99	2.1×10^5 yr
^{232}Th	thorium-232	1.4×10^{10} yr
U ^(b)	uranium total	---
^{234}U	uranium-234	2.4×10^5 yr
^{235}U	uranium-235	7×10^8 yr
^{238}U	uranium-238	4.5×10^9 yr
^{65}Zn	zinc-65	244.1 d
^{95}Zr	zirconium-95	63.98 d

(a) Source: International Commission on Radiological Protection (2008)

(b) Total uranium may also be indicated by U-natural (U-nat) or U-mass

(c) Natural uranium is a mixture dominated by ^{238}U ; thus, the half-life is approximately 4.5×10^9 years

Table 1-6. Metric and U.S. customary unit equivalents

Metric Unit	U.S. Customary Equivalent Unit	U.S. Customary Unit	Metric Equivalent Unit
Length			
1 centimeter (cm)	0.39 inches (in.)	1 inch (in.)	2.54 centimeters (cm)
1 millimeter (mm)	0.039 inches (in.)		25.4 millimeters (mm)
1 meter (m)	3.28 feet (ft)	1 foot (ft)	0.3048 meters (m)
	1.09 yards (yd)	1 yard (yd)	0.9144 meters (m)
1 kilometer (km)	0.62 miles (mi)	1 mile (mi)	1.6093 kilometers (km)
Volume			
1 liter (L)	0.26 gallons (gal)	1 gallon (gal)	3.7853 liters (L)
1 cubic meter (m ³)	35.32 cubic feet (ft ³)	1 cubic foot (ft ³)	0.028 cubic meters (m ³)
	1.31 cubic yards (yd ³)	1 cubic yard (yd ³)	0.765 cubic meters (m ³)
Weight			
1 gram (g)	0.035 ounces (oz)	1 ounce (oz)	28.35 gram (g)
1 kilogram (kg)	2.21 pounds (lb)	1 pound (lb)	0.454 kilograms (kg)
1 metric ton (mton)	1.10 short ton (2,000 lb)	1 short ton (2,000 lb)	0.90718 metric ton (mton)
Area			
1 hectare	2.47 acres	1 acre	0.40 hectares
1 square meter (m ²)	10.76 square feet (ft ²)	1 square foot (ft ²)	0.09 square meters (m ²)
Radioactivity			
1 becquerel (Bq)	2.7×10^{-11} curie (Ci)	1 curie (Ci)	3.7×10^{10} becquerel (Bq)
Radiation dose			
1 rem	0.01 sievert (Sv)	1 sievert (Sv)	100 rem
Temperature			
$^{\circ}\text{C} = (\text{ }^{\circ}\text{F} - 32)/1.8$		$^{\circ}\text{F} = (\text{ }^{\circ}\text{C} \times 1.8) + 32$	

1.8.9 Mean and Standard Deviation

The mean of a set of data is the usual average of those data. The standard deviation (SD) of sample data relates to the variation around the mean of a set of individual sample results; it is defined as the square root of the average squared difference of individual data values from the mean. This variation includes both measurement variability and actual variation between monitoring periods (weeks, months, or quarters, depending on the particular analysis). The sample mean and standard deviation are estimates of the average and the variability that would be seen in a large number of repeated measurements. If the distribution shape were “normal” (i.e., shaped as \sim), about 67% of the measurements would be within the mean \pm SD, and 95% would be within the mean ± 2 SD.

1.8.10 Standard Error of the Mean

Just as individual values are accompanied by counting uncertainties, mean values (averages) are accompanied by uncertainty. The standard deviation of the distribution of sample mean values is known as the standard error of the mean (SE). The SE conveys how accurate an estimate the mean value is based on the samples that were collected and analyzed. The \pm value presented to the right of a mean value is equal to $2 \times$ SE. The \pm value implies that approximately 95% of the time, the average of many calculated means will fall somewhere between the reported value minus the $2 \times$ SE value and the reported value plus the $2 \times$ SE value.

1.8.11 Median, Maximum, and Minimum Values

Median, maximum, and minimum values are reported in some sections of this report. A median value is the middle value when all the values are arranged in order of increasing or decreasing magnitude. For example, the median of the numbers 1 2 3 3 4 5 5 5 6 is 4. The maximum is 6 and the minimum is 1. With an even number of numbers, the median is the average of the middle two.

1.8.12 Less Than (<) Symbol

A “less than” symbol (<) indicates that the measured value is smaller than the number given. For example, <0.09 would indicate that the measured value is less than 0.09. In this report, < is often used in reporting the amounts of nonradiological contaminants in a sample when the measured amounts are less than the analytical laboratory’s reporting limit for that contaminant in that sample. For example, if a measurement of benzene in sewage lagoon pond water is reported as <0.005 milligrams per liter, this implies that the measured amount of benzene present, if any, was not found to be above this level. For some constituents, the notation “ND” is used to indicate that the constituent in question was not detected. For organic constituents in particular, this could mean that the compound could not be clearly identified, the level (if any) was lower than the reporting limit, or (as often happens) both. This report’s measurements of radionuclide concentrations are reported whether or not they are below a reporting limit, which is often called the **minimum detectable concentration**.

1.8.13 Negative Radionuclide Concentrations

There is always a small amount of natural radiation in the environment. The instruments used in the laboratory to measure radioactivity in environmental media are sensitive enough to measure the natural, or background, radiation along with any contaminant radiation in a sample. To obtain an unbiased measure of the contaminant level in a sample, the natural, or background, radiation level must be subtracted from the total amount of radioactivity measured by an instrument. Because of the randomness of radioactive emissions and the very low concentrations of some contaminants, it is possible to obtain a background measurement that is larger than the actual contaminant measurement. When the larger background measurement is subtracted from the smaller contaminant measurement, a negative result is generated. Negative results are reported because they are useful when conducting statistical evaluations of the data.

1.9 Document Availability

This report, the *Attachment A: Site Description*, and the *Summary* documents are posted to the website <https://nnss.gov/publication-library/environmental-publications/>. The previous 10 years’ documents can be accessed at the following DOE Office of Scientific and Technical Information (OSTI) websites. Additional document availability information is printed on the inside of each document’s back cover.

Table 1-7. Document OSTI website links

Calendar Year	Full Report	Attachment A	Summary Report
2021	https://www.osti.gov/biblio/1889386		https://www.osti.gov/biblio/1895374
2020	https://www.osti.gov/biblio/1822366		https://www.osti.gov/biblio/1825073
2019	https://www.osti.gov/biblio/1668029	https://www.osti.gov/biblio/1668049	https://www.osti.gov/biblio/1668337
2018	https://www.osti.gov/biblio/1567854	https://www.osti.gov/biblio/1567858	https://www.osti.gov/biblio/1567855
2017	https://www.osti.gov/biblio/1473920	https://www.osti.gov/biblio/1473975	https://www.osti.gov/biblio/1473979
2016	https://www.osti.gov/biblio/1379434	https://www.osti.gov/biblio/1379961	https://www.osti.gov/biblio/1379960
2015	https://www.osti.gov/biblio/1327205	https://www.osti.gov/biblio/1327206	https://www.osti.gov/biblio/1327207
2014	https://www.osti.gov/biblio/1228062	https://www.osti.gov/biblio/1228067	https://www.osti.gov/biblio/1543329
2013	https://www.osti.gov/biblio/1154955	https://www.osti.gov/biblio/1154956	https://www.osti.gov/biblio/1155018
2012	https://www.osti.gov/biblio/1092497	https://www.osti.gov/biblio/1092498	https://www.osti.gov/biblio/1092499

1.10 *References*

Arizona Department of Administration, 2022. *July 1, 2022 Provisional Population Estimates for Arizona's Counties, Incorporated Places and Unincorporated Balance of Counties*. Office of Economic Opportunity. Available at:

https://www.azcommerce.com/media/r0nn5fzk/july1_2022_arizona_population_estimates.pdf, as accessed on July 23, 2023.

International Commission on Radiological Protection (ICRP), 2008. *Nuclear Decay Data for Dosimetric Calculations*. ICRP Publication 107. Ann. ICRP 38 (3). Available at:

https://journals.sagepub.com/doi/pdf/10.1177/ANIB_38_3, as accessed on April 6, 2023.

Nevada State Demographer's Office, 2022. *Draft Annual Report on the Estimated Population of Towns, Cities and Counties in the State of Nevada as of July 1, 2022, Including the Governor's Certified Estimates from July 1, 2002 to July 1, 2021*. Nevada State Demographer, Nevada Department of Taxation. Available at:

<https://tax.nv.gov/uploadedFiles/taxnvgov/Content/TaxLibrary/FINAL%20Pop%20Nevada%20Counties%20Incorp%20Cities%20Unincorp%20Towns%202022.pdf>, as accessed on July 23, 2023.

NNSA/NFO, see U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office.

U.S. Census Bureau, 2022. State & County QuickFacts. U.S. Department of Commerce. Available at:

<https://www.census.gov/quickfacts/fact/table/cedarcitycityutah,stgeorgecityutah,US/PST045222#PST045222>, as accessed on May 18, 2023.

U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office, 2015. *United States Nuclear Tests, July 1945 through September 1992*. DOE/NV--209, Rev. 16, Las Vegas, NV. Available at:

https://nnss.gov/wp-content/uploads/2023/08/DOE_NV-209_Rev16.pdf.

Chapter 2: Compliance Summary

Laura O'Neill

Desert Research Institute

Troy S. Belka, Savitra M. Candley, Jill S. Dale, Desiree M. Demers, Delane P. Fitzpatrick-Maul, Andrea L. Gile, Louis B. Gregory, Derek B. Hall, Erika Lomeli-Uribe, Kevin E. Olsen, Jeanette A. Perry, Phyllis M. Radack, Nikolas J. Taranik, Brian G. Verheyen and Ronald W. Warren

Mission Support and Test Services, LLC

Dona F. Murphy

Navarro Research and Engineering, Inc.

Environmental regulations pertinent to operations at the Nevada National Security Site (NNSS), the North Las Vegas Facility (NLVF), and the Remote Sensing Laboratory–Nellis (RSL–Nellis) include federal, state, and local environmental regulations; site-specific permits; and binding interagency agreements. The environmental regulations dictate how the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) conducts operations to ensure the protection of the environment and the public. In 2022, NNSA/NFO operated in compliance with the requirements defined in this framework. Instances of noncompliance are reported to regulatory agencies and corrected; they are also reported in this chapter.

As in previous years, radiological air emissions from current and past NNSA/NFO operations were well below the U.S. Environmental Protection Agency (EPA) **dose**¹ limit set for the public, and the DOE dose limits set for the public and for plants and animals on or adjacent to the NNSS. Emissions of non-radiological air pollutants from permitted equipment/facilities at the NNSS and RSL–Nellis were within permit limits.

No man-made **radionuclides** were detected in any of the three state-permitted **public water systems** (PWSs) on the NNSS. Water samples from the NNSS PWSs met National Primary Drinking Water Standards (health standards) and Nevada Secondary Drinking Water Standards (related to taste, odor, and visual aspects).

Required groundwater monitoring at wells near the **Area 5 Radioactive Waste Management Complex (RWMC)** continued to demonstrate that groundwater quality is not affected by disposal of low-level radioactive waste (LLW), mixed low-level radioactive waste (MLLW), and classified waste that contains hazardous and/or radioactive constituents. All wastewater discharges at the NNSS, NLVF, and RSL–Nellis met site-specific state permit requirements, including those of a National Pollutant Discharge Elimination System (NPDES) permit issued for groundwater pumping activities at the NLVF.

In compliance with the June 2021 Settlement Agreement² that resolved regulatory actions resulting from the July 2019 waste issue, DOE fulfilled all the Calendar Year (CY) 2022 commitments, which contribute to enhancing the rigor of waste management activities for the protection of the DOE workforce, the public, and the environment.

Twenty-three hazardous substance spills occurred in 2022: 21 at the NNSS, 2 at the NLVF, and 0 at RSL–Nellis. One spill was reportable (Table 2-7), and the other spills were small-volume releases either to containment areas or to other surfaces. All spills were cleaned up.

¹ The definition of word(s) in ***bold italics*** may be found by referencing the Glossary, Appendix B.

² The Settlement Agreement and Administrative Order can be found at <https://ndep.nv.gov/uploads/land-doe-aip-docs/NDEPDOEJune22SASignedF.pdf>

2.1 Compliance with Requirements

The federal, state, and local environmental statutes and regulations under which NNSA/NFO operates are summarized in Table 2-1, along with a discussion of NNSA/NFO's compliance status with each. In addition, the EPA offers the Enforcement and Compliance History Online (ECHO) website to search for facilities and assess their compliance with environmental regulations and to investigate pollution sources, examine and create enforcement-related maps, or explore the state's performance (<https://echo.epa.gov/>).

The NNSA/NFO ECHO facilities are:

ECHO Facility Name	Facility Registry Service ID	Program Area
Nevada National Security Site	110070604714	Resource Conservation and Recovery Act
North Las Vegas Facility	110021279007	Resource Conservation and Recovery Act
Nevada Test Site	110001136716	Clean Air Act, Resource Conservation and Recovery Act

Abbreviations for Regulators

Federal

ACHP	Advisory Council on Historic Preservation
CEQ	Council on Environmental Quality
DOE	U.S. Department of Energy
DOI	U.S. Department of Interior
EPA	U.S. Environmental Protection Agency
FWS	U.S. Fish and Wildlife Service

State/County

CCDAQ	Clark County Division of Air Quality
NDEP	Nevada Division of Environmental Protection
NDA	Nevada Department of Agriculture
NDOF	Nevada Department of Forestry
NDOW	Nevada Department of Wildlife
NSHPO	Nevada State Historic Preservation Office

Table 2-1. Federal, state, and local environmental laws and regulations applicable to NNSA/NFO

Description of Law/Regulation ^{(a)(b)}	2022 Compliance Status
General Environmental Protection, Management, and Sustainability	
National Environmental Policy Act (NEPA), 42 USC 4321 et seq. (1969)	
• CEQ: 40 CFR 1500-1508 • DOE: 10 CFR 1021, DOE P 451.1	
NEPA requires federal agencies to consider environmental and related social and economic effects and reasonable alternatives before making a decision to implement a major federal action. Title 10 Code of Federal Regulations (CFR) Part 1021, “National Environmental Policy Act Implementing Procedures,” establishes procedures that the DOE must use to comply with NEPA. DOE Policy DOE P 451.1, “National Environmental Policy Act Compliance Program,” establishes DOE internal requirements and responsibilities for implementing NEPA.	The NNSA/NFO NEPA Compliance Officer reviews Environmental Evaluation Checklists, which are required for all proposed projects/activities on the NNSS and determines if the activity’s environmental impacts require additional NEPA analysis and documentation. In 2022, 52 proposed projects/activities required analysis and documentation under NEPA compliance procedures, and 52 were exempt from any further NEPA review (Section 2.3).
Natural Resources Conservation Programs and Projects	
• Executive Order (E.O.) 14008 Tackling the Climate Crisis at Home and Abroad	
Issued by the White House in January 2021, E.O. 14008 sets a goal of conserving 30 percent of land and water by 2030, among other goals. The CEQ named this initiative the America the Beautiful Initiative and asked federal agencies, including DOE, to support it by preparing Conservation Action Plans (CAPs) detailing programs and projects across several discrete areas of early focus. DOE developed and submitted the first DOE CAP in December 2021 and plans to update it annually.	NNSA/NFO and the DOE Environmental Management (EM) Nevada Program participated in numerous working groups and committees, and contributed to efforts with developing and establishing the DOE CAP. In particular, NNSA/NFO and the DOE EM Nevada Program identified: <ul style="list-style-type: none"> The DOE EM Nevada Program continues to implement the knowledge and experience gained throughout the Tribal Revegetation Project to vegetate the covers of waste disposal cells at the Area 5 RWMC. The Project

Table 2-1. Federal, state, and local environmental laws and regulations applicable to NNSA/NFO

Description of Law/Regulation ^{(a)(b)}	2022 Compliance Status
<p>The areas of early focus included the following:</p> <ul style="list-style-type: none"> • Create More Parks and Safe Outdoor Opportunities in Nature-Deprived Communities • Support Tribally Led Conservation and Restoration Priorities • Expand Collaborative Conservation of Fish and Wildlife Habitats and Corridors • Increase Access for Outdoor Recreation • Incentivize and Reward the Voluntary Conservation Efforts of Fishers, Ranchers, Farmers, and Forest Owners • Create Jobs by Investing in Restoration and Resilience • Other Activities Supportive of the America the Beautiful Initiative 	<p>successfully implemented revegetation using native plant germination on test plots by combining Tribal Ecological Knowledge with Western scientific ecological methods that involved preparing and planting seeded plots, some of which also included outplants atop a waste cell cover.</p> <ul style="list-style-type: none"> • NNSA/NFO maintains a comprehensive Ecological Monitoring and Compliance (EMAC) Program consisting broadly of biological surveys of sites and sensitive and protected species and potential habitat disturbance. The program is the basis for the NNSS's development of conservation recommendations for the threatened desert tortoise. EMAC supports a habitat restoration program designed to revegetate disturbed areas and create resilient native vegetation communities. The NNSS also conducts ecosystem monitoring for native and invasive vegetation, water sources, and sensitive and protected plants and animals. Ecological monitoring informs the NNSS's Adaptive Management Plan for Sensitive Plant Species. The program documents the status and trend of existing biological resources and provides information that can be used to predict and evaluate potential impacts of proposed projects on these resources. • NNSA/NFO and the DOE EM Nevada Program participate in numerous collaborative activities with other federal and state agencies including, but not limited to, the FWS, Bureau of Land Management, U.S. Forest Service, U.S. Geological Survey, U.S. Air Force, NDOW, Nevada Department of Transportation, and others. • The NNSS is included as one of the seven DOE National Environmental Research Parks and has identified more than 864,000 acres available for various ecological research objectives related to the development of energy sources, the study of environmental impacts of energy development, and for informing the public of environmental and land-use options.
<p>• E.O. 14008, Tackling the Climate Crisis at Home and Abroad, Part II, Taking a Government-Wide Approach to the Climate Crisis</p> <p>E.O. 14008 also requires that each federal agency develop a Climate Adaptation and Resilience Plan detailing programs and projects across five priority adaptation actions. The five priority actions include the following:</p> <ol style="list-style-type: none"> 1. Assess Vulnerabilities and Implement Resilience Solutions at DOE 2. Enhance Climate Mitigation Efforts at DOE Sites 3. Institutionalize Climate Adaptation and Resilience Across DOE Policies, Directives, and Processes 4. Provide Climate Adaptation Tools, Technical Support, and Climate Science Information on Adaptation and Mitigation 5. Advance Deployment of Emerging Climate Technologies 	<p>NNSA/NFO participated in various working groups and began implementing and executing some of the five priority adaptation actions. In particular, NNSA/NFO and the site's Sustainability Division actions included:</p> <ul style="list-style-type: none"> • NNSA/NFO continued work on the DOE Technical Resilience Navigator (TRN) Cohort, utilized the TRN tool to complete Vulnerability Assessments, and submitted the Vulnerability Assessment and Resilience Plan. The use of this tool addresses priority adaptation actions number 1 and 4. • NNSA/NFO continued solar project planning across the site and reengaged the National Renewable Energy Laboratory for project planning activities for a large solar array project at a size of 13.6 megawatts, and also began project activities associated with the ordering of new solar

Table 2-1. Federal, state, and local environmental laws and regulations applicable to NNSA/NFO

Description of Law/Regulation ^{(a)(b)}	2022 Compliance Status
<p>Departmental Sustainability (DOE O 436.1)</p> <p>The NNSA Management and Operating contractor, Mission Support and Test Services, LLC (MSTS), is responsible for environmental compliance. Requirements are documented in the MSTS Prime Contract, which includes Department of Energy Acquisition Regulation Clause 970.5204-2 Laws, Regulations, and DOE Directives requiring compliance with all applicable laws and regulations. DOE Order DOE O 436.1, “Departmental Sustainability,” includes DOE Sustainability goals.</p>	<p>electric vehicle charging stations for the NNSA. These actions address priority adaptation action number 2.</p>
<p>Clean Air Act, 42 USC 7401 et seq. (1970)</p> <p>• EPA: 40 CFR 50, 60, 61, 63, 80, 82, and 98 • NDEP: NAC 445B</p> <p>The Clean Air Act and Nevada’s Air Control laws regulate air pollutant release through permits and air quality limits. Radionuclide emissions are regulated via National Emission Standards for Hazardous Air Pollutants (NESHAP) authorizations. Emissions of <i>criteria pollutants</i> are regulated via National Ambient Air Quality Standards authorizations. Criteria and <i>designated pollutants</i> emitted from various industrial categories of facilities are regulated via New Source Performance Standards authorizations. The Clean Air Act also establishes production limits and a schedule for the phase-out of <i>ozone depleting substances</i>.</p> <p>Nevada Administrative Code (NAC) Chapter 445B, “Air Controls,” enforces Clean Air Act regulations and requires fugitive dust control and open burn authorizations.</p>	<p>Air Quality</p> <p>No major source of air pollutants occurs at the NNSA. Federal and state air quality regulations are met through a State of Nevada Class II Air Quality Operating Permit and various project-specific state-issued permits (Table 2-2). NESHAP compliance activities include radionuclide air monitoring, reporting asbestos abatement, monitoring and reporting emissions from generators and boilers, and management of gasoline/diesel storage tanks. National Ambient Air Quality Standards emission limits (except ozone and lead) are based on published values for similar industries and operational data specific to the NNSA. Some screens, conveyor belts, bulk fuel storage tanks, and generators are subject to New Source Performance Standards.</p> <p>At NLVF and RSL-Nellis, air quality regulations are met through Clark County Minor Source permits.</p> <p>NNSA/NFO pays annual state fees based on all sources’ “<i>potential to emit</i>,” surface area disturbance acreage, and number of emission units. Nevada’s Bureau of Air Pollution Control inspects permitted NNSA facilities and Clark County inspects NLVF and RSL-Nellis permitted equipment. All approvals, notifications, requests for additional information, and reports required under the Clean Air Act are submitted to NDEP, Clark County, and/or EPA Region 9. In 2022, all applicable requirements for monitoring, operating, and reporting for the NNSA Class II Air Quality Operating Permit were met.</p> <p>In 2022, monitored radioactive air emissions were below NESHAP limits (Section 4.1). All non-radiological air emission limits, monitoring, record keeping, training, and reporting requirements of state and county air permits were met at the NNSA (Section 4.2), NLVF and RSL-Nellis (Appendix A).</p>

Table 2-1. Federal, state, and local environmental laws and regulations applicable to NNSA/NFO

Description of Law/Regulation ^{(a)(b)}	2022 Compliance Status
Water Quality	
Clean Water Act, 33 USC 1251 et seq. (1972)	
<p>• EPA: 40 CFR 109-140, 230, 231, 401, and 403 • NDEP: NAC 444, 445A, and 534</p> <p>The Clean Water Act and Nevada's Water Pollution Control laws seek to improve surface water quality by establishing standards and a system of permits. They prohibit the discharge of contaminants from <i>point sources</i> to waters of the United States without an NPDES permit.</p> <p>NAC 444, "Sanitation (Sewage Disposal)," and NAC 445A, "Water Controls (Water Pollution Control)," regulate the collection, treatment, and disposal of wastewater and sewage. NAC 534, "Underground Water and Wells," regulates the drilling, construction, and licensing of new wells and the reworking of existing wells to prevent the waste and contamination of groundwater.</p> <p>NLVF and RSL-Nellis implement a Spill Prevention, Control, and Countermeasure Plan required by the EPA to ensure that petroleum and non-petroleum oil products do not pollute waters of the United States via discharge into the Las Vegas Wash. In addition to federal and state laws, NLVF and RSL-Nellis are regulated by the City of North Las Vegas and the Clark County Water Reclamation District (CCWRD), respectively.</p>	<p>NNSA/NFO does not hold an NPDES permit for NNSS operations because there are no discharges to waters of the United States on or off the NNSS from NNSA/NFO activities. Wastewater discharges are managed on the NNSS in accordance with NDEP-issued permits that include the E Tunnel Wastewater Disposal System, active and inactive sewage lagoons, septic tanks, septic tank pumpers, and a septic tank pumping contractor's license (Section 5.2).</p> <p>NNSA/NFO reports unplanned releases of hazardous substances to NDEP as required under NAC 445A. No such releases occurred in 2022 (Section 2.5).</p> <p>NNSA/NFO complies with NAC 534 for Underground Test Area (UGTA) activities. UGTA wells are maintained in compliance with the Clean Water Act and are regulated by the state through the UGTA Fluid Management Plan, an agreement between NNSA/NFO and NDEP. In 2022, UGTA well drilling fluids were monitored and managed in accordance with the plan (Section 5.1.3.8.3).</p> <p>The NLVF operates under a Class II Authorization to Discharge Permit issued by the City of North Las Vegas for sewer discharges, an NPDES DeMinimis permit for surface water discharge, and a No Exposure Waiver for exclusion from NPDES storm water permitting. Storm water is not contaminated by exposure to industrial activities or materials (Section A.1.2).</p> <p>CCWRD determined that the annual submission of a Zero Discharge Form for RSL-Nellis is sufficient to verify compliance with the Clean Water Act (Section A.2.2). In 2022, all water chemistry parameters and contaminants that required monitoring in wastewater discharges and sewage lagoons were within permit limits, and all required inspections of wastewater systems were conducted.</p>
Safe Drinking Water Act, 42 USC 300f et seq. (1974)	
<p>• EPA: 40 CFR 141-149 • NDEP: NAC 445A</p> <p>The Safe Drinking Water Act protects the quality of drinking water in the United States and authorizes the EPA to establish safe standards of purity. It requires all owners or operators of PWSs to comply with National Primary Drinking Water Standards (health standards). State governments are authorized to set Secondary Standards related to taste, odor, and visual aspects.</p> <p>NAC 445A requires that PWSs meet both primary and secondary water quality standards. The Safe Drinking Water Act standards for radionuclides currently apply only to PWSs designated as <i>community water systems</i>.</p> <p>Although not required under the act, all potable water supply wells on the NNSS are monitored for radionuclides in accordance with DOE O 458.1, "Radiation Protection of the Public and the Environment."</p>	<p>The NNSS supplies drinking water from onsite wells that comply with all applicable federal and state water quality standards. Three PWSs on the NNSS are permitted by the state as <i>non-community water systems</i>. Each source is sampled according to a monitoring cycle that identifies specific contaminants and sampling frequency, ranging from monthly, quarterly, or once every 1, 3, 6, or 9 years. NDEP also permits two potable water-hauling trucks on the NNSS. The trucks are monitored monthly for coliform bacteria and results are submitted to NDEP throughout the year as they are acquired.</p> <p>While some monitoring for per- and polyfluoroalkyl substances in the NNSS PWS was performed in 2020 (none were detected), no such monitoring was performed in 2022. In 2022, no man-made radionuclides from NNSA/NFO activities were detected in NNSS drinking water wells, the</p>

Table 2-1. Federal, state, and local environmental laws and regulations applicable to NNSA/NFO

Description of Law/Regulation ^{(a)(b)}	2022 Compliance Status
	PWSSs met all applicable primary and secondary drinking water standards, and potable water hauling trucks tested negative for coliform bacteria (Sections 5.1.3.7 and 5.2.1). Water used at the NLVF is supplied by the City of North Las Vegas, and water used at RSL-Nellis is supplied by the Southern Nevada Water Authority. The water at both locations meets or exceeds federal drinking water standards; no monitoring or reporting of water quality is required.
Energy Independence and Security Act of 2007 (Pub. L. 110-140)	
Section 438 of the act addresses storm water management and requires any development/redevelopment project involving a federal facility with a footprint over 5,000 gross square feet to maintain or restore, to the maximum extent feasible, the predevelopment hydrology of the property with regard to the rate, temperature, volume, and duration of storm water flow.	Storm water management strategies are addressed and incorporated into site design and building construction to meet requirements from the act for new developments.
<p>Radiation Protection</p> <p>Radiation Protection of the Public and the Environment (DOE O 458.1 Change 4)</p> <p>• DOE-STD-1196-2011, DOE-STD-1196-2021, and DOE-STD-1153-2019</p> <p>DOE O 458.1 Change 4 requires DOE/NNSA sites to implement an environmental radiological protection program. It establishes requirements for (1) measuring radioactivity in the environment, (2) documenting the ALARA [as low as reasonably achievable] process for operations, (3) using mathematical models for estimating doses, (4) releasing property having residual radioactive material, and (5) maintaining records to demonstrate compliance. The EPA's Clean Air Package 1988 (CAP88) (version 4.1.1) and the Derived Concentration Standards, as defined in DOE Standard DOE-STD-1196-2011 and/or DOE-STD-1196-2021, "Derived Concentration Technical Standard," are used in the design and conduct of environmental radiological protection programs.</p> <p>The order sets a radiation dose limit of 100 millirem/year (mrem/yr) (1 millisievert/year) above background levels to individuals in the general public from all pathways of exposure combined. It also calls for the protection of aquatic and terrestrial plants and animals from radiological impacts through the use of DOE-STD-1153-2002, "A Graded Approach for Evaluating Radiation Doses to Aquatic and Terrestrial Biota," which was updated under DOE-STD-1153-2019 of the same title.</p>	<p>Radiation Protection</p> <p>Radiation Protection of the Public and the Environment (DOE O 458.1 Change 4)</p> <p>• DOE-STD-1196-2011, DOE-STD-1196-2021, and DOE-STD-1153-2019</p> <p>DOE O 458.1 Change 4 requires DOE/NNSA sites to implement an environmental radiological protection program. It establishes requirements for (1) measuring radioactivity in the environment, (2) documenting the ALARA [as low as reasonably achievable] process for operations, (3) using mathematical models for estimating doses, (4) releasing property having residual radioactive material, and (5) maintaining records to demonstrate compliance. The EPA's Clean Air Package 1988 (CAP88) (version 4.1.1) and the Derived Concentration Standards, as defined in DOE Standard DOE-STD-1196-2011 and/or DOE-STD-1196-2021, "Derived Concentration Technical Standard," are used in the design and conduct of environmental radiological protection programs.</p> <p>The order sets a radiation dose limit of 100 millirem/year (mrem/yr) (1 millisievert/year) above background levels to individuals in the general public from all pathways of exposure combined. It also calls for the protection of aquatic and terrestrial plants and animals from radiological impacts through the use of DOE-STD-1153-2002, "A Graded Approach for Evaluating Radiation Doses to Aquatic and Terrestrial Biota," which was updated under DOE-STD-1153-2019 of the same title.</p> <p>NNSA/NFO has in place a radiological monitoring program and protection procedures that satisfy the requirements for a site-specific radiological protection program. Routine radiological monitoring of air, water, and biota, as well as project-specific monitoring and NESHAP evaluations of projects, are conducted. Monitoring and evaluation results document NNSA/NFO's compliance with the radiological dose limits set by DOE for the public and biota from several exposure pathways that include predominately inhalation and the ingestion of hunted NNSS game animals. Results of radiological monitoring and protective measures are described in several chapters of this report.</p> <p>As in previous years, the calculated dose to the public and to the biota from NNSA/NFO operations in 2022 was below all DOE dose limits set by DOE O 458.1 and DOE-STD-1153-2019, respectively. CAP88 and Residual Radioactive Biota models and Derived Concentration Standards defined in DOE-STD-1196-2011 and/or DOE-STD-1196-2021 were used to estimate dose to humans and biota based on radiological monitoring results (Sections 4.1 and 5.1, Chapters 6, 8, 9).</p>
<p>Waste Management and Environmental Corrective Actions</p> <p>Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), 42 USC 9601 et seq (1980)</p> <p>• EPA: 40 CFR 300, 302, and 355</p> <p>CERCLA provides a framework for the cleanup of waste sites containing hazardous substances and an emergency response program in the event of a release of a hazardous substance to the environment (Emergency Planning and Community Right-to-Know Act).</p>	<p>Waste Management and Environmental Corrective Actions</p> <p>Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), 42 USC 9601 et seq (1980)</p> <p>• EPA: 40 CFR 300, 302, and 355</p> <p>CERCLA provides a framework for the cleanup of waste sites containing hazardous substances and an emergency response program in the event of a release of a hazardous substance to the environment (Emergency Planning and Community Right-to-Know Act).</p> <p>No hazardous waste cleanup operations on the NNSS are regulated under CERCLA. Instead, they are regulated under the Resource Conservation Recovery Act (listed below). NNSA/NFO complies with the Emergency Planning and Community Right-to-Know Act (listed below) under CERCLA.</p>

Table 2-1. Federal, state, and local environmental laws and regulations applicable to NNSA/NFO

Description of Law/Regulation ^{(a)(b)}	2022 Compliance Status
<u>Resource Conservation Recovery Act (RCRA), 42 USC 6901 et seq. (1976)</u> • EPA: 40 CFR 259-282 • NDEP: NAC 444.570-7499, 444.850-8746, and 459.9921-999 RCRA and Nevada laws NAC 444.850-8746, “Disposal of Hazardous Waste”; NAC 444.570-7499, “Solid Waste Disposal”; and NAC 459.9921-999, “Storage Tanks,” regulate the generation, storage, transportation, treatment, and disposal of <i>solid</i> and <i>hazardous waste (HW)</i> to prevent contaminants from leaching into the environment from landfills, underground storage tanks, surface impoundments, and HW disposal facilities. RCRA also requires HW generators to have a program to reduce the amount and toxicity of HW, and federal facilities to have a procurement process to ensure that they purchase product types that satisfy the EPA-designated minimum percentages of recycled material.	NNSA/NFO generates HW (which includes MLLW) and operates permitted HW management facilities under RCRA Part B Permit NEV HW0101 issued by NDEP (Chapter 10). In accordance with the permit, NNSA/NFO also monitors groundwater from four wells (Section 10.3.1) and conducts post-closure monitoring for HW sites that were closed under RCRA prior to enactment of the Federal Facility Agreement and Consent Order (Chapter 11). NNSA/NFO prepares a Hazardous Waste Report of all HW and MLLW volumes generated and disposed annually at the NNSS.
<u>Federal Facility Agreement and Consent Order (FFACO), as amended</u> • FFACO • NDEP The FFACO was agreed to by the State of Nevada (through NDEP), DOE, and the U.S. Department of Defense in 1996. Pursuant to Section 120(a) (4) of CERCLA and to Sections 6001 and 3004(u) of RCRA, the FFACO addresses the environmental corrective actions of historically contaminated sites in Nevada for which DOE is responsible for cleanup and closure.	The DOE EM Nevada Program oversees compliance with the FFACO that identifies more than 3,000 corrective action sites (CASs) in Nevada that require cleanup and closure, and where the EM Nevada Program and the DOE Office of Legacy Management perform any required post-closure activities. As described in the FFACO, DOE follows a formal process to achieve closure with NDEP approval. Throughout the process, NDEP and the Nevada Site Specific Advisory Board (NSSAB) are kept informed of the progress made. The NSSAB is a formal DOE-chartered group composed of volunteer members who represent Nevada stakeholders and provide informed recommendations to the DOE EM Nevada Program. All FFACO milestones were met in 2022 for the characterization, remediation, closure, and post-closure monitoring and inspection of historically contaminated CASs. Through December 31, 2022, 2,953 of the 3,044 CASs have been closed (Chapter 11).
<u>Radioactive Waste Management (DOE O 435.1 Change 2)</u> • DOE M 435.1-1 Change 3 DOE O 435.1 Change 2, “Radioactive Waste Management,” requires all DOE radioactive waste be managed in a manner that is protective of the worker, public health and safety, and the environment. It directs how radioactive waste management operations are conducted on the NNSS. The order requires that radioactive waste be managed in accordance with the requirements in DOE Manual DOE M 435.1-1 Change 3, “Radioactive Waste Management Manual,” which specifies that operations at radioactive waste management facilities must not contribute a dose to the general public in excess of 10 mrem/yr through the air pathway and 25 mrem/yr through all exposure pathways (excluding dose from radon and its progeny in air). Additionally, the release of radon must be less than an average flux of 20 picocuries per square meter per second	The Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) operate as Category II Non-Reactor Nuclear Facilities. Both are designed and operated to manage and safely dispose LLW, while the Area 5 RWMS is also actively used for the disposal of MLLW, classified non-radioactive waste, and classified non-radioactive hazardous waste. The waste is generated on the NNSS and by approved generators at other DOE and selected U.S. Department of Defense sites. Additionally, the Area 5 RWMS is used to manage and safely store <i>transuranic</i> and mixed transuranic wastes generated on the NNSS for eventual shipment to the Waste Isolation Pilot Plant in New Mexico. In accordance with this order, <i>Performance Assessments</i> and <i>Composite Analyses</i> for both RWMSs are reviewed and submitted annually to the DOE EM Nevada Program. The

Table 2-1. Federal, state, and local environmental laws and regulations applicable to NNSA/NFO

Description of Law/Regulation ^{(a)(b)}	2022 Compliance Status
<p>(pCi/m²/s) (0.74 Becquerels [Bq]/m²/s) at the surface of the disposal facility. Alternatively, a limit of 0.5 pCi/liter (0.0185 Bq/liter) of air may be applied at the boundary of the facility.</p>	<p>Disposal Authorization Statements for both RWMSs also require annual reviews to track secondary or minor unresolved issues to resolution. Waste Acceptance Criteria for wastes disposed at the RWMSs are maintained and the volumes are tracked. Although not required by this DOE order, vadose zone monitoring at both RWMSs is performed to validate the performance assessment criteria of the RWMSs.</p> <p>In 2022, all key documents and analyses were current and all required management practices were followed (Chapter 10). The estimated radiological dose to the public in 2022 from the Area 3 and 5 RWMSs from all pathways was within regulatory limits (Section 10.4).</p>
Hazardous Materials Control and Management	
<u>Emergency Planning and Community Right-to-Know Act (EPCRA), 42 USC 11001 et seq. (1986)</u>	
<ul style="list-style-type: none"> • EPA: 40 CFR 300, 302, 355, 370, and 372 <p>EPCRA requires that federal, state, and local emergency planning authorities be provided information regarding the presence and storage of hazardous substances and their planned and unplanned environmental releases, including provisions and plans for responding to emergency situations involving hazardous materials. EPCRA identifies the threshold quantities of chemicals released or stored, which trigger the reporting of this information to these authorities.</p>	<p>Some NNSA/NFO facilities store or use chemicals in quantities exceeding threshold quantities under EPCRA. NNSA/NFO complies with all reporting and emergency planning requirements under EPCRA and with the requirements of several state-issued hazardous materials permits: a site-wide NNSS permit, one for NLVF, and one for RSL-Nellis.</p> <p>In 2022, NNSA/NFO adhered to all EPCRA reporting requirements (Section 2.4.4.1). The Nevada Combined Agency Report, containing updated chemical inventories for NNSA/NFO facilities, was submitted to the State Fire Marshal, and a Toxic Release Inventory Report was submitted to EPA identifying the types and quantities of toxic chemicals that were either released by NNSA/NFO operations into the environment or released for disposal or recycling. Lead, mercury, and polychlorinated biphenyls (PCBs) were the toxic chemicals released from the NNSS in 2022 that exceeded a reportable threshold (Section 2.4.4.1). No releases at NLVF or RSL-Nellis exceeded reportable thresholds in 2022 (Sections A.1.5 and A.2.4).</p>
<u>State of Nevada Chemical Catastrophe Prevention Act (NRS 459.380–3874)</u>	
<ul style="list-style-type: none"> • NDEP: NAC 459.952-95528 <p>This act directs NDEP to develop and implement a program called the Chemical Accident Prevention Program (CAPP). It requires registration of facilities with highly hazardous substances above listed thresholds.</p>	<p>The NNSS is a registered CAPP facility due to the oleum release process located at the Nonproliferation Test and Evaluation Complex (NPTEC) in Area 5. NDEP conducted an inspection and identified one chemical-related issue. NNSA/NFO response was submitted in October 2022 noting that the chemical did not fall under the CAPP permit, but that action was taken to clarify the related tank diagram. For the reporting period June 1, 2022, through May 31, 2023, NNSA/NFO submitted the annual CAPP Registration report in June of 2023 (Section 2.4.4.2).</p>

Table 2-1. Federal, state, and local environmental laws and regulations applicable to NNSA/NFO

Description of Law/Regulation ^{(a)(b)}	2022 Compliance Status
Toxic Substances Control Act (TSCA), 15 USC 2601 et seq. (1976) • EPA: CFR 700-763 • NDEP: NAC 444.842-8746 TSCA regulates the manufacture, use, and distribution of chemical substances that enter the consumer market. Because the NNSS does not produce chemicals, compliance is primarily directed toward the management of PCBs.	At the NNSS, remediation activities and maintenance of fluorescent light ballasts can result in the onsite disposal of PCB-contaminated waste or the offsite disposal of larger quantities of PCB waste. The NNSS also receives radioactive waste for onsite disposal that may contain regulated levels of PCBs. The onsite disposal of all PCB wastes and record-keeping requirements for PCB activities are regulated by the EPA. In 2022, PCBs were managed in compliance with TSCA and state regulations (Section 2.4.2).
Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA), 7 USC 136 et seq. (1996) • EPA: CFR 162-171 • NDA: NAC 555 FIFRA governs the manufacture, use, storage, and disposal of pesticides (including herbicides and other biocides) as well as the pesticide containers and residuals. It specifies procedures and requirements for pesticide registration, labeling, classification, and certification of applicators. NAC 555, “Nevada Control of Insects, Pests, and Noxious Weeds,” regulates the certification of registered pesticide and herbicide applicators in Nevada. NDA has the primary role to enforce FIFRA in Nevada.	The use of pesticides classified as “restricted-use pesticides” is regulated. Beginning in 2015, only non-restricted-use pesticides are applied under the direction of a State of Nevada-certified applicator. In 2022, NNSA/NFO complied with all FIFRA requirements (Section 2.4.3).
Cultural Resources	
National Historic Preservation Act (NHPA), as amended, 54 USC 300101 et seq. (1966) • ACHP: 36 CFR 800 The NHPA, as amended, identifies, evaluates, and protects historic properties eligible for listing in the National Register of Historic Places (NRHP). Such properties can be archeological sites, historic buildings and structures, historic districts, and objects, which includes artifacts, records, and material remains related to such a property. The act requires federal agencies to develop and implement a Cultural Resources Management Plan, to identify and evaluate the eligibility of historic properties for long-term management as well as for future project-specific planning, and to maintain archaeological collections and their associated records at professional standards.	NNSA/NFO has established a Cultural Resources Management Program at the NNSS, which is implemented by the Desert Research Institute. The Cultural Resources Management Program ensures compliance with all regulations pertaining to cultural resources on the NNSS. Before initiating land-disturbing activities or building and structure modifications, qualified archaeologists and architectural historians conduct surveys and historical evaluations to identify important cultural resources, evaluate significance, and assess potential impacts. Consultation with 16 American Indian Tribal Nations and affiliated groups with cultural and historical ties to the NNSS is conducted to identify resources that may be of spiritual or cultural significance. NNSA/NFO’s long-term management strategy includes (1) identifying, evaluating, and nominating historic properties for listing in the NRHP, (2) monitoring NRHP-listed and eligible properties to determine if environmental factors or NNSA/NFO activities are affecting the integrity or other aspects of eligibility, and (3) taking corrective actions or identifying alternative approaches as necessary. Determinations of NRHP eligibility, effect, and mitigation are conducted in consultation with NPS, the 16 Tribes, local governments and stakeholders, and, in some cases, the federal ACHP. To date, more than 1,400 NRHP-eligible sites/historic properties on the NNSS have been identified. In 2022, field inventories, architectural surveys, and historical evaluations for nine NNSS projects were

Table 2-1. Federal, state, and local environmental laws and regulations applicable to NNSA/NFO

Description of Law/Regulation ^{(a)(b)}	2022 Compliance Status
<u>Antiquities Act (16 U.S.C. 431-433), Archaeological Resources Protection Act, as amended (16 USC 470aa-mm)</u> • DOI: 18 CFR 1312, 36 CFR 79, and 43 CFR 7	conducted; 87 cultural resources were identified, 33 of which were determined eligible for the NRHP (Chapter 12).
<u>Antiquities Act (16 U.S.C. 431-433), Archaeological Resources Protection Act, as amended (16 USC 470aa-mm)</u> • DOI: 18 CFR 1312, 36 CFR 79, and 43 CFR 7 <p>The Antiquities Act and the Archaeological Resources Protection Act, as amended, protect archaeological resources that remain in or on federal and American Indian lands and ensure that their confidentiality and characteristics are maintained. Archaeological resources are any material remains of human life or activities that are at least 100 years of age, and which are of archaeological interest. These laws require the issuance of a federal archaeology permit to qualified archaeologists to inventory, excavate, or remove archaeological resources and require notification to American Indian tribes of these activities.</p>	<p>Archaeologists working at the NNSS meet federal standards for professional qualifications. Procedures are in place to maintain the confidentiality of site locations and other information. A preservation in place policy is utilized, when possible, for identified cultural properties. In the event of vandalism, NNSA/ NFO investigates any impacts that may occur.</p> <p>The Cultural Resources Management Program curates archaeological collections from the NNSS in accordance with 36 CFR 79, “Curation of Federally Owned and Administered Archeological Collections,” and conducts American Indian consultations related to places and items of importance to the 16 Tribes culturally affiliated with NNSS lands (Chapter 12).</p>
<u>American Indian Religious Freedom Act, as amended (42 USC 1996)</u> • DOI: 43 CFR 10 <p>This law established the government policy to protect and preserve for American Indians their inherent right of freedom to believe, express, and exercise their traditional religions, including but not limited to access to sites, use and possession of sacred objects, and the freedom to worship through ceremonial and traditional rites.</p>	<p>Locations exist on the NNSS that have religious significance to Western Shoshone, Southern Paiute, and Owens Valley Paiute and Shoshone. Access is provided by NNSA/NFO in accordance with safety and health standards (Section 12.6).</p>
<u>Native American Graves Protection and Repatriation Act, as amended (25 USC 3001–3013)</u> • DOI: 43 CFR 10 <p>The Native American Graves Protection and Repatriation Act, as amended, requires federal agencies to return certain types of Native American cultural items to lineal descendants and culturally affiliated American Indian tribes. The specified cultural items include human remains, funerary objects, sacred objects, and objects of cultural patrimony.</p>	<p>The NNSS artifact collection is subject to the act. The required inventory and summary of NNSS cultural materials accessioned into the NNSS Archaeological Collection was completed in the 1990s. The inventory list and summary were distributed to the Tribes affiliated with the NNSS and adjacent lands. Consultations followed, and all artifacts the Tribes requested were repatriated to them. This repatriation process was completed in 2002; it will be repeated for any new additions to the collection (Sections 12.5 and 12.6).</p>
Biological Resources	
<u>Endangered Species Act, 16 USC 1531-1544 (1973)</u> • FWS: 50 CFR 17 <p>The Endangered Species Act provides a program for the conservation of threatened and endangered plants and animals and the habitats in which they are found. The law also prohibits any action that causes “<i>take</i>” of any listed species of endangered fish or wildlife.</p>	<p>The threatened desert tortoise is the only resident species protected under the Endangered Species Act that may be impacted by NNSS operations. NNSS activities within tortoise habitat are conducted so as to comply with the terms and conditions of a Programmatic Biological Opinion (Opinion) (File No. 2022-0019655-S7-001) issued by FWS to NNSA/NFO to cover the term of August 27, 2019, through 2029. The allowable cumulative take under the Opinion is 31 large tortoises killed/injured and 440 large tortoises moved. Maximum habitat disturbance is set at 3,000 acres. In 2022, take totals were 2 large tortoises killed, 71 large tortoises moved out of harm’s way on roads, and 28.2 acres disturbed. All requirements of the Opinion were met (Chapter 13).</p>

Table 2-1. Federal, state, and local environmental laws and regulations applicable to NNSA/NFO

Description of Law/Regulation ^{(a)(b)}	2022 Compliance Status
Nevada Department of Wildlife	
<ul style="list-style-type: none"> • NDOW: NAC 503 •NDOF: NAC 527 <p>NDOW regulations identify protected and unprotected Nevada animal species and prohibit the harm of protected species without special permit. NAC 503, “Hunting, Fishing and Trapping; Miscellaneous Protective Measures,” also identifies game animals, which are managed by the state. NDOF regulations prohibit removal or destruction of state-protected plants without special permit.</p>	<p>State-managed and state-protected species are monitored under the EMAC Program. Some species are collected for ecological studies under an NDOW scientific collection permit. In 2022, monitoring of raptors and mule deer was conducted. In response to the COVID-19 pandemic, NDOW distributed a letter dated April 7, 2020, to scientific collection permittees that directed the suspension of all capturing and handling of bats, “out of an abundance of caution for the health and well-being of both bats and people.” NNSS biologists continued collaboration with other agency biologists with mule deer, pronghorn antelope, western burrowing owl, and mountain lion studies on and near the NNSS (Section 13.3).</p>
Migratory Bird Treaty Act (MBTA), 16 USC 703-712 (1918)	
<ul style="list-style-type: none"> • FWS: 50 CFR 21 •NDOW: NRS 503.050 <p>The MBTA implements various treaties and conventions between the United States and Canada, Japan, Mexico, and the former Soviet Union for the protection of migratory birds. It prohibits the harming of any migratory bird, their nest, or eggs without authorization by the Secretary of the Interior. Memorandum M-37050, issued December 22, 2017, by the U.S. Department of the Interior, Office of the Solicitor, ruled that the incidental harm to migratory birds from otherwise legal activities does not violate this act.</p> <p>A Final Rule (Rule) published in the Federal Register on October 4, 2021 (volume 86, number 189), revoked the Rule published on January 7, 2021 (volume 86, number 4), which had the effect of returning to the practice of prohibiting incidental take, which had been in effect prior to 2017.</p> <p>Nevada wildlife laws protect birds included under the MBTA from purposeful harm.</p>	<p>Although not required under the MBTA, the EMAC Program reviews construction and demolition projects and conducts field surveys to reduce any incidental harm to migratory birds and their nests/eggs. Biologists periodically collect game birds for radiological analysis under an FWS-issued migratory bird scientific collection permit.</p> <p>Migratory birds found injured or dead are reported to regulators. Biologists transfer injured raptors, upon direction from the FWS, to a licensed rehabilitator, and mitigation measures to reduce accidental mortalities are pursued. In 2022, 39 migratory birds were found dead; 16 birds were found inside a water tank fill pipe, which had been brought on to the NNSS, and it is expected they were killed before it was moved. Nine of the deaths were due to human activities (e.g., electrocution on power lines, collision with vehicles) (Section 13.3).</p>
Responsibilities of Federal Agencies to Protect Migratory Birds	
<ul style="list-style-type: none"> • E.O. 13186 <p>This E.O. directs federal agencies to take certain actions to further implement the MBTA if agencies have, or are likely to have, a measurable negative effect on migratory bird populations. It also directs federal agencies to conduct actions, as practicable, to benefit the health of migratory bird populations.</p>	<p>Biologists maintained an Avian Protection Plan that was developed in cooperation with the FWS. The focus of the plan is to reduce operational and avian risks from avian interactions with electric transmission and distribution lines on the NNSS as well as other non-electric sources of mortality (e.g., vehicle collisions, habitat disturbance) (Section 13.3).</p>
The Bald and Golden Eagle Protection Act, 16 USC 668a-d, 703-712	
<ul style="list-style-type: none"> • FWS: 50 CFR 22 •NDOW: NRS 503.050 <p>The Bald and Golden Eagle Protection Act prohibits any form of possession or taking of both bald and golden eagles. Eagles are also protected under Nevada wildlife laws.</p>	<p>Compliance with the act is documented under the EMAC Program. Eagles that are occasionally electrocuted on NNSS power lines are transferred to the FWS under an FWS special purpose possession permit. No eagle mortalities were observed in 2022 (Section 13.3).</p>

Table 2-1. Federal, state, and local environmental laws and regulations applicable to NNSA/NFO

Description of Law/Regulation ^{(a)(b)}	2022 Compliance Status
Wild Free-Roaming Horses and Burros Act (Pub. L. 92-195)	
This act makes it unlawful to harm wild horses and burros. It directs the U.S. Bureau of Land Management (BLM) and the U.S. Forest Service to protect, manage, and control wild horses and burros on lands administered by BLM and the U.S. Forest Service, in a manner that is designed to achieve and maintain a thriving natural ecological balance.	<p>The NNSS is not within a BLM herd management area. A Five-Party Cooperative Agreement exists, however, between NNSA/NFO, the Nevada Test and Training Range, FWS, BLM, and the State of Nevada, which calls for cooperation in conducting resource inventories, developing resource management plans, and maintaining favorable habitat for wild horses and burros on federally withdrawn lands.</p> <p>NNSA/NFO consults with BLM on NNSS horse management, and NNSS biologists conduct opportunistic wild horse and burro surveys for indications of abundance, recruitment (i.e., survival to reproductive age), and distribution (Section 13.3).</p>
Invasive Species	
<ul style="list-style-type: none"> • E.O. 13112 	
This E.O. directs federal agencies to act to prevent the introduction of, or to monitor and control, invasive (non-native) species; to provide for conservation of native species; and to exercise care in taking actions that could promote the introduction or spread of invasive species.	<p>Land-disturbing activities on the NNSS have resulted in the spread of numerous invasive plant species. Habitat reclamation and other controls are evaluated and conducted, when feasible, to control such species and meet the purposes of this E.O. (Section 13.4).</p>
Environmental Activities and Occurrence Reporting	
Environment, Safety and Health Reporting	
<ul style="list-style-type: none"> • DOE O 231.1B 	<p>DOE O 231.1B, “Environment, Safety and Health Reporting,” requires the timely collection, reporting, analysis, and dissemination of information on environment, safety, and health as required by law or regulations or as needed to ensure that DOE is kept fully informed on a timely basis about events that could adversely affect the health and safety of the public, workers, the environment, the intended purpose of DOE facilities, or the credibility of DOE. It requires DOE and NNSA sites to prepare an annual calendar year report, referred to as the Annual Site Environmental Report.</p> <p>NNSA/NFO prepares an Annual Site Environmental Report called the NNSS Environmental Report (NNSER, i.e., this report) and provides data for DOE to prepare annual NEPA summaries and other Safety, Fire Protection, and Occupational Safety and Health Administration (OSHA) reports. The NNSER demonstrates compliance with DOE internal standards and requirements, such as the radiation protection requirements of DOE O 458.1, and documents DOE’s environmental performance to members of the public living near the NNSS and to other stakeholders.</p>
Occurrence Reporting and Processing of Operations Information	
<ul style="list-style-type: none"> • DOE O 232.2A 	<p>DOE O 232.2A, “Occurrence Reporting and Processing of Operations Information,” requires that DOE and NNSA be informed about events that could adversely affect the health and safety of the public, workers, environment, DOE missions, or the credibility of DOE. It sets reporting criteria for unplanned environmental releases of pollutants, hazardous substances, petroleum products, sulfur hexafluoride, and per- and polyfluoroalkyl substances containing Aqueous Film Forming Foam at DOE/NNSA sites and facilities. It also requires sites/facilities to report to DOE/NNSA any written notification received from an outside agency that the site/facility is non-compliant with a schedule or requirement.</p> <p>NNSA/NFO contractors enter environmental occurrences, identified as reportable in accordance with this order, into DOE’s Occurrence Reporting and Processing System. Reported information includes reportable level of the identified event, notifications, and if applicable, causal factors, and corrective actions based on the report level of the event. Reportable environmental events are discussed in Section 2.5.</p>
Quality Assurance	
Quality Assurance	
<ul style="list-style-type: none"> • 10 CFR 830 Subpart A and DOE O 414.1D Change 1 	<p>The objective of DOE O 414.1D, “Quality Assurance,” is to establish an effective management system using the performance requirements of the order, coupled with NNSA/NFO and EM Nevada Program have quality assurance plans in place to implement quality management methodology in adherence to this DOE order. The quality</p>

Table 2-1. Federal, state, and local environmental laws and regulations applicable to NNSA/NFO

Description of Law/Regulation ^{(a)(b)}	2022 Compliance Status
<p>consensus standards, where appropriate, to ensure (1) products and services meet or exceed customers' expectations; (2) there is management support for planning, organization, resources, direction, and control; (3) performance and quality improvements occur by means of thorough, rigorous assessments and corrective actions; and (4) environmental, safety, and health risks and impacts associated with work processes are minimized, while maximizing reliability and performance of work products.</p> <p>Using a graded approach, DOE/NNSA sites must develop a quality assurance plan to establish additional process-specific quality requirements and implement the approved quality assurance plan.</p>	<p>assurance plans ensure that all environmental monitoring data meet quality assurance and quality control requirements. Samples are collected and analyzed using standard operating procedures to ensure representative samples are collected and reliable, and defensible data are generated. Quality control in sub-contracted analytical laboratories is maintained through instrument calibration, efficiency and background checks, and testing for precision and accuracy. Data are verified and validated according to project-specific quality objectives before they are used to support decision-making (Chapters 14 and 15).</p>
<p>(a) For federal laws, a reference to its implementing regulation, which was written by the identified federal regulatory agency, is given. The regulation is identified by its CFR title and part (e.g., 10 CFR 1021 means, "Title 10 Part 1021"). CFR references can be accessed at http://www.ecfr.gov/cgi-bin/ECFR?page=browse. If no implementing regulations have been written, then N/A (not applicable) is entered.</p> <p>For Nevada State laws, either the NAC or the Nevada Revised Statute (NRS) reference is given. NACs can be accessed at http://search.leg.state.nv.us/NAC/NAC.html. NRSs can be accessed at http://search.leg.state.nv.us/NRS/NRS.html.</p> <p>(b) For federal laws, the name of the law and its reference in the <i>United States Code (USC)</i> by title and section is given (e.g., 42 USC 4321 et seq. means, "Title 42 Section 4321 and the following"). USC references can be accessed at http://uscode.house.gov/. If there is not a USC reference, the public law (Pub. L.) number is given.</p>	

2.2 Environmental Permits

Table 2-2 presents the complete list of all federal and state permits active during 2022 for NNSS, NLVF, and RSL-Nellis operations. The table includes those pertaining to air quality monitoring, operation of drinking water and sewage systems, hazardous materials and HW management and disposal, and endangered species protection. Reports associated with permits are submitted to the appropriate designated state or federal office. Copies of reports may be obtained upon request.

Table 2-2. Environmental permits for NNSA/NFO operations at NNSS, NLVF, and RSL-Nellis

Permit Number	Permit Name or Description	Expiration Date	Report
Air Quality			
AP9711-2557.02	NNSS Class II Air Quality Operating Permit	June 25, 2024	Annual
2023-0034	NNSS Open Burn Authorization, Fire Extinguisher Training (Various Locations)	December 31, 2023	Annual
2023-0035	NNSS Open Burn Authorization, Simulated Vehicle Burns, A-23, Facility #23-T00200 (NNSS Fire & Rescue)	December 31, 2023	Annual
Source 657	Clark County Minor Source Permit	May 20, 2025	Annual
Source 348	Clark County Minor Source Permit	April 13, 2027	Annual
Drinking Water			
NY-0360-NTNC	Areas 6 and 23	September 30,	None
NY-4098-NC	Area 25	September 30,	None
NY-4099-NC	Area 12	September 30,	None

Table 2-2. Environmental permits for NNSA/NFO operations at NNSA, NLVF, and RSL-Nellis

Permit Number	Permit Name or Description	Expiration Date	Report
NY-0835-NP	NNSA Water Hauler #84846	September 30,	None
NY-0836-NP	NNSA Water Hauler #84847	September 30,	None
Septic Systems/Pumpers			
NNSA			
GNEVOSDS09 (general permit)		None	None
L-0271	Septic System, Area 1 (U1a Complex) ^{(a)(b)}		
L-0272	Septic System, Area 5 (Area 5 RWMC) ^(a) Septic System, Area 5 (NPTEC) ^(a) Septic System, Area 6 (RNCTEC) ^(a) Septic System, Area 6, DAF – standby		
L-0273	Septic System, Area 6 (LANL) ^(a) Septic System Area 6 (Building 06-950) ^(a) Septic System, Area 6 (Yucca Lake Airfield) ^(a)		
L-0274	Septic System, Area 12 (Area 12) ^(a) Septic System, Area 12, Building 12-910 Septic System, Area 18 (Pahute Airstrip) ^(a)		
L-0275	Septic System, Area 22 (Building 22-1) ^(a) Septic System, Area 22 (Desert Rock Airstrip) ^(a) Septic System, Area 23 (Gate 100) ^(a) Septic System, Area 23 (Building 23-1103) ^(a)		
L-0276	Septic System, Area 25 (Central Support Area) ^(a) Septic System, Area 25 (Reactor Control Point) ^(a) Septic System, Area 27 (Baker Compound) ^(a) Septic System, Area 27 (Able Compound) ^(a)		
NY-17-06839	Septic Tank Pumping Contractor (1 business/4 units)	July 31, 2021/2022	None
Wastewater Discharge			
NNSA			
GNEV93001	Groundwater Discharge Permit	January 3, 2027	Quarterly
NEV96021	Water Pollution Control for E Tunnel Wastewater Disposal System and Monitoring Well ER-12-1	October 1, 2018 (permit remains in effect until NDEP issues renewal)	Annual
NLVF			
Class II ID# 036555-02	Authorization to Discharge	None	None
NV201000 Project ID DDP-42723	NPDES DeMinimis	None	Annual
Site Number: ISW-40564	Stormwater No Exposure Waiver	July 31, 2024	None
RSL-Nellis			
Not applicable	Annual certification statement of zero discharge	None	Annual
Hazardous Materials			
NNSA			
95604	NNSA Hazardous Materials Permit	February 28, 2023	Annual
NLVF			
95585	NLVF Hazardous Materials Permit	February 28, 2023	Annual
RSL-Nellis			
95579	RSL-Nellis Hazardous Materials Permit	February 28, 2023	Annual

Table 2-2. Environmental permits for NNSA/NFO operations at NNSS, NLVF, and RSL-Nellis

Permit Number	Permit Name or Description	Expiration Date	Report
Hazardous Waste			
NNSS			
NEV HW0101	RCRA Permit for NNSS Hazardous Waste Management (Area 5 Mixed Waste Disposal Unit, Area 5 Mixed Waste Storage Unit, Hazardous Waste Storage Unit, and Explosive Ordnance Disposal Unit)	December 10, 2020 (permit remains in effect until NDEP issues renewal)	Biennial and annual
Waste Management			
NNSS			
SW 532	Area 5 Solid Waste Disposal Site	Post-closure ^(c)	Annual
SW 13 097 02	Area 6 Solid Waste Disposal Site	Post-closure	Annual
SW 13 097 03	Area 9 Solid Waste Disposal Site	Post-closure	Annual
SW 13 097 04	Area 23 Solid Waste Disposal Site	Post-closure	Biannual
Not Applicable	Approval to Establish a Solid Waste Incinerator – Area 25	None	None
NLVF			
PR0029951	Restricted Waste Management Permit	December 31, 2022	None
RSL-Nellis			
PR0064276	RSL-Nellis Waste Management Permit-Underground	December 31, 2022	None
Endangered Species/Wildlife			
File Nos. 8ENVS00-2019-F-0073	FWS Desert Tortoise Incidental Take Authorization (Biological Opinion for Programmatic NNSS Activities)	2029	Annual
MB008695-2	FWS Migratory Bird Salvage and Collection	March 31, 2020 (permit remains in effect until FWS issues renewal)	Annual
MB60930C-1	FWS Migratory Bird Special Purpose Utility Permit – Electric	March 14, 2021 (permit remains in effect until FWS issues renewal)	Annual
TE83414C-0 261454	FWS Native Threatened Species Recovery – Juvenile NDOW Scientific Collection of Wildlife	August 22, 2023 December 31, 2023	Annual Annual

(a) Name in parenthesis is the name of the septic system shown on Figure 5-7 of Chapter 5.

(b) Includes both the U1a and U1h septic systems.

(c) Permit expires 30 years after closure of the landfill.

2.3 National Environmental Policy Act Assessments

NEPA regulations require federal agencies to evaluate the environmental effects of proposed major federal activities. The prescribed evaluation process ensures that the proper level of environmental review is performed before an irreversible commitment of resources is made. NNSA/NFO performs environmental reviews with the aid of a NEPA Environmental Evaluation Checklist (Checklist), which is required for all proposed projects or activities on the NNSS. The Checklist is reviewed by the NNSA/NFO NEPA Compliance Officer to determine if the activity's environmental impacts have been addressed in a previous NEPA assessment. If a proposed project has not been covered under any previous NEPA analysis and it does not qualify for a "Categorical Exclusion" (per 10 CFR 1021), then a new NEPA analysis is initiated. The analysis may result in preparation of a new Environmental Assessment, Environmental Impact Statement, or supplemental document to the existing programmatic Final Site-Wide Environmental Impact Statement for the Continued Operation of the Department of Energy/National Nuclear Security Administration Nevada National Security Site and Off-site Locations in the State of Nevada (NNSS SWEIS) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office 2013). The NNSA/NFO NEPA Compliance Officer must approve each Checklist before a project proceeds. Table 2-3 presents a summary of how NNSA/NFO complied with NEPA in 2022.

Table 2-3. NNSN NEPA compliance activities

Results of NEPA Checklist Reviews/NEPA Compliance Activities
52 NEPA Checklists were reviewed (11 revisions, 41 new checklists). Of the 52 checklists:
<ul style="list-style-type: none"> - 13 projects were exempted from further NEPA analysis because they were of Categorical Exclusion^(a) status. - 39 projects were exempted from further NEPA analysis due to their inclusion under previous analysis in the NNSN SWEIS.
(a) “Categorical Exclusion” means a category of actions that do not individually or cumulatively have a significant effect on the human environment, and which have been found to have no such effect in procedures adopted by a federal agency in implementation of these regulations (Sec. 1507.3), and for which, therefore, neither an environmental assessment nor an environmental impact statement is required.

2.4 Hazardous Materials Control and Management

2.4.1 Hazardous Substance Inventory

Hazardous materials used or stored on the NNSN are controlled and managed through the use of a chemical inventory module of an enterprise asset management software system called Maximo. Hazardous substances used or stored by contractors and subcontractors of NNSA/NFO are entered into this database. Contractors and subcontractors are required to comply with the operational and reporting requirements of the Toxic Substances Control Act; the Federal Insecticide, Fungicide, and Rodenticide Act; the Emergency Planning and Community Right-to-Know Act; and the Nevada Chemical Catastrophe Prevention Act. Chemicals to be purchased are subject to a requisition compliance review process. Hazardous substance purchases are reviewed to ensure that toxic chemicals and products are not purchased when less hazardous substitutes are commercially available. Requirements and responsibilities for the use and management of hazardous/toxic chemicals are provided in company documents.

The inventory management system allows the tracking of chemicals from the moment they arrive at the NNSN, NLVF, or RSL-Nellis to when they are disposed, and provides an accurate account of chemicals on site. It provides chemical owners with additional information, including purchase dates, Safety Data Sheets, storage locations, and expiration dates. The system allows for chemical inventories to be utilized for emergency planning and planning for operational needs. The tracking system reduces the quantities of chemicals purchased and stored through the chemical custodians' awareness of the chemicals currently in inventory. Chemical compatibility and proper storage are routinely evaluated, which has improved NNSA/NFO's safety posture in regard to the control and management of chemicals. In 2022, the NNSN managed 6,242 chemicals in 67,500 containers.

2.4.2 Polychlorinated Biphenyls

The storage, handling, and use of PCBs are regulated under the TSCA. There are no known pieces of electrical equipment (transformers, capacitors, or regulators) containing PCBs at the NNSN, with the exception of PCB-containing light ballasts. The TSCA program consists mainly of properly characterizing, storing, and disposing of various PCB wastes generated on site through remediation activities at CASs (Chapter 11) and maintenance of fluorescent lights. PCB bulk product waste (i.e., contaminated building materials) from onsite CASs are disposed of in the Area 5 RWMS, and light ballasts removed during normal maintenance are disposed of through an offsite approved PCB disposal facility or in the Area 9 Solid Waste Disposal Site. Soil and other remediation wastes contaminated with PCBs and large volumes of light ballasts are sent off site to an approved PCB disposal facility. Radioactive waste received from offsite waste generator facilities that contains regulated quantities of PCBs is disposed of at the Area 5 RWMS (Chapter 10) in accordance with the solid waste disposal permit SW 532, the RCRA hazardous waste management permit NEV HW0101, and/or TSCA regulations. Offsite waste generators bringing manifested PCB wastes to the NNSN for disposal are issued a Certificate of Disposal for PCBs. Onsite PCB records are maintained as required by the EPA, and PCB management activities are documented herein annually. If any generated PCB wastes that are above threshold levels are released, they are also reported in the Toxic Release Inventory (TRI) Report (Section 2.4.4.1, Table 2-6).

In 2022, NNSS demolition activities generated 9 drums, 1,290 kilograms (kg) (2,842 pounds [lb]), of PCB leaking light ballasts, and 15 drums, 2,366 kg (5,215 lb) of non-leaking light ballasts. Fifteen drums, 2,274 kg (5,013 lb) of the light ballast inventory were shipped off site from the Area 5 Hazardous Waste Storage Unit for treatment and/or disposal. These weights include the PCBs, the associated materials that are contaminated and/or cannot be separated from the PCBs, and the weight of the waste container.

In 2021, the EPA conducted an inspection of PCB activities at the NNSS. The final report has not been received.

2.4.3 Pesticides

The storage and application of pesticides (e.g., insecticides, rodenticides, and herbicides) are regulated under FIFRA and NAC 555.400-510. The NDA has oversight functions to ensure compliance with FIFRA and the NAC. Internal oversight activities include screening of all purchase requisitions, review of operating procedures for handling, storing, and applying pesticide products, and monthly inspections of stored pesticides. On the NNSS, pesticides are applied under the requirements of a Nevada Pest Control Government License. This service is provided by the MSTS Waste & Water Department. The application of restricted-use pesticides was discontinued on the NNSS in 2014. Only pesticides categorized as non-restricted-use (i.e., available for purchase and application by the general public) are used. In FY 2022, non-restricted use pesticides required the same level of record keeping as restricted use pesticides. Monthly inspections conducted in 2022 found that records were properly maintained, no restricted-use pesticides were used, and all pesticides were stored in accordance with their labeling. The State of Nevada did not conduct an inspection of restricted-use pesticide storage or use in 2022.

2.4.4 Release and Inventory Reporting

2.4.4.1 The Emergency Planning and Community Right-to-Know Act

EPCRA requires that facilities report inventories and releases of certain chemicals that exceed specific thresholds. Table 2-4 identifies the reporting requirements under EPCRA Sections 302, 304, 311, 312, and 313. Table 2-5 summarizes the applicability of the regulations to NNSS/NFO operations in 2022.

Table 2-4. Emergency Planning and Community Right-to-Know Act reporting criteria

Section	CFR Part	Reporting Criteria	Agencies Receiving Report
302	40 CFR 355: Emergency Planning Notifications	The presence of an extremely hazardous substance (EHS) in a quantity equal to or greater than the threshold planning quantity at any one time.	SERC ^(a) , LEPC ^(b)
304	40 CFR 355: Emergency Release Notifications	Change occurring at a facility that is relevant to emergency planning. Release of an EHS or a CERCLA hazardous substance ^(c) in a quantity equal to or greater than the reportable quantity.	LEPC SERC, LEPC
311	40 CFR 370: Safety Data Sheet Reporting	The presence at any one time at a facility of an OSHA hazardous chemical ^(d) in a quantity equal to or greater than 4,500 kg (10,000 lb) or an EHS in a quantity equal to or greater than the threshold planning quantity or 230 kg (500 lb), whichever is less.	SERC, LEPC, Local Fire Departments
312	40 CFR 370: Tier Two Report	Same as Section 311 reporting criteria above.	State Fire Marshal, SERC, LEPC, Local Fire Departments
313	40 CFR 372: TRI Report	Manufacture, process, or otherwise use at a facility, any listed TRI chemical in excess of its threshold amount during the course of a calendar year. Thresholds are 11,300 kg (25,000 lb) for manufactured or processed and 4,500 kg (10,000 lb) for otherwise used, except for persistent, bio-accumulative, toxic chemicals, which have thresholds of 45 kg (100 lb) or less.	EPA, NDEP

(a) SERC = State Emergency Response Commission

(b) LEPC = Local Emergency Planning Commission

(c) Hazardous substance as defined in CERCLA, 40 CFR 302.4

(d) Hazardous chemical as defined in the Occupational Safety and Health Act, 29 CFR 1910.1200

Table 2-5. Compliance with EPCRA reporting requirements

Section	Description of Reporting	2022 Status ^(a)
302	Emergency Planning Notification	Yes
304	EHS Release Notification	Not required
311–312	Safety Data Sheet/Chemical Inventory	Yes
313	TRI Reporting	Yes

(a) “Yes” indicates that NNSA/NFO reported under the requirements of the EPCRA section specified (Table 2-4).

NNSA/NFO produces the Nevada Combined Agency (NCA) Report, which satisfies EPCRA Section 302, 311, and 312 reporting requirements. The State Fire Marshal issues permits to store hazardous chemicals at the NNSS, NLVF, and RSL-Nellis based on the NCA Report. Due to reduction in chemicals stored at NPTEC, the facility no longer requires a separate permit, and will now be included in the NNSS report. The 2022 chemical inventory for NNSS facilities was updated and submitted to the State of Nevada in the NCA Report on February 25, 2022. No EPCRA Section 304 reporting was required in 2022 because no accidental or unplanned release of an EHS occurred at the NNSS, NLVF, or RSL-Nellis.

NNSA/NFO produces an annual TRI Report to comply with EPCRA Section 313 reporting. It identifies the reportable quantities of TRI chemicals released to the environment through air emissions, landfill disposal, and recycling. TRI chemicals that are recovered during NNSS remediation activities or become “excess” to operational needs (e.g., lead bricks, lead shielding) are sent off site for recycling, reuse, or proper disposal. Mixed wastes generated at other DOE facilities that contain TRI chemicals and are sent to the NNSS for disposal are included in the TRI Report. In 2022 at the NNSS, lead, mercury, and PCBs exceeded reportable toxic chemical thresholds as a result of NNSS activities (Table 2-6). No accidental or intentional releases (e.g., proper waste disposal) of toxic chemicals at NLVF or RSL-Nellis exceeded the TRI reportable thresholds in 2022. No EPCRA inspections were performed by outside regulators in 2022.

Table 2-6. Summary of reported releases at the NNSS subject to EPCRA Section 313

2022 Reported Release	Quantity ^(a) (lb)		
	Lead	Mercury	PCBs
Air Emissions ^(b)	2,491.13	0.10	-----
Onsite Disposal ^(c)	39,496.95	100.44	16.67
Onsite Release ^(d)	-----	-----	-----
Offsite Recycling ^(e)	57,764.00	-----	-----
Offsite Disposal ^(f)	11.05	-----	0.20
Totals	99,763.13	100.54	16.87
EPCRA Reporting Thresholds	100	10	10

- (a) The weight of the chemical released, not the weight of the waste material containing the toxic chemical. Weights in the TRI Report vary from two to four decimal places.
- (b) Fugitive airborne releases of lead include weapons firing at the Mercury Firing Range, chemical releases and detonations, and from stack air emissions. Mercury airborne releases were from stack emissions.
- (c) MLLW or HW containing lead, mercury or PCBs was received and disposed in Cells 18 and 25 at the Area 5 RWMS (Section 10.1.1).
- (d) Lead from spent ammunition left on the ground during firing at the Mercury Firing Range. When the firing range is closed, ammunition will be collected for recycling.
- (e) Lead was recycled from three waste streams: lead-acid batteries, miscellaneous lead items, and offsite waste treatment.
- (f) Lead was from lead-contaminated debris and other routinely generated waste. PCBs were from offsite generated waste.

2.4.4.2 Nevada Chemical Catastrophe Prevention Act

This act directs NDEP to develop and implement a program called the Chemical Accident Prevention Program (i.e., CAPP). It requires registration of facilities storing or processing highly hazardous substances above listed thresholds. NPTEC in Area 5 of the NNSS is registered as a CAPP facility because of its use of the highly hazardous chemical oleum. NDEP conducted an onsite inspection of NPTEC during 2022 and identified one Corrective Action Required (CAR) finding regarding the Piping and Instrument Diagrams (P&ID) of the chlorosulfonic acid (CSA) tank. The P&ID drawing was reviewed, and an annotation was added on the CSA tank pressure gauges, noting that CSA is not a CAPP-regulated chemical and therefore does not fall under the CAPP permit. The CAR response was sent to NDEP in October 2022.

NNSA/NFO is required to submit an annual CAPP registration report to the State of Nevada for the NPTEC oleum release process. The CAPP reporting period is June 1, 2022, through May 31, 2023. The CAPP registration report for NPTEC operations for the reporting period was signed on June 13, 2023, and submitted to NDEP. The report states that 5,000 lbs of oleum was present during the reporting period.

2.4.4.3 Continuous Releases

Section 103(a) of CERCLA and EPA's implementing regulation (40 CFR 302.8) require that federal authorities be notified immediately whenever a reportable quantity of a hazardous substance is released into the environment, so that government response officials can evaluate the need for a response action. CERCLA Section 103(f)(2) provides relief from these immediate reporting requirements for releases of hazardous substances from facilities or vessels that are *continuous* and are predictable and regular in the amount and rate of emission. No continuous releases of hazardous substances are known to occur at the NNSS, NLVF, or RSL-Nellis.

2.4.5 Underground Storage Tank Management

RCRA regulates the storage of regulated substances to prevent contaminants from leaching into the environment from underground storage tanks (USTs). NAC 459.9921–459.999, “Storage Tanks,” enforces the federal regulations under RCRA pertaining to the maintenance and operation of USTs and the regulated substances contained in them, in order to prevent environmental contamination. On October 13, 2018, new UST regulations went into effect that changed the regulatory status of one UST at the Device Assembly Facility and one UST at RSL-Nellis. These tanks were deferred prior to the new UST regulations and are now fully regulated. NNSA/NFO operates one fully regulated UST and three excluded USTs at the Device Assembly Facility; one fully regulated UST at the Area 6 helicopter pad, which was in temporary closure until it was permanently closed (removed and disposed) in September 2020 and NDEP acknowledged the closure as satisfactory in a letter in January 2021; and one fully regulated UST and three temporarily closed USTs at RSL-Nellis.

NDEP has oversight authority of the NNSS USTs, and the Southern Nevada Health District (SNHD) has oversight authority of USTs in Clark County (see Section A.2.3 of Appendix A regarding UST management at RSL-Nellis). NDEP inspected the regulated UST at the NNSS in December 2022, and two issues were identified and reportable (Table 2-7). No NNSS USTs were upgraded in 2022.

The SNHD has oversight authority of the RSL-Nellis USTs in Clark County. The UST program at RSL-Nellis consists of three excluded tanks and one regulated diesel tank and three temporarily closed USTs (one unleaded gasoline, one diesel fuel, and one used oil). The fully regulated UST is operated under the RSL-Nellis UST Permit PR0064276. The fully regulated active and temporarily closed tanks are inspected annually by the SNHD; in October 2022, the SNHD inspected the fully regulated UST at RSL-Nellis and no deficiencies were noted.

2.5 Environmental Occurrences

On October 1, 2017, new Occurrence Reporting Criteria were established and implemented based on DOE O 232.2A. DOE defines an occurrence as “a documented evaluation of a reportable occurrence that is prepared in sufficient detail to enable the reader to assess its significance, consequences, or implications and to evaluate the actions being proposed or employed to correct the condition or to avoid recurrence.”

In 2022, two environmental occurrences were reportable under the requirements of the order. Twenty-three hazardous substance spills occurred in 2022: 21 at the NNSS, 2 at the NLVF, and 0 at RSL-Nellis. One Alcohol-Resistant Aqueous Film-Forming Foam (AR-AFFF) spill was reportable (Table 2-7), and the other spills were small-volume releases either to containment areas or to other surfaces. All spills were cleaned up.

Table 2-7. Environmental occurrence in 2022 reportable under DOE O 232.2A

Description of Occurrence	Reporting Criteria ^(a)	Corrective Actions Taken
Report Number/Date of Occurrence: NA--NVS0-MSTS-NNSS-2022-0005, May 11, 2022		
At 0934 hours on May 11, 2022, during the routine morning Fire Engine vehicle checks at NNSS Fire & Rescue Station #2, it was discovered that approximately one quart (0.25 gallons) of AR-AFFF leaked onto the asphalt. Upon discovery, the vehicle check was suspended, and the release was stopped. It was determined that a hose between the tank and the manifold had degraded and failed. Fire & Rescue personnel made notifications, then donned personal protective equipment and conducted a cleanup of the spilled material. Once completed, they emptied the AR-AFFF tank of any remaining AR-AFFF and placed it into Department of Transportation-approved drums for disposal. MSTS Environmental Compliance made notifications to NDEP. There were no damages or injuries as a result of this incident.	5A(2) - Any release (onsite or offsite) of a pollutant from a DOE facility that is above levels or limits specified by outside agencies in a permit, license, or equivalent authorization, when reporting is required in a format other than routine periodic reports. 5A(5) - Any release or spill (onsite or offsite) of per- and polyfluoroalkyl substances (PFAS)-containing AFFF NRS 459.684 any person, political subdivision, local government or state or local agency who discharges, uses or releases, or allows its employees or independent contractors to discharge, use or release, Class B firefighting foam that contains intentionally added perfluoroalkyl and polyfluoroalkyl substances must report the discharge, use or release to the Division not later than 24 hours after the discharge, use or release.	Fire & Rescue personnel made notifications, then donned personal protective equipment and conducted a cleanup of the spilled material. Once completed, they emptied the AR-AFFF tank of any remaining AR-AFFF and placed it into Department of Transportation-approved drums for disposal. MSTS Environmental Compliance notified NDEP, who determined that no further action was required. Waste from clean-up activities is being stored pending disposal orders by DOE.

Table 2-7. Environmental occurrence in 2022 reportable under DOE O 232.2A

Description of Occurrence	Reporting Criteria ^(a)	Corrective Actions Taken
Report Number/Date of Occurrence: NA--NVS0-MSTS-NNSS-2022-0013, December 22, 2022		
<p>On December 15, 2022, at 1214 hours, NNSA/NFO received an electronic First Notice of Violation (NOV) from NDEP for a UST violation. The NOV requested action completion documentation no later than January 27, 2023. (Note: the formal NOV was received December 19, 2022.)</p> <p>BACKGROUND: December 14, 2022, NDEP conducted a UST inspection at the Device Assembly Facility. During the inspection, it was noted there were two CFR 40 violations.</p> <p>1) Part 280.20(c)(1)(ii) Inadequate, inoperable, or damaged overfill prevention equipment. The visual alarm (light bulb) for the High-Level Alarm overfill protection system is not functioning.</p> <p>2) Part, 280.44(a) Failure to conduct annual line leak detector test. There is no annual operational test of the automatic line leak detectors on file for this facility.</p>	<p>9(1)-Any written justification from an outside regulatory agency that a site/facility is considered to be in noncompliance with a schedule or requirement.</p>	<p>Work requests were entered, approved, and the work was completed, with the deficiencies recorded in the MSTS issue tracking system as closed, effective July 20, 2023.</p>

(a) Reporting requirements provided in DOE O 232.2A can be found at <https://www.directives.doe.gov/directives-documents/200-series/0232.2-BOrder-a-chg1-minchg>.

2.6 Environmental Reports Submitted to Regulators

Numerous reports were prepared to meet regulation requirements or to document compliance for NNSA/NFO and DOE EM Nevada Program activities. These reports and the federal or state regulators to whom they were submitted are listed in Table 2-8.

Table 2-8. List of environmental reports submitted to regulators for activities in 2022

Regulator(s)	Report
Air Quality	
EPA Region 9, NDEP	National Emission Standards for Hazardous Air Pollutants – Radionuclide Emissions, Calendar Year 2022 Annual Asbestos Abatement Notification Form, submitted to NDEP and to EPA Region 9
NDEP	2022 Emissions Inventory Report, Emissions Summary for NNSA Site (A0027)
	Annual Summary Reports for Big Explosives Experimental Facility (BEEF) and NPTEC
CCDAQ	Clark County Division of Air Quality Annual Emission Inventory Reporting Form for North Las Vegas Facility
	Clark County Division of Air Quality Annual Emission Inventory Reporting Form for Remote Sensing Laboratory
Water Quality	
NDEP	Calendar Year 2020 Underground Test Area Annual Sampling Report, Nevada National Security Site, Nevada, Rev. 1 (February 2022)
	Calendar Year 2021 Underground Test Area Annual Sampling Letter Report, Nevada National Security Site, Nevada, Rev. 1 (August 2022)
	Quarterly Monitoring Reports for Nevada National Security Site Sewage Lagoons
	Results of water quality analyses for PWSs, sent to the state throughout the year as they were obtained from the analytical laboratory
	Water Pollution Control Permit NEV 96021, Quarterly Monitoring Reports and Annual Summary Report for E Tunnel Wastewater Disposal System

Table 2-8. List of environmental reports submitted to regulators for activities in 2022

Regulator(s)	Report
Waste Management	
NDEP	Annual Soil Moisture Monitoring Reports for the Nevada National Security Site, Nevada, Area 6 Hydrocarbon and Area 9 U10c Landfills
	Area 6 Annual Solid Waste Disposal Site (SWDS) Report for the Nevada National Security Site – January 1, 2022 Through December 31, 2022
	Area 9 Annual Solid Waste Disposal Site (SWDS) Report for the Nevada National Security Site – January 1, 2022 Through December 31, 2022
	Area 23 Semi-Annual Solid Waste Disposal Site (SWDS) Report for the Nevada National Security Site – January 1, 2022 Through June 30, 2022
	Area 23 Semi-Annual Solid Waste Disposal Site (SWDS) Report for the Nevada National Security Site – July 1, 2022 Through December 31, 2022
	Fiscal Year 2021 Radioactive Waste Acceptance Program Annual Report, Rev. 0 (January 2022)
	List of Profiles Subject to Resampling (March 2022)
	Nevada National Security Site 2021 Biennial Hazardous Waste Report
	Nevada National Security Site 2022 Waste Management Monitoring Report, Area 3 and Area 5 Radioactive Waste Management Site
	Nevada National Security Site 2022 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site
	RCRA Permit for a Hazardous Waste Management Facility Permit Number NEV HW0101 – Annual Summary/Waste Minimization Report Calendar Year 2022
	Radioactive Waste Acceptance Program (RWAP) Facility Evaluation (FE) Assessments Comparison FY19 to FY22 and FY 2022 Real-Time Radiography (RTR) Sessions (September 2022)
	Radioactive Waste Acceptance Program Technical Basis Letter Report for Selection of the LLW Profiles Subject to Enhanced Verification during Year Two of the Study (July 2022)
	SW 532 Annual Solid Waste Disposal Site (SWDS) Report for the Nevada National Security Site – January 1, 2022 Through December 31, 2022
	Technical Basis Paper G NNSSWAC Comparison to WIPP WAC (March 2022)
	Technical Basis Paper H Review of Waste Characterization and Related Lessons Learned Items within DOE (March 2022)
Environmental Corrective Actions	
NDEP	Addendum to the Closure Report for Corrective Action Unit 577: Area 5 Chromium Containing Waste Disposal Cells, Nevada National Security Site, Nevada, Rev. 0 (September 2022)
	Corrective Action Unit 98: Frenchman Flat Five-Year Evaluation, Nevada National Security Site, Nevada, Rev. 1 (May 2022)
	CY2021 Post Closure Monitoring Letter Report for Corrective Action Unit (CAU) 98, Frenchman Flat; CAU 97, Yucca Flat/Climax Mine; and CAU 99, Rainier Mesa/Shoshone Mountain, Rev. 1 (May 2022)
	Federal Facility Agreement and Consent Order (FFACO), January 2022 Appendices Update
	Groundwater Flow and Contaminant Transport Model of Corrective Action Units 101 and 102: Central and Western Pahute Mesa, Nye County, Nevada, Rev. 1 (July 2022)
	Non-Resource Conservation and Recovery Act Corrective Action Unit (CAU) Post-Closure Inspection Report, Nevada National Security Site, Nevada For Calendar Year 2021, Rev. 0 (June 2022)
	Post-Closure Report for Closed Resource Conservation and Recovery Act (RCRA) Corrective Action Units, Nevada National Security Site, Nevada For Calendar Year (CY) 2021, Rev. 0 (May 2022)
	Report of the Peer Review Panel for the Pahute Mesa Groundwater Flow and Transport Model, Nevada National Security Site, Nevada, Draft Rev. 0 (September 2022)
	Underground Test Area Calendar Year 2020 Quality Assurance Report Nevada National Security Site, Nevada, Rev. 0 (February 2022)
	Underground Test Area Activity Quality Assurance Plan Nevada National Security Site, Nevada, Rev. 0 (May 2022)
Hazardous Materials Management	
EPA, NDEP	Toxic Release Inventory Report, Form Rs for CY 2022
NDEP	Chemical Accident Prevention Program 2023 Registration

Table 2-8. List of environmental reports submitted to regulators for activities in 2022

Regulator(s)	Report
State Fire Marshal, EPA	Nevada Combined Agency Hazmat Facility Report – Calendar Year (CY) 2022
NDEP	Post-Closure Report for Closed Resource Conservation and Recovery Act Corrective Action Units, Nevada National Security Site, Nevada for Calendar Year 2020, Rev. 1 (August 2021) and Rev. 2 (September 2021)
Cultural and Natural Resources	
FWS	Annual Report of Actions Taken under Authorization of the Biological Opinion for NNSS Activities (File No. 8ENVS00-2019-F-0073) – January 1, 2022, through December 31, 2022 Annual report for Migratory Bird Scientific Collecting Permit MB008695-2 Annual report for Migratory Bird Special Purpose Utility Permit – Electric MB60930C-1 Annual report for Native Threatened Species – Recovery Threatened Wildlife (Juvenile tortoise) permit TE83414C-0
NDOW	Annual report for Scientific Collection Permit 261454
NNSA/NFO	American Indian Consultation Program Annual Report Fiscal Year 2022. Desert Research Institute Cultural Resources Report LR080822-1. Desert Research Institute, Las Vegas. ^(a) American Indian Consultation Program FY 2022 Tribal Planning Committee Field Assessment at the Basket and Cane Site and the Ladder Site, Nevada National Security Site, Nye County, Nevada. Desert Research Institute American Indian Consultation Program Report LR051822-1. Desert Research Institute, Las Vegas. ^(a) American Indian Consultation Program FY 2022 Tribal Planning Committee Second Quarterly Meeting Report. Desert Research Institute American Indian Consultation Program Report LRO315221. Desert Research Institute, Las Vegas. ^(a) American Indian Consultation Program FY 2022 Tribal Planning Committee Third Quarterly Meeting Report. Desert Research Institute American Indian Consultation Program Report LR062122-1. Desert Research Institute, Las Vegas. ^(a) American Indian Consultation Program FY 2022 Tribal Planning Committee Fourth Quarterly Meeting Report. Desert Research Institute American Indian Consultation Program LR092022-1. Desert Research Institute, Las Vegas. ^(a) Avoidance and Protection Plan for Historic Properties along the 138-Kilovolt Transmission Line, Areas 5, 6, and 12, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Report LR051322-1. Desert Research Institute, Las Vegas Cultural Resource Management Program Curation Compliance Annual Report Fiscal Year 2022. Desert Research Institute Curation Report LR080122-1. Desert Research Institute, Las Vegas. Cultural Resources Management Program Geographic Information System Database Annual Report Fiscal Year 2022. Desert Research Institute GIS Database Report LR070122-1. Desert Research Institute, Las Vegas Fiscal Year 2022 Annual Historic Properties Monitoring Summary, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Report LR112321-1. Desert Research Institute, Las Vegas U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office American Indian Consultation Program Annual Tribal Update Meeting Summary. Prepared by the Desert Research Institute, Las Vegas. ^(a)
NSHPO	An Architectural Survey of the REECo Maintenance Compound, Area 6, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Report SR092921-1-MIT. DOE/NV/0003590-75. Desert Research Institute, Las Vegas Area 6 Control Point: An Architectural Survey of the Area 6 Control Point, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Report TR121. DOE/NV/0003590-72. Desert Research Institute, Las Vegas Big Hole Drilling Support for Nuclear Testing, 1985-1992: An Architectural Survey of the Area 1 Subdock, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Report TR120. DOE/NV/0003590-73. Desert Research Institute, Las Vegas Finding of Adverse Effect for the Removal of Buildings 12-7 and 12-30, Area 12, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Report LR111021-1-FOE. Desert Research Institute, Las Vegas Historic Context, Character-Defining Elements, and Photograph Record for a 26.45-Mile Segment of the 138-kilovolt Power Transmission System, Areas 3, 5, 6, and 23, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Report TR124. DOE/NV/0003590-77. Desert Research Institute, Las Vegas Identification, Evaluation, and Finding of Effect for a Drilling Activity at the ER-20-1 Well, Area 20, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Report LR112921-1. Desert Research Institute, Las Vegas Identification, Evaluation, and Finding of Effect for Drill Hole ER-20-13, Area 20, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Report SR020122-1. Desert Research Institute, Las Vegas Identification, Evaluation, and Finding of Effect for the Removal of Rolling Stock at the Engine Maintenance Assembly and Disassembly (E-MAD) Facility, Area 25, Nevada, National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Report SR112221-1. Desert Research Institute, Las Vegas

Table 2-8. List of environmental reports submitted to regulators for activities in 2022

Regulator(s)	Report
	Identification, Evaluation, and Finding of Effect for the Rock Valley Direct Comparison Project, Area 27, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Report SR011022-1. Desert Research Institute, Las Vegas
	Identification, Evaluation, and Finding of Effect for the SET Project, Area 26, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Report SR021422-1. Desert Research Institute, Las Vegas
	Submission of Documentation Related to the Demolition of Building 12-7, Area 12 Camp, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Mitigation Submission Letter Report LR101022-1-MIT. DOE/NV/89233122CNA000255-05-MIT. Desert Research Institute, Las Vegas
	Submission of Mitigation Documentation Related to the Demolition of Building 12-30, Area 12 Camp, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Mitigation Submission Letter Report LR101022-2-MIT. DOE/NV/89233122CNA000256-06-MIT. Desert Research Institute, Las Vegas
	Supplemental Identification, Evaluation, and Finding of Effect for a Modification to the Rock Valley Direct Comparison Project, Area 27, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Report LR011022-1. Desert Research Institute, Las Vegas
NSHPO MHD PA ^(b)	Annual Report on Progress in the Implementation of the Mercury Programmatic Agreement Covering FY 2022 Activities. Desert Research Institute Cultural Resources Report LR112222-1. Desert Research Institute, Las Vegas
	Evaluation of Building 23-109, the Mercury Fire Station/Maintenance /Housing Office, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Report SR022822-1. DOE/NV/0003590-74. Desert Research Institute, Las Vegas
	Evaluation of Building 23-113, Mercury, Area 23, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Report SR010322-1. DOE/NV/0003590-76. Desert Research Institute, Las Vegas
	Evaluation of Building 23-117, Administration Building, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Report SR10122-1. DOE/NV/89233122CNA000255-07. Desert Research Institute, Las Vegas
	Evaluation of Building 23-620, Los Alamos Scientific Laboratory J-3 Office, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Report SR052422-3. DOE/NV/89233122CNA000255-4. Desert Research Institute, Las Vegas
	Finding of Adverse Effect and Proposed Mitigation for the Demolition of Building 23-109, Mercury, Area 23, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Finding of Effect Report LR022822-1-FOE. DOE/NV/0003590-74-FOE. Desert Research Institute, Las Vegas
	Finding of Adverse Effect and Proposed Mitigation for the Demolition of Building 23-113, Mercury, Area 23, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Finding of Effect Report LR010322-1-FOE. DOE/NV/0003590-76-FOE
	Finding of Adverse Effect and Proposed Mitigation for the Demolition of Building 23-153, Mercury, Area 23, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Finding of Effect Report LR052422-2-FOE. Desert Research Institute, Las Vegas
	Finding of Adverse Effect and Proposed Mitigation for the Demolition of Building 23-W10, Mercury, Area 23, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Finding of Effect Report LR052422-1-FOE. DOE/NV/89233122CNA000255-02-FOE. Desert Research Institute, Las Vegas
	Mitigation for Demolition of Building 23-153, Mercury, Area 23, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Mitigation Submission Report LR0524-22-2-MIT. Desert Research Institute, Las Vegas
	Mitigation for Demolition of Building 23-W10, Mercury, Area 23, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Report LR052422-1-MIT. DOE/NV/89233122CNA000255-02-MIT. Desert Research Institute, Las Vegas
	Submission of Mitigation Documentation Related to the Demolition of Building 23-109, Mercury, Area 23, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Mitigation Submission Letter Report LR022822-1-MIT. DOE/NV/0003590-74-MIT. Desert Research Institute, Las Vegas
	Submission of Mitigation Documentation Related to the Demolition of Building 23-113, Mercury, Area 23, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Mitigation Submission Letter Report LR010322-1-MIT. DOE/NV/0003590-76-MIT. Desert Research Institute, Las Vegas
Public Notifications/Reports	
DOE	Nevada National Security Site Environmental Report 2021

Table 2-8. List of environmental reports submitted to regulators for activities in 2022

Regulator(s)	Report
Environmental Occurrences	
	See Section 2.5 for Occurrence Reporting and Processing System Reports
(a)	Reports developed under the American Indian Consultation Program.
(b)	Mercury Historic District (MHD) Programmatic Agreement (PA): Reporting in accordance with the <i>Programmatic Agreement between the National Nuclear Security Administration Nevada Field Office and the Nevada State Historic Preservation Officer Regarding Modernization and Operational Maintenance of the Nevada National Security Site, at Mercury in Nye County, Nevada.</i>

2.7 References

U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2013. *Final Site-Wide Environmental Impact Statement for the Continued Operation of the Department of Energy/National Nuclear Security Administration Nevada National Security Site and Off-Site Locations in the State of Nevada.* DOE/EIS-0426, Las Vegas, NV.

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 3: Environmental Management System

Savitra M. Candley and Delane P. Fitzpatrick-Maul

Mission Support and Test Services, LLC

The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) conducts activities on the Nevada National Security Site (NNSS) while ensuring the protection of the environment, the worker, and the public. The NNSS Management and Operating (M&O) Contractor's policies and directives promote, guide, and regulate NNSS environmental aspects in order to protect the environment and public health. Mission Support and Test Services, LLC (MSTS), established an Environmental Management System (EMS) in accordance with International Organization for Standardization (ISO) Standard ISO-14001:2015 during the last quarter of 2019. A virtual EMS conformance audit occurred in 2021, and the EMS was found to be conformant.

This chapter describes the fiscal year (FY) 2022 progress made towards improving overall environmental performance and discusses the MSTS Sustainability Division. The Division has the specific mission to support and track DOE's complex-wide sustainability goals. Reported progress applies to operations on the NNSS as well as support activities conducted at the NNSA/NFO-managed North Las Vegas Facility (NLVF), Remote Sensing Laboratory–Nellis (RSL-Nellis), and additional outlying sites. NNSA/NFO uses this annual environmental report as the mechanism to communicate to the public the components and status of the EMS and the Sustainability Program.

3.1 Environmental Policy

MSTS's environmental commitments are incorporated into an Environmental Protection Policy approved by NNSA/NFO. The policy applies to all MSTS operations, projects, facilities, and personnel, including subcontractors. The EMS implements this policy and is incorporated into MSTS's Integrated Safety Management System. MSTS evaluates its operations, identifies aspects that can impact the environment, qualitatively assesses the potential impacts, and manages those aspects appropriately. In addition, the MSTS policy is designed to:

- Protect environmental quality and human welfare by implementing EMS practices that conform to the ISO 14001:2015 Standard.
- Minimize environmental impacts caused by NNSS activities and services by preventing pollution and protecting the natural environment.
- Use sustainable practices and purchase sustainable products to prevent degradation of resources.
- Continually improve the EMS by reviewing performance and making adjustments to achieve established objectives.
- Operate in compliance with applicable federal, state, and local regulations and contractual requirements related to environmental protection and performance.
- Rigorously review operations and correct non-compliance as discovered.

3.2 Significant Environmental Aspects

Six significant environmental aspects were identified for FY 2022 (October 1–September 30) based on company processes, missions, and activities, including potential emergency situations and abnormal conditions. Environmental aspects, such as energy use and sustainable acquisition, are addressed in Section 3.5.1.

Significant environmental aspects for FY 2022 were as follows:

1. Hazardous, radiological, and mixed waste generation and management
2. Industrial chemical storage and use
3. Air emissions

4. Cultural resources
5. Wastewater management (generation and disposal)
6. Energy use (fuel use, electricity, propane)

3.3 Environmental Objectives and Targets

Environmental objectives and targets were developed to address significant environmental aspects for which MSTS had the ability to effect a change (Table 3-1). Energy use is addressed separately in Section 3.5.1. Each objective and target is an opportunity to affect a significant environmental aspect by improving compliance, reducing impacts to operations, or enacting process improvements. Measurable milestones were developed for each target. Two objectives for developing per- and polyfluoroalkyl substances (PFAS) oversight and a baseline, as well as implementing water conservation and air quality improvements, were met.

Table 3-1. Environmental Objectives and Targets

FY 2022 Target	Objective	Significant Environmental Aspect
<i>Goals in green are met or exceeded</i>		
Bulk chemical storage, spill prevention and control	<ul style="list-style-type: none"> • Identify bulk hazardous substances and petroleum products storage locations • Inspect at least five of these locations • Note any best management practices and, if appropriate, provide additional best management practices to the responsible individual 	Industrial Chemical Storage and Use
Identify historical PFAS use, storage locations, and develop an inspection schedule	<ul style="list-style-type: none"> • Identify and develop an inspection schedule for PFAS storage locations and containers • Develop a list of historical uses of PFAS and obtain details • Develop a baseline document of the storage locations and historical uses 	Industrial Chemical Storage and Use
Reduce water consumption	Develop a plan to locate leaking pipes in drinking water systems and return loops	Water Use
Control dust using alternatives to water spray	Reduce water consumption through alternative dust suppression methodologies, which includes use of dust suppressants and paving heavily used gravel roads and parking lots. Other dust suppression methodologies may be evaluated	Water Use
Water conservation and Air Quality Improvements	Pave heavily used parking lots and access roads to conserve water and improve compliance with NNSS Air Quality Operating Permit dust control requirements	Water Use

3.4 Legal and Other Requirements

MSTS environmental compliance requirements are documented in the M&O Prime Contract. Included is DEAR [U.S. Department of Energy Acquisition Regulation] Clause 970.5204-2, “Laws, Regulations, and DOE Directives,” which requires compliance with all applicable laws and regulations (including DOE Order DOE O 436.1, “Departmental Sustainability,” which contains DOE Sustainability Goals). These baseline directives are supplemented on an activity-specific basis as needed. M&O Contractor executive management and NNSA/NFO develop, update, and approve these standards through controlled processes. The M&O Contractor must also work to applicable Air Force Directives at RSL-Andrews and RSL-Nellis.

Environmental management performance-related needs and expectations of NNSA/NFO and M&O Contractor parent companies are identified in the M&O Contract, agreements, and the MSTS Board of Managers recommendations. These are considered when developing compliance obligations. The needs and expectations of interested parties include clean-up of contaminated sites, community air and groundwater monitoring, safe handling of hazardous and radioactive waste, compliance with environmental regulations, and host site environmental operating provisions.

MSTS has a process to review changes in federal, state, and local environmental regulations and to communicate those changes to affected staff and organizations.

DOE publishes an annual Sustainability Plan that identifies sustainability goals, reports targets pursued, and summarizes the overall goals of all Nuclear Security Enterprise Sustainability Divisions (Section 3.5.1). DOE is committed to transitioning to carbon pollution free energy sources, a zero-emissions fleet, and a net-zero building portfolio.

DOE plans to meet these challenges by reducing pollution, procuring sustainably sourced supplies and equipment, educating its workforce on sustainability and climate change, and delivering equity and environmental justice in its work across the mission portfolio.

Most of Executive Order (EO) 13834 (among others) was revoked by EO 13990, “Climate Crisis: Efforts to Protect Public Health and Environment and Restore Science,” and now the primary focus is on new EO 14008, “Tackling the Climate Crisis at Home and Abroad,” and EO 14057, “Catalyzing Clean Energy Industries and Jobs Through Federal Sustainability.” New implementing instructions for EO 14057 were distributed in August 2022. The Council on Environmental Quality issued the instructions pursuant to section 510(b) of EO 14057, which directs the Chair of the Council, in consultation with the Director of the Office of Management and Budget, to issue implementing guidance for agencies to provide direction, strategies, and recommended actions to meet the policies and goals of EO 14057. Independent agencies are encouraged to consider the instructions and implement EO 14057, consistent with applicable laws.

3.5 *Environmental Management System Programs*

NNSS 5- to 10-Year Major Initiatives

Mercury Modernization – create a modern, welcoming campus to support the goals and operations of the NNSS.

U1a Master Planning – plan for existing and future conditions of all buildings and infrastructure, personnel, space needs, and mission requirements.

DAF Master Planning – early planning for improved operations to support new capabilities and increased capacity for additional programs at the DAF [Device Assembly Facility].

Footprint Management – aggressive consolidation and modernization of facilities at the NNSS, NLVF, and planning for a new Northwest Las Vegas complex to reduce the footprint and provide sustainable infrastructure to support mission needs.

NNSS Solar Projects –preliminary planning and assessments for new solar Photo Voltaic (PV) projects at the NNSS to cover power usage for the site.

Sustainability Strategies

- Provide sustainable facilities and equipment that meet requirements until at least the 2080s.
- Improve energy efficiency and strive to create some of the first net-zero energy buildings in the NNSA complex.
- Reduce the overall size of Mercury by consolidating operations.
- Complete utility/infrastructure upgrades and consolidations across the campus.
- Dispose of excess facilities.

3.5.1 Sustainability Division

The Sustainability Division has the specific mission to support and track DOE's complex-wide sustainability goals. The program strives to ensure continuous life cycle, cost-effective improvements to increase energy efficiency; increase the effective management of energy, water, and transportation fleets; and increase the use of clean energy sources for NNSA/NFO operations. NNSA/NFO currently uses electricity, fuel oil, and propane at the NNSS facility. At the NLVF and RSL-Nellis facilities, electricity and natural gas are used. NNSA/NFO vehicles and equipment are powered by unleaded gasoline, diesel, bio-diesel, E-85, and jet fuel. All water used at the NNSS is groundwater, and water used at the NLVF and RSL-Nellis is predominantly surface water from Lake Mead.

Each FY, the Sustainability Division produces an NNSA/NFO Site Sustainability Plan (SSP) (MSTS 2022). The SSP describes the program, planning, and budget assumptions as well as NNSA/NFO's performance for the previous year for each DOE goal, and planned actions to meet each goal during the next year. To implement the SSP, an Energy Management Council meets bi-monthly to track requirements and progress and facilitate goal achievement. Table 3-2 includes a summary of the DOE goals and NNSA/NFO's FY 2022 performance.

Table 3-2. DOE Sustainability Goals

DOE Goal ^(a)	NNSA/NFO FY2022 Performance	Planned Efforts
		Goals in green are met or exceeded
Energy Management		
Reduce energy use intensity (Btu [British Thermal Unit] per gross square foot) in goal-subject buildings.	<ul style="list-style-type: none"> Status: 2.7% increase from the FY 2015 baseline FY 2022 Actual: Increased Energy Use Intensity = 69,303 145,083/2,093 Million British Thermal Units per 1,000 square feet 	<ul style="list-style-type: none"> Analyze a potential methodology to normalize energy usage Re-evaluate the NNSS footprint reduction plan based on Energy Independence and Security Act audit data Continue completing 50001 Ready tasks Continue Cooling and Heating Asset Management Program (CHAMP) program participation 36 assessments are planned for FY 2023 Ensure estimates are performed on Energy Conservation Measures, to meet new requirements per EAct of 2020
Energy Independence and Security Act Section 432 continuous (4-year cycle) energy and water evaluations.	<ul style="list-style-type: none"> Status: FY22 Year 2 of the 4 year cycle was completed: 72 assessments were conducted 	
Meter all individual buildings for electricity, natural gas, steam, and water, where cost-effective and appropriate.	<ul style="list-style-type: none"> No new appropriate bldgs. metered Electric: 85/106 = 80% Gas: 14/15 = 93% Water: 33/109 = 30% 	<ul style="list-style-type: none"> Finish electric metering as budgets allow Review specifications of all new facilities for water meter scope Install water meters in preparation for High Performance Sustainable Building certification, as budget allows
Water Management		
Reduce potable water use intensity (gallons [gal] per gross square foot).	<ul style="list-style-type: none"> Goal Met Status: 28.9% reduction FY 2022 Actual: 139,174,019 gal / 2,779,710 gross square feet (gsf) 	<ul style="list-style-type: none"> Complete Water Management Plan Complete Water Balance Study Complete FY 2023 Water projects Conduct water audits
Reduce non-potable freshwater consumption (gal) for industrial, landscaping, and agricultural.	<ul style="list-style-type: none"> Status: 49% increase from 2010 baseline FY 2022 Actual: 107,785,055 gal 	<ul style="list-style-type: none"> Continue to look for non-potable water reduction strategies Analyze a potential methodology to normalize water usage
Waste Management		
Reduce non-hazardous solid waste sent to treatment and disposal facilities.	<ul style="list-style-type: none"> Diverted 33.4% of non-hazardous solid waste 	<ul style="list-style-type: none"> Increase recycle bin and cardboard locations, where needed Complete waste audit and recycle process improvement evaluation Complete assessment of Operations Security landfill diversion

Table 3-2. DOE Sustainability Goals

DOE Goal ^(a)	NNSA/NFO FY2022 Performance	Planned Efforts
<i>Goals in green are met or exceeded</i>		
Reduce construction and demolition materials and debris sent to treatment and disposal facilities.	<ul style="list-style-type: none"> - Diverted 8.8% of construction waste - Implemented Construction Waste Management Company Directive 	<ul style="list-style-type: none"> - Review current construction procedures to ensure recycling on all jobs - Improve tracking processes and efforts
Fleet Management		
Reduce petroleum consumption.	<ul style="list-style-type: none"> - Goal Met FY 2022 Actual: 445,496 gal, 64% below the baseline 	<ul style="list-style-type: none"> - Maintain Goal
Increase alternative fuel consumption.	<ul style="list-style-type: none"> - Goal Met Exceeds the 10% FY 2022 Actual: 374,595 gal 	<ul style="list-style-type: none"> - Maintain Goal
Acquire alternative fuel and electric vehicles (AFVs).	<ul style="list-style-type: none"> - Goal Met FY 2022 Actual: 780 AFVs in Fleet. 75% of Fleet are AFVs. 	<ul style="list-style-type: none"> - Maintain Goal - Install / replace electric vehicle charging stations
Clean and Renewable Energy		
Increase consumption of clean and renewable electric energy.	<ul style="list-style-type: none"> - Status: 35% - Consumption breakdown: 1% onsite carbon-free energy, 34% grid-supplied carbon-free energy, 65% grid supplied fossil based electricity. - Fire Station No. 1 Solar PV produced 506 megawatt-hours; off-grid solar estimated at 253 megawatt-hours - Developed Accelerated Solar plan for NNSS - Not Applicable 	<ul style="list-style-type: none"> - Develop solar projects according to Accelerated Solar plan - NNSA/NFO will not be purchasing Energy Attribute Certificates or Renewable Energy Certificates for FY 2023, due to inflation of Renewable Energy Certificates - Assess estimated off-grid solar
Increase consumption of clean and renewable non-electric thermal energy		<ul style="list-style-type: none"> - Continue to review options for non-electric thermal usage - Develop a non-electric thermal project
Sustainable Buildings		
Increase the number of owned buildings that are compliant with the Guiding Principles for Sustainable Buildings	<ul style="list-style-type: none"> - Goal met - There are 17 certified facilities (3 certified in FY 2022) in NNSS building inventory totaling 517,074 gsf that are High Performance Sustainable Building-certified - 5 facilities over 25k totaling 348,776 gsf - Received first Green Lab certification at Platinum level 	<ul style="list-style-type: none"> - Continue to certify new building using third party certification - Re-certify existing certified facilities by FY 2025
Acquisition & Procurement		
Promote sustainable acquisition and procurement to the maximum extent practicable, ensuring all sustainability clauses are included as appropriate.	<ul style="list-style-type: none"> - Goal met. Relevant sustainable acquisition clauses are included in applicable subcontracts. 	<ul style="list-style-type: none"> - Plan to meet 95% goal - Closely evaluate applicable subcontract documents for sustainable clauses and provisions - Plan to have 100% of applicable contracts - Continue to promote sustainable acquisition and perform subcontract document reviews - Identify, flag, and capture more products in Oracle system - Monitor closely PFAS purchases - Evaluate process for cost collection efficiency

Table 3-2. DOE Sustainability Goals

DOE Goal ^(a)	NNSA/NFO FY2022 Performance	Planned Efforts
<i>Goals in green are met or exceeded</i>		
Investments: Improvement Measures, Workforce and Community		
Implement life-cycle cost effective efficiency and conservation measures with appropriated funds and/or performance contracts.	<ul style="list-style-type: none"> - Reviewed options for Shooting Range lighting replacement for Energy Savings Performance Contract (ESPC) Delivery Order 2 scope - Supported Year 12 ESPC DO2 measurement and verification activities - Conducted virtual Energy Action Month (EAM) and Earth Day activities - Continued the Acts of Sustainability employee outreach program 	<ul style="list-style-type: none"> - Continue maintaining measurement and verification activities for ESPC Delivery Order 2 - Determine solution for Contracting Officer Representative support - Determine a solution for the solar lighting repair at the Shooting Range - Incorporate sustainability projects into the Construction Acceleration Planning Process - Draft the NNSS savings reinvestment fund process and attempt to track at least two more projects through the process to determine process success or failure. - Review and update current Energy Conservation Measures project list - Continue employee training and outreach activities (e.g., EAM, Earth Day, International Facility Management Association tours/training, etc.)
Electronics Stewardship and Data Centers		
Electronics stewardship from acquisition, operations, to end of life.	<ul style="list-style-type: none"> - Disposition goal met. All electronic equipment that passed excess screening was e-recycled. Asset and Material Management partnered with Blind Center of Nevada for e-recycling of electronics. - 81% of purchased electronics were EPEAT - 0% of IT computers and monitors have power management enabled, 100% of IT managed printers have duplex printing enabled - IT received EPEAT Award 	<ul style="list-style-type: none"> - Continue to ensure 100% of used electronics are reused or recycled - Continue to ensure the maximum amount of Electronic Product Environmental Assessment Tool (EPEAT) electronics are purchased. - Assess Information Technology (IT) processes for opportunities to enable power management - Continue to ensure the maximum amount of printers have duplex printing enabled
Increase energy and water efficiency in highperformance computing and data centers.	<ul style="list-style-type: none"> - Balanced power and heat loads in C1 data center; raised ambient temperature and optimized computer room air conditioning units - Completed room power distribution units and computer room air conditioning units in preparation for Data Center Infrastructure Management platform 	<ul style="list-style-type: none"> - Implement Data Center Infrastructure Management in two data centers - Begin collecting energy performance data
Adaptation & Resilience		
Implement climate adaptation and resilience measures.	<ul style="list-style-type: none"> - Conducted severe weather event workshops - Submitted Energy Resilient Infrastructure and Climate Adaptation projects - Continued work on Technical Resilience Navigator (TRN) Cohort; utilized TRN tool to complete Vulnerability Assessments inputs - Submitted Vulnerability Assessment and Resilience Plan - Fire and Rescue purchased fire equipment and personal protective equipment, etc. 	<ul style="list-style-type: none"> - Continue to integrate extreme weather events in Continuity of Operations (COOP) drills and exercises - Air Resources Laboratory/Special Operations and Research Division - continue collecting and reporting data - Incorporate recovery into full-scale exercises - Implement DOE O 151.1B, "Continuity Programs," requirements; update local COOP and mission essential function plans - Continue to utilize the Add-On Module to DOE AWARe - Continue to utilize the TRN - Continue to identify areas of improvements; Fire and Rescue equipment, vegetation abatement, etc.

Table 3-2. DOE Sustainability Goals

DOE Goal ^(a)	NNSA/NFO FY2022 Performance	Planned Efforts
<i>Goals in green are met or exceeded</i>		
Reduce Scope 1 & 2 greenhouse gas (GHG) emissions ^(b) .	<ul style="list-style-type: none"> - Formed Land Management Council; Updated Annual Wildland Fire Risk Mitigation Plan; Conducted Cheatgrass Control Study - assess wildland fire mitigation strategy - Submitted A Five-Year Electric Vehicle Infrastructure Plan - Purchased three solar charging stations, on hold <ul style="list-style-type: none"> - Goal met - Status: 53.5% below the baseline - Actual: 109.9% year-over-year 30,551 metric tons carbon dioxide equivalent (MtCO2e) - Two CHAMP projects completed 	<ul style="list-style-type: none"> - Continue to update the COOP Program plans and documents - Continue with Land Management Council and Wildland Fire Risk mitigation programs - Building Occupancy - Nevada Site Operations Center Building 23-461 <ul style="list-style-type: none"> - Increase development of energy efficient projects - Develop the scope for renewable projects and execute - Review equipment replacement options to more energy efficient equipment - Maximize CHAMP project execution
Reduce Scope 3 GHG emissions ^(b) .	<ul style="list-style-type: none"> - Goal met - Status: 69.8% below the baseline - Actual: 48.9% year-over-year 13,059.9 MtCO2e - Utilized new survey program to collect commuter data 	<ul style="list-style-type: none"> - Increase use of tele/video conferencing - Utilize more renewable energy to eliminate large transmission and distribution losses - Increase ride-share/carpool efforts - Research efficiencies for better tracking and reporting of 15 categories

(a) The DOE goals and performance listed are identified in the FY 2023 NNSA/NFO Site Sustainability Plan, which is based on the DOE Sustainability Performance Division Site Sustainability Plan Guidance Document (September 2022), EO 14008, and EO 14057.

(b) The GHGs targeted for emission reductions are carbon dioxide, methane, nitrous oxide, hydrofluorocarbons, perfluorocarbons, and SF₆. Scope 1 GHG emissions include direct emissions from sources that are owned or controlled by a federal agency. Scope 2 includes direct emissions resulting from the generation of electricity, heat, or steam purchased by a federal agency. Scope 3 includes emissions from sources not owned or directly controlled by a federal agency but related to agency activities, such as vendor supply chains, delivery services, employee business air and ground travel, employee commuting, contracted solid waste disposal, contracted waste water discharge, and transmission and distribution losses related to purchased electricity. Fugitive GHG emissions are uncontrolled or unintentional releases from equipment leaks, storage tanks, loading, and unloading.

3.5.2 Pollution Prevention and Waste Minimization (P2/WM)

The P2/WM Program has initiatives to eliminate or reduce the generation of waste and the release of pollutants to the environment. These initiatives are pursued through source reduction, reuse, segregation, and recycling, and by procuring recycled-content materials and sustainable products and services. The initiatives also ensure that proposed methods of treatment, storage, and waste disposal minimize potential threats to human health and the environment. These initiatives address the goals and the requirements of the DOE Sustainability Report and Implementation Plan (DOE 2020), DOE orders, and federal and state regulations applicable to operations at the NNSS, NLVF, and RSL-Nellis (Table 2-1). Strategies to meet P2/WM goals include:

Source Reduction – The preferred method of waste minimization is source reduction, i.e., to minimize or eliminate waste before it is generated by a project or operation. NNSA/NFO's Integrated Safety Management System requires every project/operation to identify waste minimization opportunities during the planning phase and allocate adequate funds for waste minimization activities.

Recycling/Reuse – NNSA/NFO maintains a recycling program for some recyclable waste streams. Items routinely recycled include cardboard; mixed paper (office paper, shredded paper, newspaper, magazine, color print, glossy paper); plastic bottles; plastic grocery bags; elastic/plastic stretch pack; milk jugs; Styrofoam; tin and aluminum cans; glass containers; toner cartridges; cafeteria food waste; computers; software; scrap metal; rechargeable batteries; lead-acid batteries; used oil, antifreeze, and tires.

An Excess Property Program also exists to provide excess property to NNSA/NFO employees or subcontractors, laboratories, other DOE sites, other federal agencies, state and local government agencies, universities, and local

schools. If new users are not found, excess property is made available to the public for recycle/reuse through periodic Internet sales.

Sustainable Acquisition – The Resource Conservation and Recovery Act, as amended, requires federal agencies to develop and implement an affirmative procurement program. NNSA/NFO’s affirmative procurement program stimulates a market for recycled-content products and closes the loop on recycling. The U.S. Environmental Protection Agency maintains a list of items containing recycled materials and what the minimum content of recycled material should be for each item. Federal facilities are required to ensure, where possible, that 100% of purchases of items on this list contain recycled materials at the specified minimum content. The U.S. Department of Agriculture designates types of materials that have a required minimum amount of bio-based chemicals. Products that meet this requirement are identified by requestors and tracked in the procurement system.

3.6 EMS Competence, Training, and Awareness

EMS awareness is included in the orientation training for all new MSTS employees. Ongoing EMS awareness is accomplished by publishing environmental articles in electronic employee newsletters. Focused environmental briefings are given at tailgate meetings in the field prior to work with high or non-routine environmental risk.

3.7 Audits and Operational Assessments

MSTS conducts internal management assessments and compliance evaluations. These assessments and evaluations determine the extent of compliance with environmental regulations and DOE sustainability goals, and identify areas for overall improvement. In FY 2022, MSTS conducted 5 internal environmental protection management assessments and 102 environmental inspections.

An ISO 14001:2015 Internal audit was performed by two EMS subject matter experts from the M&O Contractor’s Quality Performance Assurance group. The audit concluded that the NNSS EMS complies with the Standard’s requirements. No issues or findings were identified. The audit team also identified several best practices and opportunities for improvement.

3.8 EMS Effectiveness and Reporting

The FY 2022 Facility EMS Annual Report Data for the NNSS was entered into the DOE Headquarters EMS database during January 2023. This database gathers information in several EMS areas from all DOE sites to produce a combined report reflecting DOE’s overall performance compared to other federal agencies. The report includes a scorecard section, which is a series of questions regarding a site’s EMS effectiveness in meeting the objectives of federal EMS directives. The NNSS scored an “A” in FY 2022 for all five criteria: Environmental Aspects; Environmental Objectives; Operational Controls; Compliance with Regulatory Requirements/Corrective Actions; and EMS/EO Goals Integration.

3.9 Awards, Recognition, and Outreach

Energy Action Month – Over the past 3 years, employees have continued to actively participate in virtual activities for both EAM and Earth Day. In October 2021, the NNSS EAM activities were offered virtually. The Sustainability Division offered NNSS employees and their family members the opportunity to enjoy virtual EAM activities while at home. Those activities began Friday, October 1st, and lasted the entire month. EAM activities included the following:

- The Regional Transportation Commission (RTC) Club Ride program provided NNSS employees with an online video that highlighted their achievements and the positive impacts they made by considering commute alternatives, which improved our air quality.
- Employees also visited local online utility companies to learn about services and resources to help them become more sustainable, and were educated about the significance of effective and sustainable waste management practices, and proper recycling techniques. They learned interesting recycling facts and how

to replace single-use plastics with reusable items. After visiting the website, employees mentioned what actions they would implement to live a more sustainable life.

- Employees utilized a home energy tool that showed how to save and provided tips to allow for the breakdown of energy consumption by appliance. Employees who completed the home assessment survey also learned how to increase the accuracy of their home appliances energy consumption.

Earth Day— This year, Earth Day continued to remind employees to make conscious decisions to invest in our planet. To change, to act, to preserve and, most of all, to protect the Earth. During the entire month of April, employees were given the opportunity to engage in several activities. These activities included:

- NNSS partnered with Keep America Beautiful for the “Give a Hoot Don’t Pollute” activity. This cleanup and plogging event allowed employees and families a chance to exercise while picking up litter to beautify a local community park.
- Employees calculated their personal plastic consumption and received tips to help manage their plastic pollution.
- Employees participated in the Earth Day Mile Challenge. The goal of this challenge was for Team MSTS, along with other participants from across the world, to collectively walk or run 24,901 miles, which is equivalent to the circumference of the equator.
- Employees also enjoyed a YouTube video of a discussion between DOE Secretary Jennifer Granholm and Jonathan Scott of the “Property Brothers” television show about building a clean energy future and making it accessible to all.
- Two Operations Security Shred Day events were held at the NLVF and the NNSS. Once employees dropped off their shred materials, they received giveaways and sustainability educational handouts.
- RTC’s Club Ride offered free sign-ups for the Club Ride program. Existing members received a carpool match service, free rides on RTC Bike Share, or 14 days of free public transit.
- NNSA/NFO employees continued to donate items to Safe Nest, a local non-profit organization that donates clothing and other items to women who have been victims of domestic violence. Currently, two Safe Nest bins are located at the NLVF, and in FY 2022, MSTS employees diverted a total of 4,370 pounds of items from the landfill by donating to Safe Nest.

Overall, the Sustainability Division’s goal is to continue to see the educational impacts leading to employees understanding the importance of reducing, reusing, repurposing, recycling, saving energy and water in every aspect of their lives.

3.10 Environmental Justice, Tribal and Stakeholder Engagement

Executive Order 12898, “Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations,” outlined an important task for Federal agencies to “make achieving environmental justice part of its mission by identifying and addressing, as appropriate, disproportionately high and adverse human health or environmental effects of its programs, policies and activities on minority populations and low-income populations in the United States and its territories and possessions, the District of Columbia, the Commonwealth of Puerto Rico, and the Commonwealth of the Mariana Islands.” Therefore, per the DOE 2019 Environmental Justice Second Five-year Implementation plan, the three Environmental Justice (EJ) Strategic Goals are:

1. Goal 1 – Fully implement EO 12898, “Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations.”
2. Goal 2 – Integrate EJ into the National Environmental Policy Act Process.
3. Goal 3 – Comply with Title VI of the Civil Rights Act of 1964.

Each of the above referenced goals identify key specific objectives that assist in achieving the EJ core principles, which are:

- To ensure all stakeholders have meaningful and informed participation in all aspects of environmental decision making that could affect their community.
- To provide the necessary assistance to various communities to help them gain and sustain the necessary tools to achieve EJ for themselves.
- To improve the capability of stakeholders to participate in DOE decision making.
- To ensure that no population should experience less than its fair share of environmentally friendly sources of energy when supported by public funds.

NNSA/NFO understands the need for EJ goals to integrate into its program, policies, and activities to help ensure all people receive fair treatment, along with the opportunity to engage and impactfully inform various NNSS decision-making activities. In FY 2022, NNSA/NFO continued its focus on EJ stakeholder engagement and collaboration to identify all disadvantaged and marginalized communities affected by site activities. NNSA/NFO once again held the American Indian Consultation Program (AICP) annual Tribal Update Meeting on April 12-14, 2022, at the Desert Research Institute in Las Vegas, Nevada. NNSA/NFO hosted the meeting, with support from the Desert Research Institute and involvement from Portland State University. NNSA/NFO provided advanced electronic letter notification to the 16 American Indian Tribal nations and organizations with cultural affiliations and historical ties to the NNSS. Participating in the program were the Benton Paiute Tribe, Big Pine Paiute Tribe, Bishop Paiute Tribe, Chemehuevi Indian Tribe, Colorado River Indian Tribes, Duckwater Shoshone Tribe, Ely Shoshone Tribe, Fort Independence Indian Reservation, Kaibab Band of Paiutes, Las Vegas Paiute Tribe, Lone Pine Paiute-Shoshone Reservation, Moapa Band of Paiutes, Pahrump Paiute Tribe, Paiute Indian Tribe of Utah, Timbisha Shoshone Tribe, and Yomba Shoshone Tribe.

AICP meeting attendees examining artifacts

The NNSA/NFO contractors and Tribal representatives gave presentations related to activities on the NNSS. On the second day, Tribal representatives participated in a field visit to the NNSS to observe locations associated with historical Cold War activities. The Tribes on the final day met in an executive session to deliberate on the information presented. During these sessions, Tribal representatives reflected on the information received during presentations, identified any topics requiring further information or clarification, and lastly, made recommendations to enhance future Tribal involvement in the AICP. At the conclusion of the executive session, recommendations were presented to the NNSA/NFO Program Manager for consideration and further deliberation. NNSS plans to continue to work in FY 2023 on establishing and reinforcing positive relationships through its Tribal Planning Committee.

Also in FY 2022, six M&O Employee Resource Groups (ERGs), which were started in March 2021, continued their focus on their primary objectives to develop, sustain, and enhance a diverse and inclusive workforce through recruitment, mentoring, networking, and community involvement. The ERGs at the site include the following:

- African American ERG
- Asian & Pacific Islander ERG
- Hispanic ERG
- Rainbow Warriors (lesbian, gay, bisexual, transgender, queer, or questioning (LGBTQ+) ERG
- Women's ERG
- Veterans ERG

The primary goal for all of the groups was to provide support to a diverse community and to help all to feel represented and respected. Activities from the ERGs in FY 2022 included:

- Assisting with the College of Engineering 2022 UNLV STEM [Science, Technical, Engineering, and Math] Summer Camp program for 19 middle and high school students.
- Hosting 140 fifth grade students in a tour of the National Atomic Testing Museum in which they learned about career opportunities at the NNSS.
- Connecting with the local National Society of Black Engineers chapter at UNLV to provide an overview of STEM careers at the NNSS.
- Distributing backpacks and supplies at the Viva La Vida Latina Festival – Celebrating Hispanic Heritage Month.

All of these activities helped to provide a level of outreach to various minority organizations within the local community to help increase NNSS workforce diversity through community awareness of the opportunities available at all of the NNSA/NFO sites. In FY 2023, NNSA/NFO will continue to identify and research additional EJ strategies that align with the current DOE Five-Year Environmental Justice Strategic Plan. The site's ERG initiatives will also continue to work with various community outreach activities along with a more-focused participation of college career fairs at various minority-serving institutions and Historical Black Colleges and Universities to better communicate site internship opportunities.

3.11 References

DOE, see U.S. Department of Energy.

MSTS, see Mission Support and Test Services, LLC.

Mission Support and Test Services, LLC, 2022. *FY2023 NNSA/NFO Site Sustainability Plan*. Las Vegas, NV, December 2022.

U.S. Department of Energy, 2020. *2020 Sustainability Report and Implementation Plan*. Report to the White House Council on Environmental Quality and Office of Management and Budget, August 2020. Available at: <https://www.sustainability.gov/pdfs/doe-2020-sustainability-plan.pdf>.

—, 2022. *Fiscal Year 2023 Site Sustainability Plan Guidance Document*. U.S. Department of Energy Sustainability Performance Office, September 2022. Available at: <https://sustainabilitydashboard.doe.gov/PDF/Resources/FY%202023%20SSP%20Guidance-1.pdf>.

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 4: Air Monitoring

Katherine V. Martin, Delane P. Fitzpatrick-Maul, and Ronald W. Warren

Mission Support and Test Services, LLC

Charles B. Davis

EnviroStat

This chapter is divided into two major sections that address different categories of air monitoring. Section 4.1 presents the results of radiological air monitoring conducted on the Nevada National Security Site (NNSS) by the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) to verify compliance with radioactive air emission standards. Measurements of **radioactivity**¹ in air are also used to assess the radiological **dose** to the general public from inhalation. The assessed dose to the public from all **exposure** pathways is presented in Chapter 9. Section 4.2 presents the results of nonradiological air quality assessments that are conducted to ensure compliance with NNSS air quality permits.

NNSA/NFO has also established an independent Community Environmental Monitoring Program to monitor **radionuclides** in air in communities adjacent to the NNSS. It is managed by the Desert Research Institute (DRI) of the Nevada System of Higher Education. DRI's offsite air monitoring results are presented in Chapter 7.

4.1 Radiological Air Monitoring and Assessment

Radiological Air Monitoring Goals

Monitor air at or near historical or current operation sites to (1) detect and identify local and site-wide trends, (2) quantify radionuclides emitted to air, and (3) detect accidental and unplanned releases.

Conduct point-source operational monitoring required under National Emission Standards for Hazardous Air Pollutants (NESHAP) for any facility with the potential to emit radionuclides to the air and cause a dose greater than 0.1 millirem per year (mrem/yr) (0.001 millisievert per year [mSv/yr]) to any member of the public. Determine if the air pathway dose to the public from past or current NNSS activities complies with the Clean Air Act (CAA) NESHAP standard of 10 mrem/yr (0.1 mSv/yr). Determine if the total radiation dose to the public from all pathways (air, water, and food) complies with the 100 mrem/yr standard set by DOE Order DOE O 458.1, “Radiation Protection of the Public and the Environment.”

The sources of radioactive air emissions on the NNSS include the following: (1) **tritium** (3H) in water (tritiated water) evaporated from containment ponds; (2) tritiated water vapor diffusing from soil at the Area 3 Radioactive Waste Management Site (RWMS), the Area 5 RWMS, and historical surface or near-surface nuclear explosive test locations (particularly Sedan and Schooner craters); (3) resuspension of contaminated soil at historical surface or near-surface nuclear explosive test locations; and, (4) radionuclides from current operations. Figure 4-1 shows locations of known radiological air emission sources in 2022 and areas of soil contamination related to historical nuclear explosive tests. The NNSS air monitoring network consists of samplers near sites of soil contamination, at facilities that may produce radioactive air emissions, and along the NNSS boundaries.

Monitored **analytes** include radionuclides most likely to be present in air as a result of past or current NNSS operations, based on inventories of radionuclides in surface soil (McArthur 1991) and the volatility and availability of radionuclides for resuspension (Table 1-5 lists the **half-lives** of these radionuclides). Uranium is included because uranium (primarily **depleted uranium** [DU]) has been used during exercises in specific areas of the NNSS. Samples from locations near these areas are analyzed for uranium. **Gross alpha** and **gross beta** readings are used in air monitoring as a relatively rapid screening measure.

Analytes Monitored
Americium-241 (^{241}Am)
Gamma ray emitters (includes Cesium-137 [^{137}Cs]])
Tritium (^3H)
Plutonium-238 (^{238}Pu)
Plutonium-239+240 ($^{239+240}\text{Pu}$)
Uranium-233+234 ($^{233+234}\text{U}$)
Uranium-235+236 ($^{235+236}\text{U}$)
Uranium-238 (^{238}U)
Gross alpha radioactivity
Gross beta radioactivity

¹ The definition of word(s) in ***bold italics*** may be found by referencing the Glossary, Appendix B.

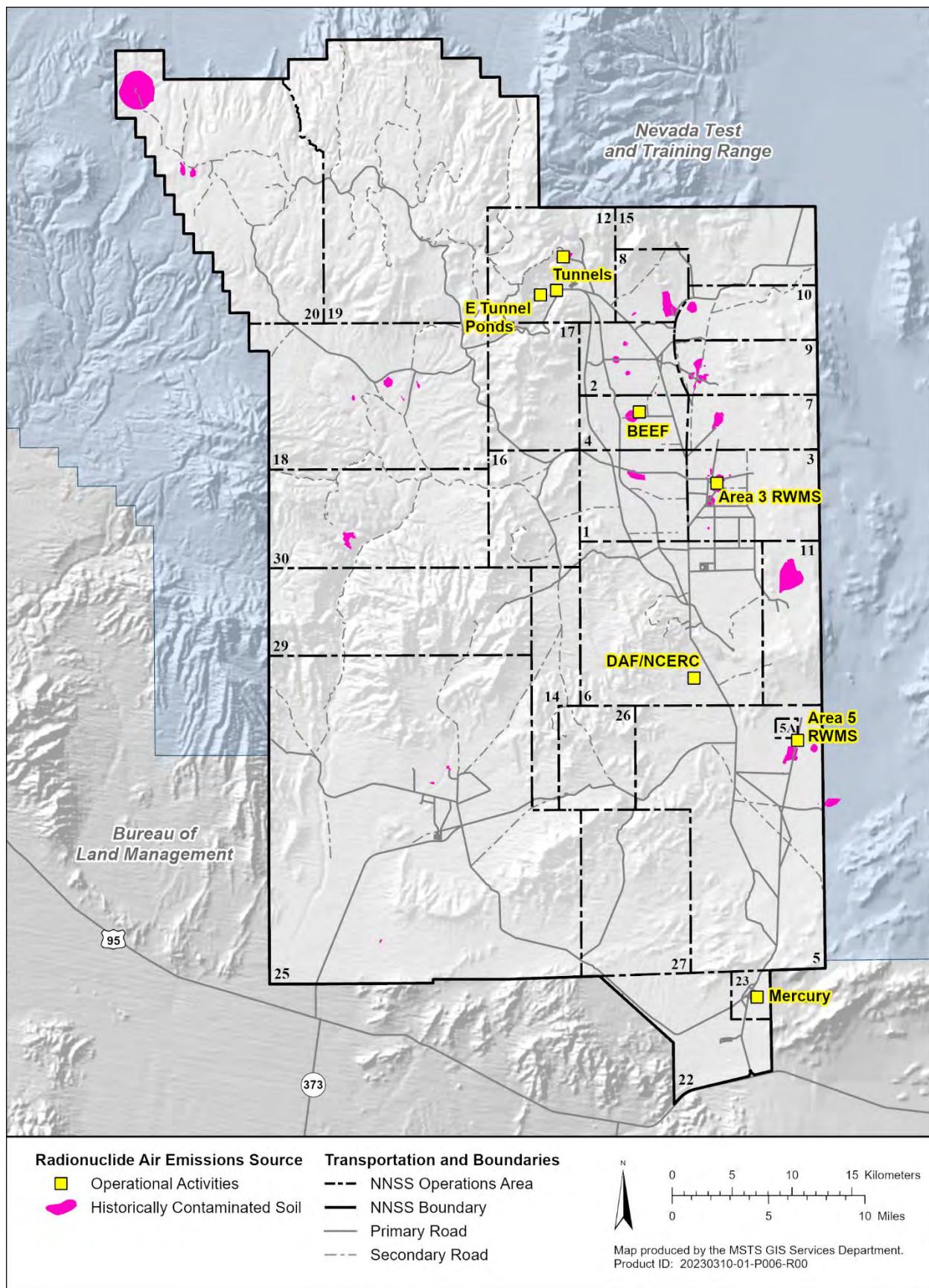
4.1.1 Monitoring System Design

Air samplers operated at a total of 18 environmental monitoring locations on the NNSS in 2022 (Figure 4-2). Of these, 16 have both air particulate and atmospheric moisture samplers, one has only an air particulate sampler (Able Site), and one has only an atmospheric moisture sampler (North Schooner). Air samplers are positioned in predominantly downwind directions from sources of radionuclide air emissions and/or are positioned between NNSS contaminated locations and potential offsite receptors. Wind rose data, showing predominant wind directions on the NNSS, are presented in Section A.3 of *Attachment A: Site Description*.² Most radionuclide air emission sources are *diffuse sources* that include areas with (1) radioactivity in surface soil that can be resuspended by the wind, (2) tritiated water transpiring or evaporating from plants and soil at the sites of past nuclear tests, and (3) tritiated water evaporating from ponds receiving water either from contaminated wells or from tunnels that cannot be sealed. Sampling and analysis of air particulates and atmospheric moisture are performed at these locations (Section 4.1.2). Radionuclide concentrations measured at these samplers are used for trending, determining ambient *background* concentrations in the environment, and monitoring for unplanned releases of radioactivity.

Critical Receptor Samplers³ – Six of the sampling locations with both air particulate and atmospheric moisture samplers are located near the boundaries and in the center of the NNSS (Figure 4-2). Radionuclide concentrations measured at these locations are used to assess compliance with the NESHAP public dose limit of 10 mrem/yr (0.1 mSv/yr). The annual average concentrations from each location are compared with Title 40 *Code of Federal Regulations (CFR)* Part 61, Appendix E, “NESHAP Concentration Levels for Environmental Compliance” (*concentration levels [CLs]*). The CL values for radionuclides of interest are listed in Table 4-1. Compliance with NESHAP is demonstrated when the sum of the fractions, determined by dividing each radionuclide’s concentration by its CL and then adding the fractions together, is less than 1.0 at all samplers.

Table 4-1. Concentration limits for radionuclides in air

Radionuclide	NESHAP Concentration Level for Environmental Compliance ^(a)	Concentration ($\times 10^{-15}$ microcuries/milliliter [$\mu\text{Ci/mL}$])	10% of Derived Concentration Standard ^(b)
^{241}Am	1.9	13	
^{137}Cs	19	3,800	
^3H	1,500,000	13,000,000 ^(c)	
^{238}Pu	2.1	12	
^{239}Pu	2	11	
^{233}U	7.1	16	
^{234}U	7.7	16	
^{235}U	7.1	18	
^{236}U	7.7	17	
^{238}U	8.3	18	


(a) From Table 2, Appendix E of 40 CFR 61 (2010).

(b) From DOE Standard DOE-STD-1196-2021, “Derived Concentration Technical Standard.”

(c) Tritium as water vapor (as opposed to particulate), which is applicable to the NNSS emissions

² Attachment A, *Site Description*, is available on the NNSA/NFO web page at <https://nnss.gov/publication-library/environmental-publications/>.

³ Proposed and formally submitted to the U.S. Environmental Protection Agency (EPA) Region 9 (EPA 2001).

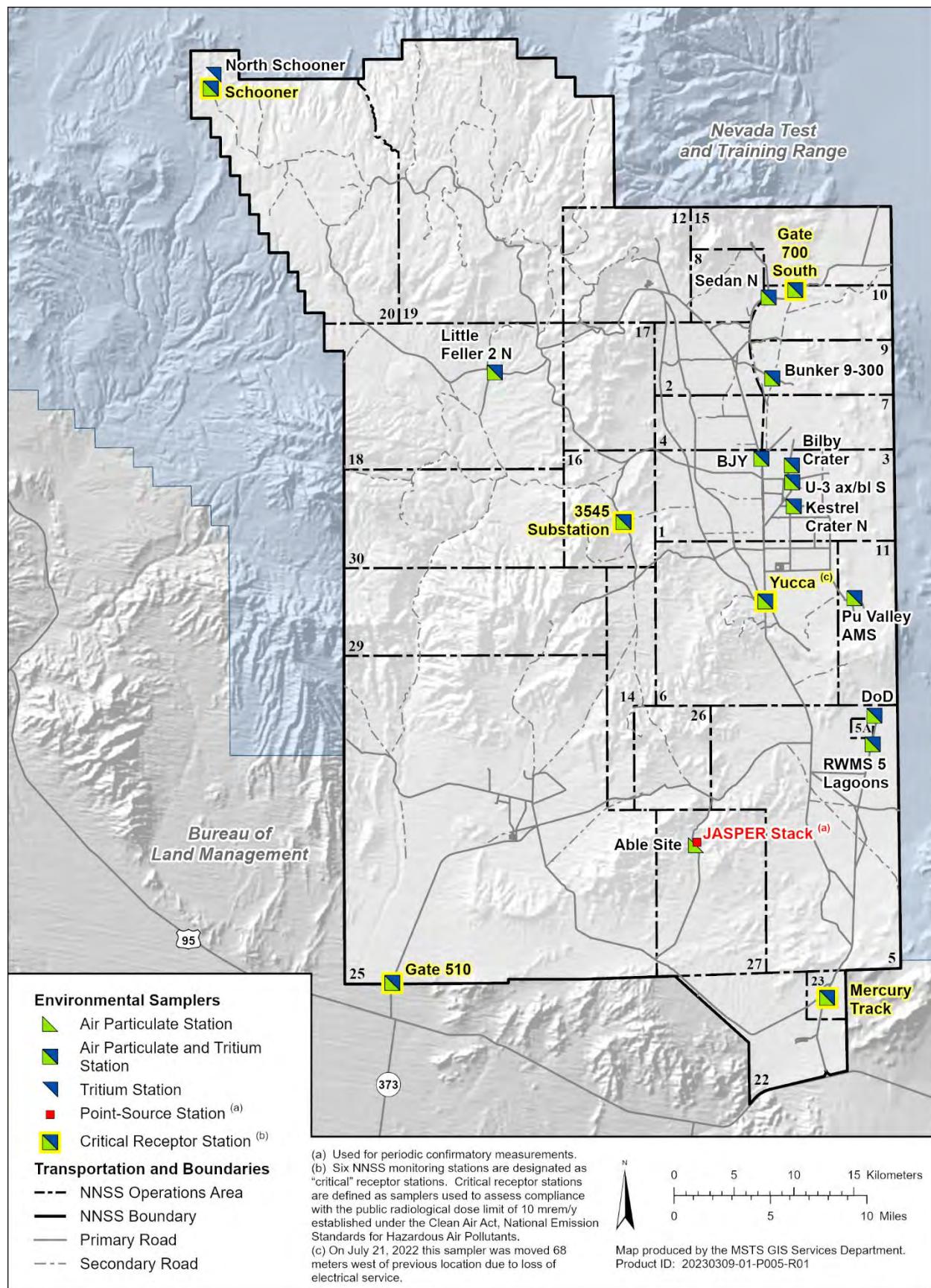


Figure 4-2. Radiological air sampling network on the NNSS in 2022

The Department of Energy has also established inhalation **Derived Concentration Standard (DCS)** values. They represent the annual average air concentrations that would result in an **effective dose equivalent** of 100 mrem/yr. Ten percent of the DCS (third column of Table 4-1) represents a 10 mrem/yr dose. It is displayed for reference. The CLs (second column) are lower, and therefore more protective. Differences between the CLs and 10% of the DCS are because the CLs represent a maximally exposed individual and consider external dose and ingestion of radionuclides deposited from air, whereas the DCS values are based only on inhalation of radionuclides in air and dose to a reference member of the population.

Point-Source (Stack) Sampler – Stack sampling is conducted at only one facility on the NNSS, the Joint Actinide Shock Physics Experimental Research facility in Area 27 (Figure 4-2). In 2013, the potential air emissions from the facility were re-evaluated and determined to result in a potential offsite dose that is much less than the 0.1 mrem/yr threshold at which continuous stack monitoring is required under NESHAP. Therefore, only periodic sampling is recommended to verify low emissions. One sample was taken on June 1, 2022, for this purpose. No man-made radionuclides were detected in the sample, which again confirmed the 2013 assessment that this source's potential emission is less than 1% of the standard.

4.1.2 Air Particulate and Tritium Sampling Methods

A sample is collected from each air particulate sampler by drawing air through a 10-centimeter (4-inch) diameter glass-fiber filter at a flow rate of about 85 liters (3 cubic feet [ft³]) per minute. The particulate filter is mounted in a filter holder that faces downward at a height of about 1.5 meters (m) (5 feet [ft]) above ground. A timer measures the operating time. The run time multiplied by the flow rate yields the volume of air sampled, which is about 1,720 cubic meters (m³) (60,000 ft³) during a typical 14-day sampling period. The air sampling rates are measured using mass-flow meters. The filters are collected every 2 weeks.

Filters are analyzed for gross alpha and gross beta radioactivity after an approximate 5-day holding time to allow for the decay of naturally occurring **radon progeny**. They are then composited quarterly for each sampler. The composite samples are analyzed for gamma-emitting radionuclides (which includes ¹³⁷Cs) by gamma **spectrometry** and for ²³⁸Pu, ²³⁹⁺²⁴⁰Pu, and ²⁴¹Am by alpha spectrometry after chemical separation. Samples from nine locations relatively near potential sources of uranium emissions are also analyzed for uranium isotopes by alpha spectrometry. These sampling locations are: BJV (Area 1), RWMS 5 Lagoons (Area 5), Yucca (Area 6), Bunker 9-300 (Area 9), Sedan Crater N (Area 10), Gate 700 South (Area 10), 3545 Substation (Area 16), Gate 510 (Area 25), and Able Site (Area 27).

Atmospheric moisture samples, for measuring tritium in air, are collected by continuously drawing air through molecular sieve desiccant at a flow rate of about 566 cubic centimeters per minute (1.2 ft³ per hour). The air intake is about 1.5 m (5 ft) above ground. A timer measures the operating time. The run time multiplied by the flow rate yields the volume of air sampled, which is about 11 m³ (388 ft³) over a 2-week sampling period. The molecular sieve desiccant is exchanged every 2 weeks. Water is extracted from the desiccant and analyzed for ³H by liquid scintillation counting.

Measured radioactivity in each sample is converted to units per volume of air prior to the reporting described in the following sections.

Quality control air samples (e.g., duplicates, blanks, and spikes) are also routinely incorporated into the analytical suites. Chapter 14 contains a discussion of **quality assurance/quality control** protocols and procedures.

4.1.3 Presentation of Air Sampling Data

The 2022 annual average radionuclide concentrations at each air sampling location are presented in the following sections. The annual average (mean) concentration for each radionuclide is estimated from uncensored analytical results for individual samples; i.e., values less than their analysis-specific **minimum detectable concentrations** are included in the calculation. ²³⁹⁺²⁴⁰Pu, ²³³⁺²³⁴U, and ²³⁵⁺²³⁶U are reported as the sum of isotope concentrations because the analytical method cannot readily distinguish the individual **isotopes**. Where field duplicate measurements are available, plots and summaries use the average of the regular and field duplicate measurements. The subcontract laboratory analyzing the second quarter, 2022, filters for ²⁴¹Am, ²³⁸Pu, ²³⁹⁺²⁴⁰Pu, uranium, and gamma-emitting radionuclides (including ¹³⁷Cs) lost control of the sample identifiers, making it impossible to link

radioanalytical results with specific NNSS sample locations. However, all radioanalytical data were valid insofar as the sample processing and analysis, and the decision was made to use the data in a protective conservative manner. Consequently, all second quarter results are grouped and presented separately from sample locations for ^{241}Am , ^{238}Pu , $^{239+240}\text{Pu}$, and ^{137}Cs data tables and figures. Modifications to the usual data plots and summaries are discussed in the following sections for these radionuclides.

In graphs of concentration data in the following figures, the CL (second column of Table 4-1) or a fraction of the CL is included as a dashed green horizontal line. For graphs displaying individual measurements, the CL or fraction thereof is shown for reference only; assessment of NESHAP compliance is based on annual average concentrations rather than individual measurements.

4.1.4 Air Sampling Results

Radionuclide concentrations in the air samples shown in the following tables and graphs are attributed to the resuspension of legacy contamination in surface soils, the upward flux of ^3H from the soil at sites of past nuclear tests, buried low-level radioactive waste, or NNSS operations. Tables 4-2 through 4-7 and Figures 4-3 through 4-7 include data for all environmental locations that collect air particulate samples (i.e., the North Schooner Station is excluded from these data sets because only atmospheric moisture is sampled at that location). Table 4.8 and Figure 4-10 include data for all environmental locations that collect samples to measure ^3H in atmospheric moisture (Able Site is excluded from this data set because only air particulates are sampled at that location).

4.1.4.1 Gross Alpha and Gross Beta

Gross alpha and gross beta radioactivity measurements in air samples collected in 2022 are summarized in Tables 4-2 and 4-3. CL values do not exist for gross alpha and gross beta concentrations in air because these radioactivity measurements include naturally occurring radionuclides (such as ^{40}K , ^7Be , uranium, thorium, and the *daughter isotopes* of uranium and thorium) in uncertain proportions. However, these analyses are useful in that results can be economically obtained just 5 days after sample collection to identify any increases requiring investigation.

Overall, the mean gross alpha and gross beta results across the network are comparable with those of the past few years.

Table 4-2. Gross Alpha radioactivity in air samples collected in 2022

Area	Station	Number of Samples	Gross Alpha ($\times 10^{-16}$ $\mu\text{Ci}/\text{mL}$)			
			Mean	Standard Deviation	Minimum	Maximum
1	BJY	26	40.38	25.98	-9.55	100.07
3	Bilby Crater	26	38.58	27.39	-6.54	108.62
3	Kestrel Crater N	26	41.36	32.10	-6.35	117.23
3	U-3ax/bl S	26	38.47	25.57	-3.85	97.64
5	DoD	26	37.97	23.53	-4.16	82.30
5	RWMS 5 Lagoons	26	38.48	24.29	-3.61	103.59
6	Yucca*	26	37.61	28.33	-9.44	103.32
9	Bunker 9-300	26	41.66	28.02	-5.08	109.39
10	Gate 700 S*	26	36.97	24.69	-7.50	103.45
10	Sedan N	26	41.59	28.23	-7.92	115.38
11	Pu Valley AMS	26	50.46	43.43	-22.81	192.86
16	3545 Substation*	26	32.15	24.10	-5.20	86.99
18	Little Feller 2 N	26	32.31	26.98	-12.01	96.66
20	Schooner*	26	32.43	24.15	-11.63	84.13
23	Mercury Track*	26	37.68	24.09	-4.51	93.63
25	Gate 510*	26	37.63	25.23	-0.15	98.25
27	ABLE Site	26	33.85	25.63	-10.80	105.59
All Environmental Locations		442	38.21	27.38	-22.81	192.86

* Critical Receptor Station

Table 4-3. Gross Beta radioactivity in air samples collected in 2022

Area	Station	Number of Samples	Gross Beta (x 10 ⁻¹⁵ μ Ci/mL)			
			Mean	Standard Deviation	Minimum	Maximum
1	BJY	26	25.69	6.91	18.45	46.30
3	Bilby Crater	26	25.36	6.33	15.43	44.68
3	Kestrel Crater N	26	25.59	6.98	17.30	46.06
3	U-3ax/bl S	26	25.82	6.98	18.10	46.17
5	DoD	26	26.58	7.29	18.27	49.33
5	RWMS 5 Lagoons	26	26.89	7.27	19.07	48.60
6	Yucca*	26	26.67	7.81	17.76	51.14
9	Bunker 9-300	26	25.27	7.00	18.35	46.93
10	Gate 700 S*	26	24.95	7.28	18.37	46.80
10	Sedan N	26	24.34	6.02	16.89	42.04
11	Pu Valley AMS	26	25.39	7.73	14.96	47.97
16	3545 Substation*	26	23.67	6.55	13.98	43.89
18	Little Feller 2 N	26	23.50	6.48	15.10	42.24
20	Schooner*	26	24.25	7.49	14.36	43.97
23	Mercury Track*	26	25.61	6.66	18.52	43.87
25	Gate 510*	26	26.36	6.80	18.69	45.43
27	ABLE Site	26	24.80	6.46	18.02	44.72
All Environmental Locations		442	25.34	6.90	13.98	51.14

* Critical Receptor Station

4.1.4.2 Americium-241

As noted in Section 4.1.3, it is impossible to associate the second quarter ^{241}Am results with specific NNSS sample locations. In order to ensure all monitoring results are reported, the summary of second quarter results, including field duplicates and the field blank, is grouped and reported separately without location designation in Table 4-4. A summary of results for quarters 1, 3, and 4 is displayed normally in this table by station.

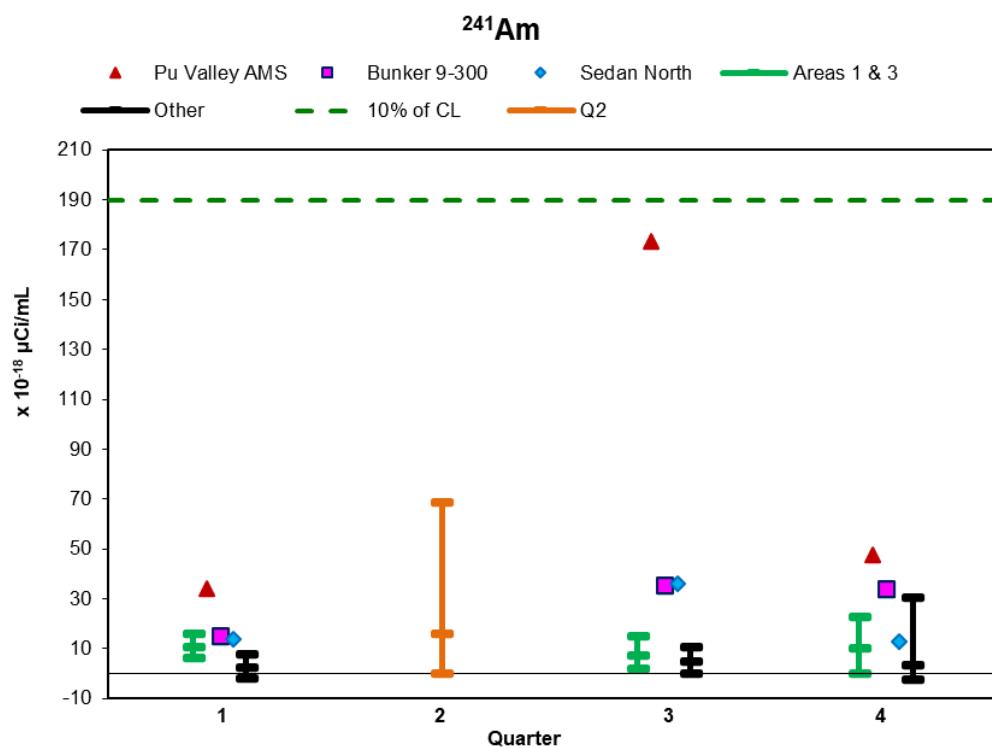

The overall mean ^{241}Am concentration for environmental sampler locations was 13.43×10^{-18} μ Ci/mL in 2022. This is slightly higher than the annual means for the previous 2 years (7.61 and 7.55×10^{-18} μ Ci/mL in 2021 and 2020, respectively), but within the range of annual means for 2011–2019 (8.55 – 15.99×10^{-18} μ Ci/mL). The 2022 average concentration is 0.74% of the CL (shown at the bottom of Table 4-4). In the plots (Figures 4-3, 4-4, and 4-5) for ^{241}Am and other actinides (^{238}Pu and $^{239+240}\text{Pu}$), values for Pu Valley AMS, Bunker 9-300, and Sedan N (Areas 11, 9, and 10, respectively) are shown individually, as these stations tend to have higher measurements. The second quarter values are shown separately without location designation. The highest quarterly value for ^{241}Am was 173.6 at Pu-Valley AMS for quarter 3. Area 1 and Area 3 stations are grouped together, with a green vertical bar extending from the lowest to highest values in the quarter and all other stations are grouped similarly, using black vertical bars. Small dashed lines connect the quarterly mean.

Table 4-4. Concentrations of ^{241}Am in air samples collected in 2022

Area	Station	Number of Samples	$^{241}\text{Am} (\times 10^{-18} \mu\text{Ci/mL})$			
			Mean	Standard Deviation	Minimum	Maximum
1	BJY	3	11.83	6.51	4.34	16.15
3	Bilby Crater	3	4.47	5.84	0.00	11.08
3	Kestrel Crater N	3	10.34	3.51	6.74	13.75
3	U-3ax/bl S	3	11.58	10.58	2.11	23.00
5	DoD	3	12.51	16.18	0.00	30.78
5	RWMS 5 Lagoons	3	2.44	3.84	-1.99	4.72
6	Yucca*	3	5.61	4.57	2.73	10.88
9	Bunker 9-300	3	28.27	11.37	15.18	35.72
10	Gate 700 S*	3	6.82	1.04	5.81	7.89
10	Sedan N	3	20.86	13.32	12.76	36.23
11	Pu Valley AMS	3	85.01	77.01	33.85	173.58
16	3545 Substation*	3	0.64	2.87	-1.86	3.77
18	Little Feller 2 N	3	0.48	3.46	-1.86	4.45
20	Schooner*	3	1.03	1.37	0.00	2.59
23	Mercury Track*	3	4.00	3.52	1.68	8.05
25	Gate 510*	3	2.72	2.42	-0.04	4.44
27	ABLE Site	3	2.94	5.09	0.00	8.81
All second quarter results		20	15.95	19.86	0.00	69.03
All Environmental Locations		71	13.43	24.14	-1.99	173.58

CL = $1900 \times 10^{-18} \mu\text{Ci/mL}$

* Critical Receptor Station

Figure 4-3. Concentrations of ^{241}Am in air samples collected in 2022

4.1.4.3 Plutonium Isotopes

As noted in Section 4.1.3, it is impossible to associate the second quarter plutonium results with sample locations. In order to ensure all monitoring results are reported, the summary of second quarter results (including field duplicates and the field blank) is grouped and reported separately without location designation in Tables 4-5 and 4-6. A summary of results for quarters 1, 3, and 4 is displayed normally in these tables by station. The overall mean concentration for ^{238}Pu at environmental samplers in 2022 ($4.08 \times 10^{-18} \mu\text{Ci/mL}$) (Table 4-5) is within the range of values (0.98 to $5.54 \times 10^{-18} \mu\text{Ci/mL}$) observed over the previous 11 years. The highest 2022 quarterly value ($23.85 \times 10^{-18} \mu\text{Ci/mL}$ in quarter 3) was at Plutonium Valley AMS in Area 11; this is 1.1% of the CL (Figure 4-4).

The $^{239+240}\text{Pu}$ isotopes are of greater abundance and hence greater interest. The overall mean of $61.73 \times 10^{-18} \mu\text{Ci/mL}$ in 2022 is within the range of annual mean values measured 2011 through 2021 (14.31 to $96.46 \times 10^{-18} \mu\text{Ci/mL}$). The locations with the highest quarterly result ($942.31 \times 10^{-18} \mu\text{Ci/mL}$) was Pu Valley AMS in quarter 3. This is less than half of the CL (Table 4-6 and Figure 4-5).

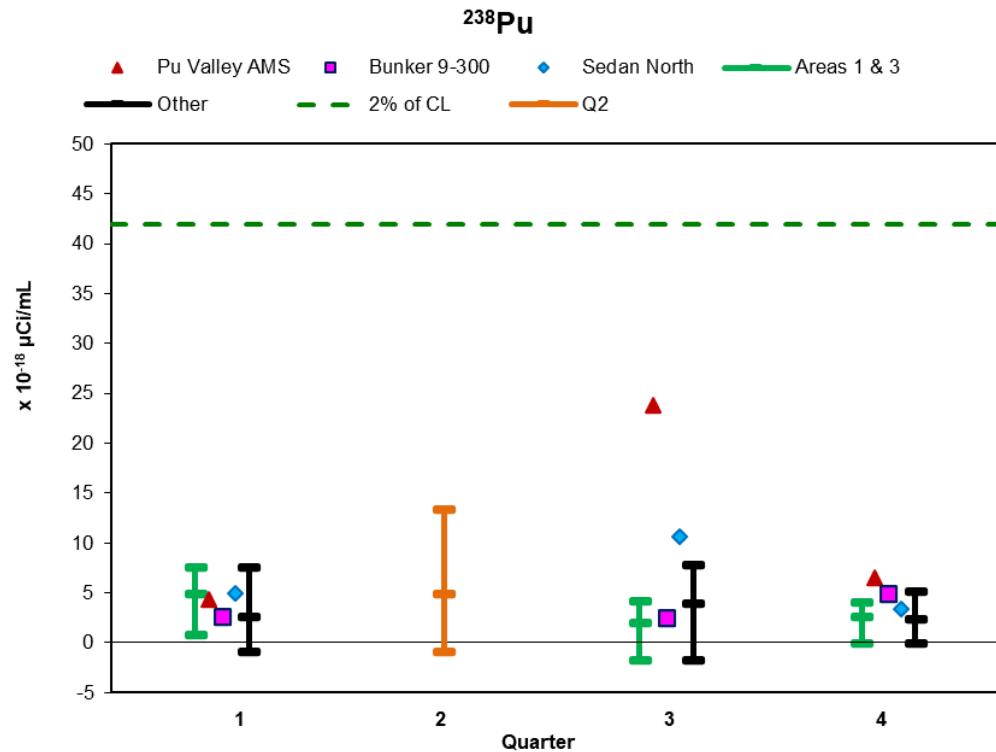

The concentrations of ^{241}Am , $^{239+240}\text{Pu}$, and to some extent ^{238}Pu , often show similar patterns through time at Bunker 9-300, Plutonium Valley AMS, and other areas of known contamination from past nuclear tests. This is because ^{241}Am is the long-lived *daughter product* obtained when ^{241}Pu (a short-lived isotope created along with the more common Pu isotopes) decays by beta emission. Hence $^{239+240}\text{Pu}$ and ^{241}Am (and also ^{238}Pu) tend to be found together in particles of Pu remaining from past tests. The half-life of ^{241}Pu is 14.4 years, whereas that of ^{241}Am is 432 years. Consequently, the amount of ^{241}Am will gradually increase temporarily as ^{241}Pu decays, and then it will decrease.

Table 4-5. Concentrations of ^{238}Pu in air samples collected in 2022

Area	Station	Number of Samples	$^{238}\text{Pu} (\times 10^{-18} \mu\text{Ci/mL})$			
			Mean	Standard Deviation	Minimum	Maximum
1	BJY	3	3.91	1.51	2.68	5.60
3	Bilby Crater	3	3.39	3.07	0.00	5.98
3	Kestrel Crater N	3	2.31	1.49	0.88	3.85
3	U-3ax/bl S	3	3.36	4.66	-1.65	7.58
5	DoD	3	5.19	1.12	4.07	6.30
5	RWMS 5 Lagoons	3	1.79	1.83	0.00	3.66
6	Yucca*	3	3.17	0.71	2.62	3.97
9	Bunker 9-300	3	3.36	1.34	2.56	4.90
10	Gate 700 S*	3	3.01	2.67	0.85	5.99
10	Sedan N	3	6.34	3.81	3.39	10.64
11	Pu Valley AMS	3	11.58	10.68	4.37	23.85
16	3545 Substation*	3	2.01	0.85	1.06	2.67
18	Little Feller 2 N	3	3.63	3.66	1.24	7.85
20	Schooner*	3	4.21	1.84	2.37	6.05
23	Mercury Track*	3	1.41	0.93	0.45	2.30
25	Gate 510*	3	2.44	4.23	-0.84	7.21
27	ABLE Site	3	2.60	2.90	0.43	5.89
All second quarter results		20	4.92	3.69	-0.85	13.46
All Environmental Locations		71	4.08	3.76	-1.65	23.85

CL = $2100 \times 10^{-18} \mu\text{Ci/mL}$

* Critical Receptor Station

Figure 4-4. Concentrations of ^{238}Pu in air samples collected in 2022Table 4-6. Concentrations of $^{239+240}\text{Pu}$ in air samples collected in 2022

Area	Station	Number of Samples	$^{239+240}\text{Pu} (\times 10^{-18} \mu\text{Ci/mL})$			
			Mean	Standard Deviation	Minimum	Maximum
1	BJY	3	31.48	6.78	25.14	38.63
3	Bilby Crater	3	30.97	14.66	14.33	42.00
3	Kestrel Crater N	3	43.56	48.84	7.46	99.14
3	U-3ax/bl S	3	71.74	66.62	33.06	148.66
5	DoD	3	49.06	71.13	2.84	130.97
5	RWMS 5 Lagoons	3	1.49	0.55	1.14	2.12
6	Yucca*	3	11.22	9.46	2.62	21.35
9	Bunker 9-300	3	168.69	86.16	76.85	247.75
10	Gate 700 S*	3	20.20	17.62	2.55	37.78
10	Sedan N	3	60.85	12.13	48.35	72.56
11	Pu Valley AMS	3	425.74	449.06	128.39	942.31
16	3545 Substation*	3	1.63	1.43	0.00	2.67
18	Little Feller 2 N	3	5.42	2.22	2.89	7.02
20	Schooner*	3	2.48	0.44	1.98	2.83
23	Mercury Track*	3	1.94	0.42	1.47	2.26
25	Gate 510*	3	2.02	1.18	1.28	3.38
27	ABLE Site	3	2.74	1.11	1.74	3.94
All second quarter results		20	79.47	124.71	-0.88	352.22
All Environmental Locations		71	61.73	134.75	-0.88	942.31

CL = $2000 \times 10^{-18} \mu\text{Ci/mL}$

* Critical Receptor Station

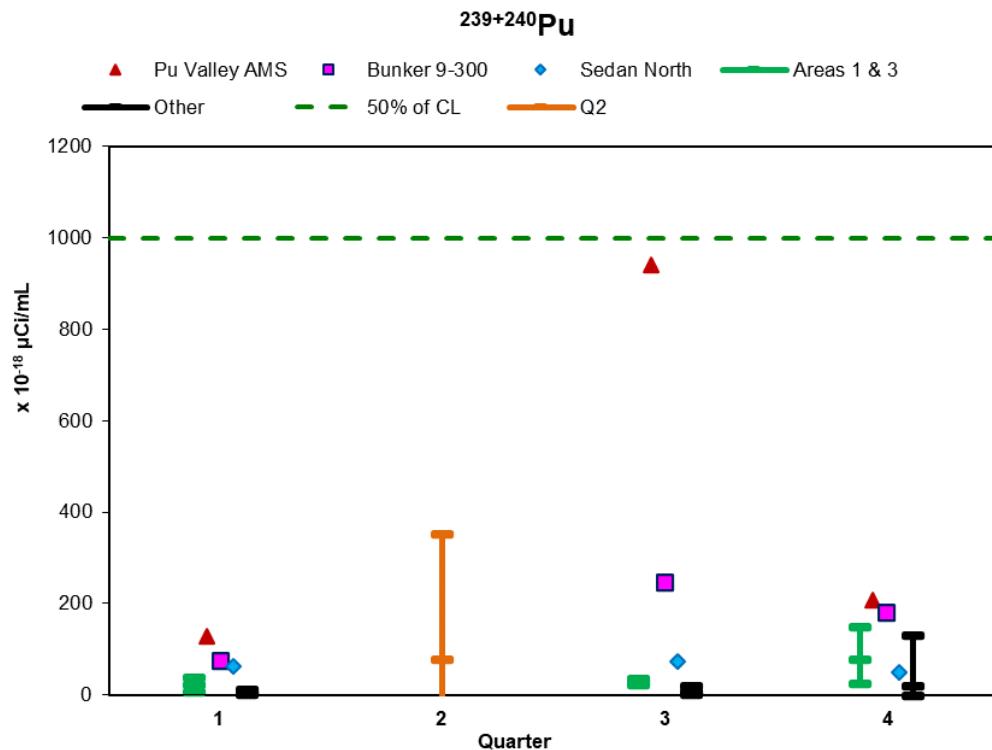


Figure 4-5. Concentrations of $^{239+240}\text{Pu}$ in air samples collected in 2022

Figure 4-6 shows long-term trends in $^{239+240}\text{Pu}$ annual mean concentrations at locations with at least 15-year data histories since 1971. Rather than showing the time histories for all 50 such locations, Figure 4-6 shows the average (geometric mean) trend lines for Areas 1 and 3; Area 5; Areas 7, 9, 10, and 15; and other areas. Areas 1, 3, 7, 9, 10, and 15 in the northeast portion of the NNSS have a legacy of soil contamination from surface and atmospheric nuclear tests and safety experiments. The average annual rates of decline for these groups range from 2.2% (Areas 1 and 3) and 2.5% (Areas 7, 9, 10, and 15) to 10.8% and 10.5% (the Area 5 and other areas groups). This equates to a reduction in $^{239+240}\text{Pu}$ concentration by half every 30.8 years for Areas 1 and 3; 27.2 years for Areas 7, 9, 10, and 15; 6.1 years for Area 5; and 6.3 years for the other areas. Declining rates are not attributable to **radioactive decay** alone, as the physical half-lives of ^{239}Pu and ^{240}Pu are 24,110 and 6,537 years, respectively. The decreases are due primarily to immobilization and dilution of Pu particles in surface soil, resulting in reduced concentrations re-suspended in air. The half-life of the less abundant ^{238}Pu is 88 years.

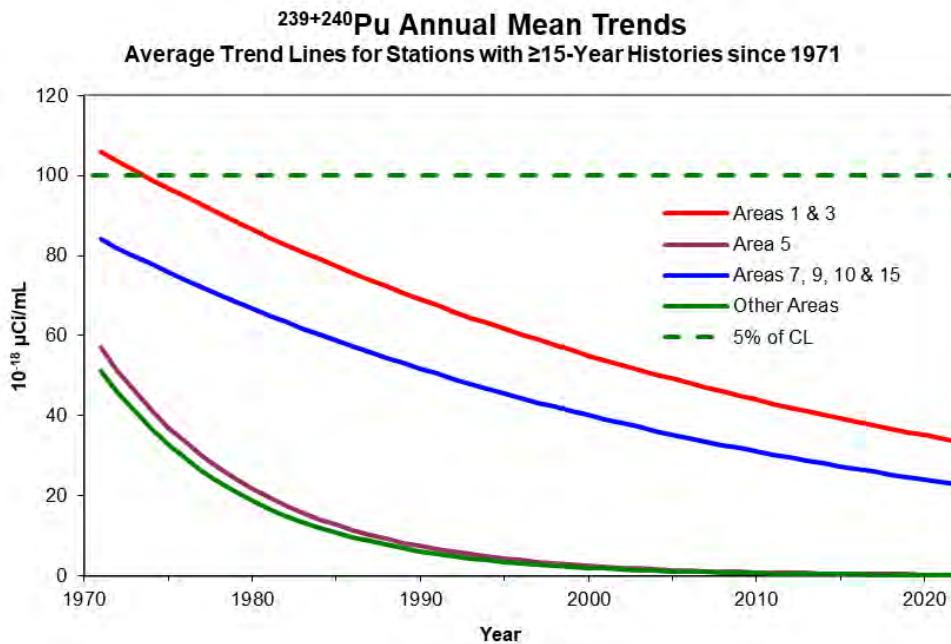


Figure 4-6. Average trends in $^{239+240}\text{Pu}$ in air annual means, 1971-2022

4.1.4.4 Cesium-137

Cesium-137 was detected in three samples during 2022. The third quarter value at U-3ax/bl S was 19.7% higher than its MDC, 1.5% of the CL; the third quarter value at Gate 700 S was 13.0% higher than its MDC, 1.0% of the CL; and one location in the second quarter had a value 190.3% above its MDC, 3.8% of the CL. The mean, standard deviation, minimum, and maximum for all sample locations are listed in Table 4-7. The maximum quarterly concentration was less than 3.9% of the CL at all locations. Figure 4-7 shows all stations grouped together by quarter with a vertical bar extending from the lowest to the highest value for the quarter.

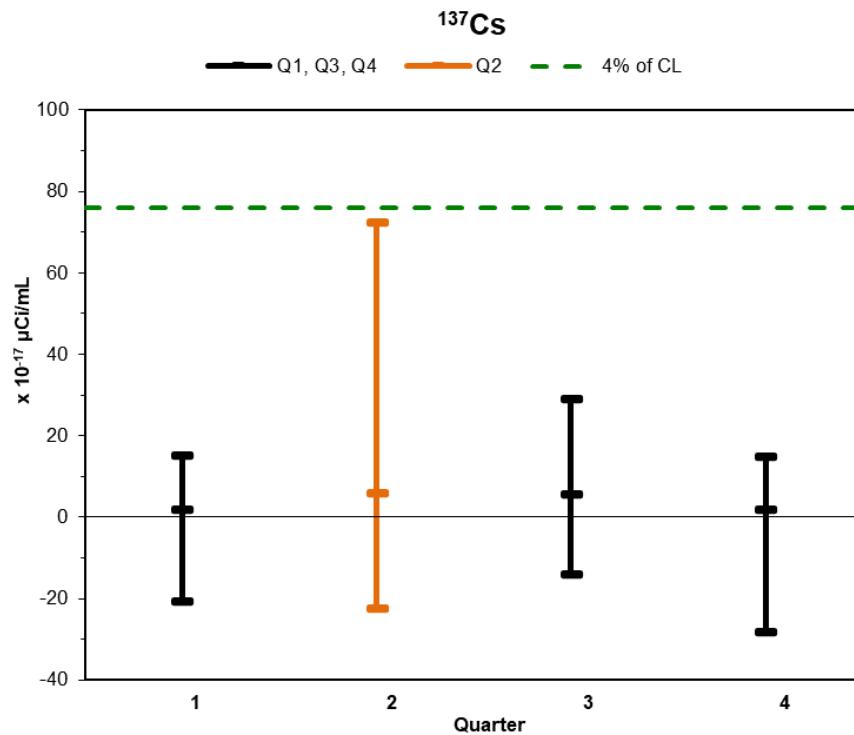


Figure 4-7. Concentrations of ^{137}Cs in air samples collected in 2022

Table 4-7. Concentration of ^{137}Cs in air samples collected in 2022

Area	Station	Number of Samples	^{137}Cs ($\times 10^{-17}$ $\mu\text{Ci/mL}$)			
			Mean	Standard Deviation	Minimum	Maximum
1	BJY	3	6.18	3.70	3.32	10.36
3	Bilby Crater	3	-3.27	10.12	-14.95	2.81
3	Kestrel Crater N	3	7.14	13.79	-8.78	15.15
3	U-3ax/bl S	3	16.40	11.09	10.00	29.21
5	DoD	3	-0.55	6.30	-7.79	3.64
5	RWMS 5 Lagoons	3	-0.98	11.13	-13.79	6.34
6	Yucca*	3	0.14	15.67	-17.16	13.36
9	Bunker 9-300	3	7.11	7.62	1.13	15.69
10	Gate 700 S*	3	12.91	5.06	8.45	18.41
10	Sedan N	3	2.43	8.37	-6.65	9.84
11	Pu Valley AMS	3	-14.94	11.87	-28.01	-4.82
16	3545 Substation*	3	4.25	4.55	-0.97	7.40
18	Little Feller 2 N	3	7.88	8.20	-0.75	15.57
20	Schooner*	3	-5.25	13.43	-20.46	4.99
23	Mercury Track*	3	4.29	4.43	0.62	9.21
25	Gate 510*	3	1.31	11.67	-9.63	13.59
27	ABLE Site	3	10.26	6.40	3.26	15.80
All second quarter results		20	6.41	19.30	-22.27	72.57
All Environmental Locations		71	4.14	13.64	-28.01	72.57

CL = 1900×10^{-17} $\mu\text{Ci/mL}$

* Critical Receptor Station

4.1.4.5 Uranium Isotopes

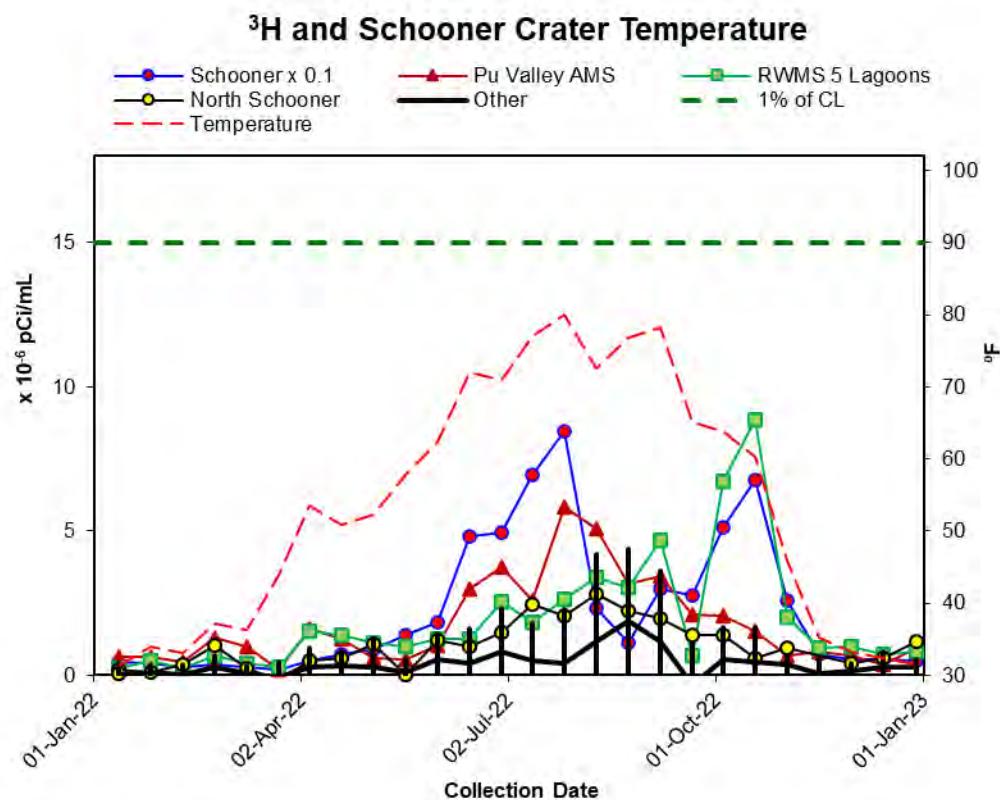
Uranium analyses were performed in 2022 for samples collected near sites where exercises using uranium (predominately DU) have been conducted. Samples from quarters 1, 3, and 4 from the nine samplers identified in Section 4.1.2, as well as those from all quarter 2 locations, were analyzed. Uranium is also a naturally occurring radionuclide, so tests were conducted to determine if man-made uranium materials are present. Ratios of the U isotopes ($^{233+234}\text{U} / ^{238}\text{U}$ and $^{235+236}\text{U} / ^{238}\text{U}$) were compared among the samplers and compared with ratios found in blank filters. No evidence of DU or man-made uranium materials was observed in these comparisons.

4.1.4.6 Tritium

Tritium concentrations in air vary widely across the NNSS (Table 4-8). As in previous years, the sample location with the highest annual mean concentration is at the Schooner sampler (22.52×10^{-6} picocuries per milliliter [pCi/mL]); this is 1.5% of the CL. Figure 4-8 shows these data with Schooner results plotted at one-tenth of their actual values to allow the variation at other locations to be visible. Mean concentrations at other locations are less than 0.15% of the CL.

Tritium released to the environment quickly oxidizes into tritiated water. Tritium from past nuclear tests or buried waste diffuses into the surrounding soil and rubble until it moves to the surface and is emitted either through evaporation or plant transpiration. Because of this, higher ^3H concentrations in air are generally observed in the summer months. Increased ^3H emissions are likely due to the movement of relatively deep soil moisture (> 2 m) containing relatively high concentrations of ^3H to the surface when temperatures are the highest and when shallow (< 2 m) soil moisture is the lowest. During the summer months, rainfall can temporarily suppress these emissions by diluting ^3H in the atmosphere and in the shallow soil moisture. Figure 4-8 shows the relationship between ^3H and average daily temperature at Schooner Crater. Figure 4-9 shows the amount of precipitation occurring during monitoring periods at the Schooner sample location. In 2022, there was a large amount of precipitation in early August, reflected in the decrease in ^3H seen in Figure 4-9. The points plotted in these figures show the average ^3H concentrations in air for the 2-week periods. The average temperature and total precipitation are from the Schooner Crater meteorological station for those periods.

Figure 4-10 shows average (geometric mean) long-term trends for the annual mean ^3H levels at locations with at least 7-year histories since 1999, by area groups. Tritium levels have been decreasing fairly rapidly at most locations; the overall average decline rate for samplers other than Schooner is around 11.1% per year. The decline rate for Schooner has been about 12.8% per year since 2002. These correspond to half-lives in the environment of approximately 5.9 and 6.1 years, respectively. The lowest two lines end up at 0.03 and 0.04 respectively in 2022.


4.1.4.6.1 Tritium Monitoring at the North Las Vegas Facility

In 1995, a container of tritium-aluminum foils was opened in Building A-01 at the North Las Vegas Facility (NLVF) and emitted at least 1 curie (Ci) of tritium into a basement area used as a fixed radiation source range (U.S. Department of Energy 1996). Constant sampling of tritium in air began immediately and continued through 1998. During the years 1999 through 2022, air sampling for tritium in the basement was conducted intermittently. For Calendar Year (CY) 2022, the results of two atmospheric moisture samples were 205 picocuries per cubic meter (pCi/m³) for the sample collected April 12–19, 2022, and 222 pCi/m³ for the sample collected September 15–26, 2022. The average of these sample results (224 pCi/m³) was multiplied by the room ventilation rate to estimate the total annual emission (2.25 mCi/yr). This is within the range of values observed over the past 10 years.

Table 4-8. Concentrations of ${}^3\text{H}$ in air samples collected in 2022

Area	Station	Number of Samples	${}^3\text{H}$ Concentration ($\times 10^{-6}$ pCi/mL)			
			Mean	Standard Deviation	Minimum	Maximum
1	BJY	26	0.44	0.64	-0.35	3.14
3	Bilby Crater	26	0.34	0.64	-0.63	2.92
3	Kestrel Crater N	26	0.24	0.45	-1.52	0.99
3	U-3ax/bl S	26	0.49	0.61	-0.30	2.58
5	DoD	26	1.06	1.04	-0.03	4.18
5	RWMS 5 Lagoons	26	1.92	2.06	0.23	8.86
6	Yucca*	26	0.34	0.58	-0.44	2.07
9	Bunker 9-300	26	0.47	0.90	-0.41	4.37
10	Gate 700 S*	26	0.26	0.74	-0.74	2.67
10	Sedan N	26	0.69	0.75	-0.25	2.86
11	Pu Valley AMS	26	1.75	1.50	0.17	5.86
16	3545 Substation*	26	0.17	0.54	-0.46	2.49
18	Little Feller 2 N	26	0.31	0.56	-0.20	1.98
20	North Schooner	25	1.03	0.80	-0.17	2.81
20	Schooner*	26	22.52	24.25	2.16	84.77
23	Mercury Track*	26	0.18	0.61	-0.95	2.30
25	Gate 510*	26	0.23	0.47	-1.40	1.27
All Environmental Locations		441	1.91	7.82	-1.52	84.77

CL = 1500×10^{-6} pCi/mL
* Critical Receptor Station

Figure 4-8. Concentrations of ${}^3\text{H}$ in air samples collected in 2022 with the average air temperature near the Schooner sampler during the collection period

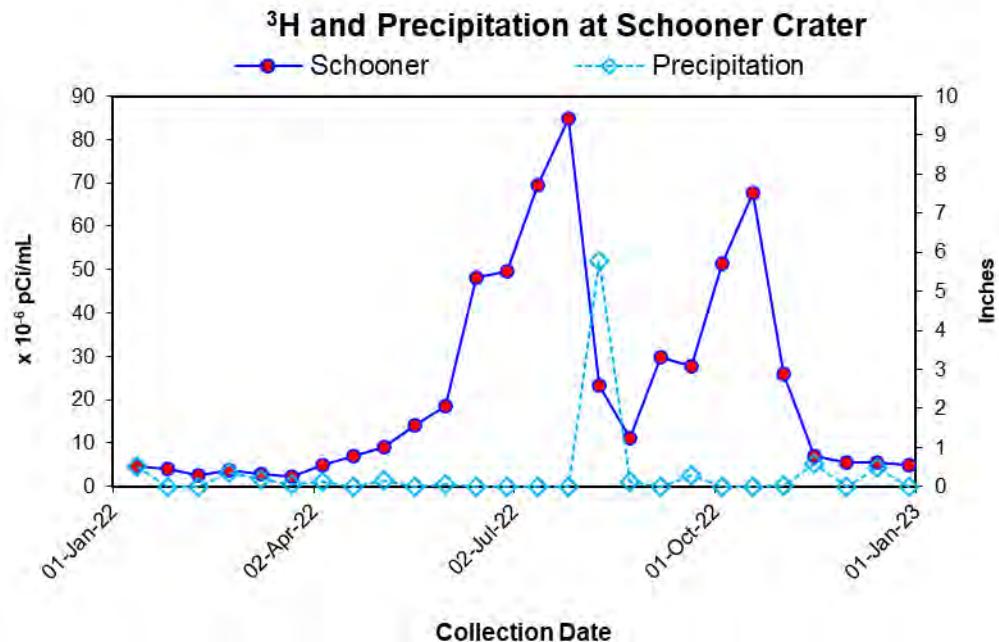


Figure 4-9. Concentrations of ${}^3\text{H}$ in air and amount of precipitation at Schooner during the sample collection period

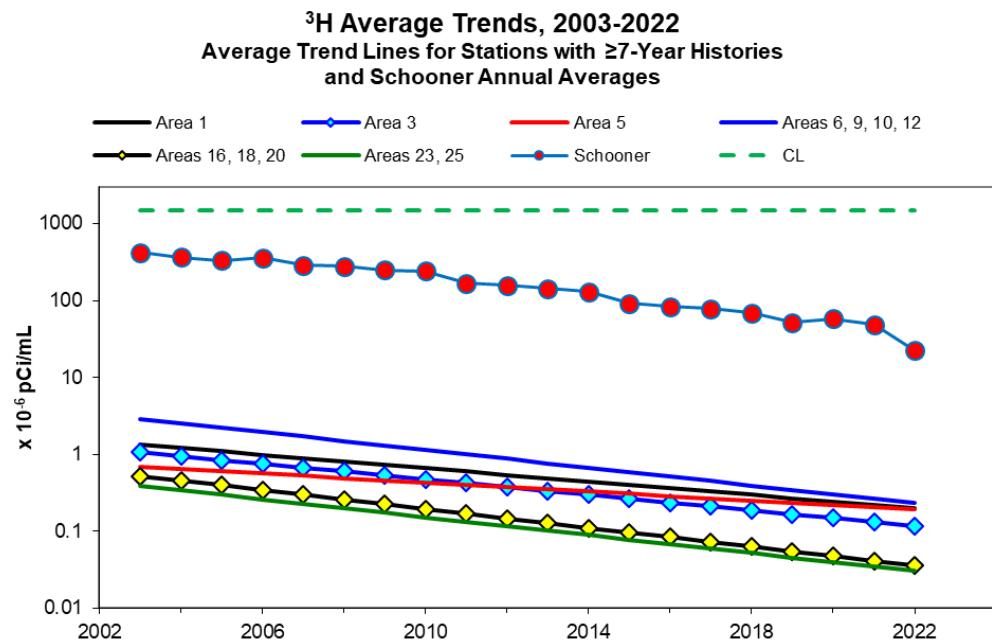


Figure 4-10. Average trend lines for annual mean ${}^3\text{H}$ air concentrations for Area groups, 2003-2022

4.1.5 Unplanned Releases

There were no unplanned releases of radionuclides during 2022. Seven wildland fires were reported on the NNSS in 2022. All of these were less than one acre, and none resulted in a release of radionuclides.

4.1.6 Estimate of Total NNSS Radiological Atmospheric Releases

Each year, existing operations that have the potential for airborne emissions of radioactive materials are reviewed. Quantities of radionuclides released during these operations and from legacy contamination sites are measured or calculated to obtain the total annual quantity of radiological atmospheric releases from the NNSS. The estimates and methods are described in detail in the NESHAP annual report for 2022 (Mission Support and Test Services, LLC [MSTS], 2023).

Total emissions in 2022, by radionuclide, are shown in Table 4-9. Radionuclide emissions by source are shown in Table 4-10. Their locations in relation to critical receptor air monitoring locations are shown in Figure 4-1.

In 2022, an estimated 530 Ci of radionuclides were released as air emissions. Of this amount, about 62% (330 Ci) was from the very short-lived (15.3 minute) metastable xenon-135 (Table 4-9 lists radionuclide name, half-life, and amount emitted). Short-lived radionuclides decay very quickly and are essentially not available to contribute dose to the public at the 31- to 62-kilometer (19- to 38-mile) distances over which they have to travel. Of the total emission, noble gases make up about 76.9%, tritium makes up about 4.9%, and the radionuclides in the “Other” category (Table 4-9) make up about 18.2%.

Table 4-9. Total estimated NNSS radionuclide emissions for 2022

Radionuclide	Symbol	Half-life ^(a)	Total Quantity (Ci)
Primary Radionuclides			
Tritium	³ H	12.32 years (yr)	26
Plutonium-238	²³⁸ Pu	87.7 yr	0.039
Plutonium-239+240	²³⁹⁺²⁴⁰ Pu	24,110 yr	0.29
Americium-241	²⁴¹ Am	432 yr	0.070
Noble Gases			
Argon-41	⁴¹ Ar	109.61 minutes (min)	1.1
metastable Krypton-85	^{85m} Kr	4.48 hours (h)	20
Xenon-127	¹²⁷ Xe	36.3 days (d)	2.2
Xenon-133	¹³³ Xe	5.24 d	3.6
metastable Xenon-133	^{133m} Xe	2.19 d	0.25
Xenon-135	¹³⁵ Xe	9.14 h	50
metastable Xenon-135	^{135m} Xe	15.29 min	330
Other			
Strontium-90	⁹⁰ Sr	28.79 yr	0.049
Antimony-125	¹²⁵ Sb	2.76 yr	0.00019
Tellurium-132	¹³² Te	3.2 d	4.2
Iodine-131	¹³¹ I	8.02 d	1.2
Iodine-133	¹³³ I	20.8 h	22
Iodine-135	¹³⁵ I	6.57 h	67
Cesium-137	¹³⁷ Cs	30.17 yr	0.048
Barium-140	¹⁴⁰ Ba	12.75 d	1.4
Lanthanum-140	¹⁴⁰ La	1.68 d	0.00000011
Samarium-153	¹⁵³ Sm	1.94 d	0.23
Europium-152	¹⁵² Eu	13.54 yr	0.008
Europium-154	¹⁵⁴ Eu	8.59 yr	0.000067
Depleted Uranium	DU	>159,200 yr	0.12

(a) Source: International Commission on Radiological Protection (2008).

Table 4-10. Radiological atmospheric releases from the NNSS for 2022

Emission Source ^(a)	Emission Control	Radionuclide	Quantity (Ci/y)
Historical Contamination Sites			
Grouped Area Sources—All NNSS Areas	None	³ H ⁶⁰ Co ⁹⁰ Sr ¹³⁷ Cs ¹⁵² Eu ¹⁵⁴ Eu ²³⁸ Pu ²³⁹⁺²⁴⁰ Pu ²⁴¹ Am	11 0.00016 0.048 0.047 0.008 0.000067 0.000038 0.039 0.29
E-Tunnel Ponds	None	³ H	3.7
Building A-01, basement ventilation, NLVF	None	³ H	0.0023
2022 Operations			
BEEF ^(b)	None	DU	0.049
Area 3 RWMS	Soil cover over waste	³ H	7.1
Area 5 RWMS	Soil cover over waste	³ H	3.9
Area 23 Mission Support Buildings ^(c)	None	³ H	0.0000090
DAF ^(d)	HEPA filter ^(e)	²³⁹ Pu	0.0017
NCERC ^(f)	HEPA filter	³ H	0.0000069
		⁴¹ Ar	1.1
		^{85m} Kr	20
		⁹⁰ Sr	0.0016
		¹²⁵ Sb	0.00019
		¹³² Te	4.2
		¹³¹ I	1.2
		¹³³ I	22
		¹³⁵ I	67
		¹³³ Xe	3.6
		^{133m} Xe	0.25
		¹³⁵ Xe	50
		^{135m} Xe	330
		¹³⁷ Cs	0.0016
		¹⁴⁰ Ba	1.4
		¹⁴⁰ La	0.00000011
		¹⁵³ Sm	0.23
Tunnel Operations	None	DU	0.075
		³ H	2.2

(a) All locations are on the NNSS except for Building A-01

(b) Big Explosives Experiment Facility

(c) Dominated by activity in samples handled in Building 23-652 during 2020. A higher number of samples were handled in 2020 compared with 2022, so this was used as a conservatively high estimate for 2022.

(d) Device Assembly Facility

(e) **High-efficiency particulate air (HEPA) filter**

(f) National Criticality Experimental Research Center

4.1.7 Radiological Emissions Compliance

Dose from NNSS air emissions of radionuclides is described in detail in the NESHAP annual report for 2022 (MSTS 2023). The NNSS demonstrates compliance with dose limits using environmental measurements of radionuclide air concentrations near the NNSS borders and near the center of the NNSS. This critical receptor method [40 CFR 61.93(b)(5) and (g)] has been used to demonstrate compliance with the 40 CFR 61.92 dose standard since 2002. The six critical receptor locations are listed in Table 4-11 and displayed in Figure 4-2.

As described in Section 4.1.3, the subcontract laboratory analyzing the second quarter 2022 filters lost control of the sample identifiers, making it impossible to link results with sample locations. To ensure the annual average air concentrations were not underestimated, the maximum result for detected radionuclides were divided by the smallest sample volume, giving the maximum air concentration possible. These values (Table 4-11) were used as the second quarter result for all sample locations, acknowledging that they are overestimated.

Table 4-11. Maximum Concentration of Detected Man-Made Radionuclides in Second Quarter 2022 Samples

Radionuclide	Maximum Result (pCi/Sample)	Minimum Sample Volume for Quarter (m ³)	Maximum Possible Air Concentration (pCi/m ³)
¹³⁷ Cs	7.17	9880	7.26E-04
²³⁸ Pu	0.13	9880	1.35E-05
²³⁹⁺²⁴⁰ Pu	3.48	9880	3.52E-04
²⁴¹ Am	0.68	9880	6.90E-05

The following radionuclides from NNSS-related activities were detected at one or more of the critical receptor samplers: ²⁴¹Am, ¹³⁷Cs, ³H, ²³⁸Pu, and ²³⁹⁺²⁴⁰Pu. All of the measured concentrations were well below their CLs. No man-made uranium isotopes were detected above levels found in blank filters (Section 4.1.4.5). The annual average concentration of each measured man-made radionuclide at each of the six critical receptor samplers is divided by its respective CL (Table 4-1) to obtain a “fraction of CL.” If the average value is negative due to background measurements being higher than the low result, the negative value is set to zero to ensure the ratio to the CL is not negative. These are then summed for each sampler. The use of second quarter maximum air concentrations for detected radionuclides in calculation of annual average air concentrations resulted in sum of fractions higher than normal, yet still more than 10 times below the standard (Table 4-12). This demonstrates that the NESHAP dose limit of 10 mrem/yr at these critical receptor locations was not exceeded.

Table 4-12. Sums of fractions of compliance levels for man-made radionuclides at critical receptor samplers in 2022

Radionuclides Included in Sum of Fractions	NNSS Area	Sampling Location	Sum of Fractions of Compliance Levels (CLs) Based on Average of Q1, Q3, and Q4	Sum of Fractions of CLs Based on Average of Q1, Q3, Q4, and Maximum of Q2
	6	Yucca	0.0104	0.0721
	10	Gate 700 S	0.0221	0.0809
³ H, ¹³⁷ Cs, ²³⁸ Pu, ²³⁹⁺²⁴⁰ Pu, and ²⁴¹ Am	16	3545 Substation	0.0045	0.0676
	20	Schooner	0.0188	0.0800
	23	Mercury Track	0.0061	0.0689
	25	Gate 510	0.0044	0.0676

As a secondary measure of NNSS compliance with air pathway dose limits, the radioactive air emissions from each NNSS sample location in Table 4-10 were modeled using the *Clean Air Package, 1988*, model (CAP88-PC, Version 4.1; EPA 2019). Data for frequency distributions of wind speed, direction, and stability class from CY 2022 meteorological stations on the NNSS were provided by the National Oceanic and Atmospheric Administration, Air Resources Laboratory, Special Operations and Research Division. CAP88-PC predicted annual dose (mrem/yr) from each emission source to each receptor was calculated. The highest value (*maximally exposed individual*) is

predicted to be 0.061 mrem/yr for a person residing on the Nevada Test and Training Range (Chapter 9 has a discussion of dose to the public from all pathways).

Nearly all radionuclides detected by environmental air samplers in 2022 appear to be from two sources: (1) legacy deposits of radioactivity on and in the soil from past nuclear tests, and (2) the upward flux of ^3H from the soil at sites of past nuclear tests and low-level radioactive waste burial. Long-term trends of $^{239+240}\text{Pu}$ and ^3H in air continue to show a decline with time. Radionuclide concentrations in plants and animals on the NNSS and their potential impact are discussed in Chapter 8.

4.2 Nonradiological Air Quality Monitoring and Assessment

Air Quality Assessment Program Goals

Ensure NNSS operations comply with all requirements of the current air quality permit issued by the State of Nevada. Ensure emissions of criteria air pollutants (sulfur dioxide [SO_2], nitrogen oxides [NO_x], carbon monoxide [CO], volatile organic compounds [$VOCs$], and particulate matter) and emissions of hazardous air pollutants do not exceed limits established under National Ambient Air Quality Standards (NAAQS) and NESHAP, respectively. Ensure emissions of permitted NNSS equipment comply with the opacity criteria set by NAAQS and New Source Performance Standards (NSPS). Ensure NNSS operations comply with asbestos abatement reporting requirements under NESHAP. Document usage of ozone-depleting substances (ODS) to comply with Title VI of the CAA.

NNSS operations that are potential sources of air pollution include aggregate production, surface disturbance (e.g., construction), release of fugitive dust from driving on unpaved roads, use of fuel-burning equipment, open burning, venting from bulk fuel storage facilities, explosives detonations, and releases of various chemicals during testing. Air quality assessments are conducted to document compliance with the current State of Nevada air quality permit that regulates specific operations or facilities on the NNSS. The assessments mainly address nonradiological air pollutants. The State of Nevada has adopted the CAA standards, which include NESHAP, NAAQS, and NSPS. NESHAP compliance with radionuclide emissions monitoring and with public dose limits are presented in Section 4.1. Compliance with all other CAA air quality standards is addressed in this section. Data collection, opacity readings, recordkeeping, and reporting activities on the NNSS are conducted to meet the specific program goals.

4.2.1 Permitted NNSS Facilities

NNSA/NFO maintains a Class II Air Quality Operating Permit (AP9711-2557.02) for NNSS activities. State of Nevada Class II permits are issued for sources of air pollutants considered “minor,” i.e., where annual emissions do not exceed 100 tons of any single **criteria pollutant**, 10 tons of any single **hazardous air pollutant (HAP)**, or 25 tons of any combination of all HAPs. The NNSS facilities regulated by permit AP9711-2557.02 include the following:

- Approximately 13 facilities/131 pieces of equipment in Areas 1, 2, 5, 6, 11, 12, 18, 19, 20, 23, 25, 26, 27, and 29
- Chemical releases at the Nonproliferation Test and Evaluation Complex (NPTEC) in Area 5 and at Port Gaston in Area 26
- Site-wide chemical releases (conducted throughout the NNSS)
- Experiments at BEEF in Area 4
- Explosives Ordnance Disposal Unit (EODU) in Area 11
- Explosives activities sites at NPTEC in Area 5; High Explosives Simulation Test (HEST) in Area 14; Test Cell C, Calico Hills, and Army Research Laboratory (ARL) in Area 25; and Port Gaston in Area 26

4.2.2 Permit Maintenance Activities

An application to renew the NNSS air permit (AP9711-2557.01) was submitted to the Nevada Division of Environmental Protection (NDEP) in 2019 prior to the permit’s expiration. Operations at the NNSS continued under a permit application “shield,” as the Nevada Administrative Code Chapter 445B, “Air Controls,” allows for the continued operation of a stationary source until the permit is renewed or denied. The new permit was issued August 2, 2022, and will expire June 25, 2024.

A permit revision was submitted August 2022, and was issued November 30, 2022, for the following:

- Added one emergency generator to the Area 1 U1a communications building
- Added one fire pump to the Area 1 U1a pump house
- Added one general duty generator to the Area 4 BEEF
- Added one general duty generator to the Area 11 Dense Plasma Focus facility

- Added one general duty generator to the Area 25 Engine Maintenance, Assembly, and Disassembly (facility) project
- Added one general duty generator to Area 23, Building 23-461
- Removed Area 1 Batch Plant
- Updated System 122, Silo 8 Filter Vent to 24D to reflect actual conditions
- Revised the name of System 123 to Portable Stemming Operation Controlled by Baghouse DC-020.

4.2.3 Emissions of Criteria Air Pollutants and Hazardous Air Pollutants

A source's regulatory status is determined by ***potential to emit (PTE)***, the maximum number of tons of criteria air pollutants and nonradiological HAPs it may emit in a 12-month period if the source were operated for the maximum number of hours and at the maximum production amounts specified in the source's air permit. The PTE is specified in an Air Emissions Inventory of all emission units. NDEP uses an online electronic reporting system, the State and Local Emissions Inventory System (SLEIS), for annual emissions reporting. Information reported electronically includes the actual annual operational information and the calculated emissions of the criteria air pollutants and HAPs for all permitted emission units used within the calendar year. The state uses the information to determine permit fees and to verify that emissions do not exceed the PTEs. Based on operational data and corresponding SLEIS calculations of emissions for CY 2022, PTEs for permitted facilities and equipment were not exceeded.

Unless specifically exempted, the open burning of any combustible refuse, waste, garbage, or oil is prohibited. Open burning for other purposes is allowed if approved in advance by the state issuance of an Open Burn Variance. For the NNSS, two Open Burn Variances are maintained and renewed annually. These variances are issued for fire extinguisher training and for support-vehicle live-fire training activities. In 2022, 20 fire extinguisher training sessions and 8 live-fire training sessions using wooden pallets were conducted at the NNSS. The fire extinguisher training sessions used a diesel/gasoline system and a propane system, since propane burns result in greatly reduced hydrocarbon emissions. Quantities of criteria air pollutants produced by open burns are not required to be calculated or reported.

Table 4-13. Criteria air pollutants and HAPs released (in tons^[a]) on the NNSS over the past 5 years

Pollutant	2018	2019	2020	2021	2022
Particulate Matter (PM10) ^(b)	0.45	0.71	0.20	1.67	2.81
Carbon Monoxide (CO)	0.61	1.48	0.10	1.74	1.79
Nitrogen Oxides (NOx)	2.8	3.27	0.34	2.52	3.57
Sulfur Dioxide (SO ₂)	0.18	0.36	0.02	0.56	0.47
Volatile Organic Compounds (VOCs)	1.83	5.25	4.26	5.52	5.37
Hazardous Air Pollutants (HAPs) ^(c)	0.01	0.01	0.01	7.0 x 10 ⁻⁵	0.025

(a) For metric tons, multiply tons by 0.9072.

(b) Particulate matter equal to or less than 10 microns in diameter.

(c) The site-wide PTE for HAPs is 7 tons per individual HAP and 18 tons for all.

4.2.4 Performance Emission Testing and State Inspection

No performance emission testing was required or performed for any of the emission units in 2022. No state air inspections were conducted in 2022.

4.2.5 Opacity Readings

Visual opacity readings are conducted in accordance with permit and regulatory requirements. Personnel who take opacity readings are certified semiannually. In 2022, eight NNSS employees were certified. Seventeen visible emission-opacity reading were conducted during CY 2022. No observed emissions exceeded the permitted opacity limits.

4.2.6 Chemical Releases and Detonations Reporting

The NNSS air permit regulates the release of chemicals at specific locations under three separate “systems”: NPTEC in Area 5 (System 29), site-wide releases throughout the NNSS (System 81), and Port Gaston in Area 26 (System 95). The types and amounts of chemicals that may be released vary depending on the system. In 2022, chemical release activities were conducted at NPTEC, and no HAPs were released. The annual Summary Report for chemical releases at NPTEC was completed for activities conducted in 2022. This report was submitted to NDEP in February 2023, as required. No chemical releases took place at any of the other chemical release-permitted facilities or locations on the NNSS.

Near-surface explosives detonations can take place at eight locations on the NNSS (BEEF in Area 4; EODU in Area 11; NPTEC in Area 5; Port Gaston in Area 26; HEST in Area 14; and Test Cell C, Calico Hills, and ARL in Area 25). BEEF is permitted to detonate large quantities of explosives (up to 41.5 tons per detonation with a limit of 50.0 tons per year). ARL, EODU, and NPTEC are permitted to detonate small quantities of explosives (up to 0.5 tons per detonation with a limit of 10.0 tons per year), while Port Gaston, HEST, Test Cell C, and Calico Hills are permitted to detonate explosives up to 1 ton per detonation with a limit of 10 tons per year. Permitted limits exist also for the amounts of criteria air pollutant and HAP emissions generated by the detonations. In 2022, explosives were detonated at BEEF, and no permit limits were exceeded. The annual Summary Report for activities at BEEF was completed for activities conducted in 2022. This report was submitted to NDEP in February 2023, as required. No detonations took place at any of the other detonation-permitted explosives facilities.

4.2.7 Ozone-depleting Substances Recordkeeping

At the NNSS, refrigerants containing ODS are mainly in air conditioning units in vehicles, buildings, refrigerators, drinking water fountains, vending machines, and laboratory equipment. R-22, a Class II ODS, is being phased out through procurement of new systems using R-410-A, a non-ODS refrigerant, and through replacement of old R-22 equipment with new R-410-A equipment. Projects were conducted in 2022 to replace R-22 air conditioning units on three large buildings with new R-410 units. As ODS-containing air conditioning systems fail in vehicles, they are replaced with non-ODS units. Halon 1211 and 1301, classified as ODS, have been used in the past in fire extinguishers and deluge systems, but all known occurrences of these halons have been removed from the NNSS. ODS recordkeeping requirements applicable to NNSS operations include maintaining evidence of technician certification and maintaining for 3 years records of recycling/recovery equipment approval, servicing records for appliances containing 22.7 kilograms (50 pounds) or more of refrigerant, and the amount and type of refrigerant sent off site for reclamation.

4.2.8 Asbestos Abatement

A Notification of Demolition and Renovation Form is submitted to the EPA at least 10 working days prior to the start of a demolition or renovation project if the quantities of asbestos-containing material (ACM) to be removed are estimated to equal or exceed 260 linear ft, 160 square ft, or 35 ft³. Small asbestos abatement projects are conducted during the year with the removal of lesser quantities of ACM and a Notification of Demolition and Renovation Form is not required.

Twenty-three Notification of Demolition and Renovation Forms were submitted in 2022. Two notifications were annual notifications for routine steamline and waterline repair operations that occur at the NNSS. Twenty notifications were for demolition of a facility. One notification was for a renovation activity at the NNSS. ACM was buried in the Area 10 or Area 23 **solid waste** disposal site as per each project’s work plan. Friable materials are segregated in a defined section of the landfill.

The recordkeeping requirements for asbestos abatement activities include maintaining air and bulk sampling data records, abatement plans, and operations and maintenance activity records for up to 75 years; and maintaining location-specific records of ACM for a minimum of 75 years. Compliance is verified through periodic internal management assessments. Asbestos abatement records continue to be maintained as required.

4.2.9 Fugitive Dust Control

The NNSS Class II Air Quality Operating Permit states that the best practical methods should be used to prevent particulate matter from becoming airborne prior to the construction, repair, demolition, or use of unpaved or untreated areas. At the NNSS, the main method of dust control is the use of water sprays. In 2022, field personnel observed operations throughout the NNSS for the occurrence of excessive fugitive dust, and water sprays were used to control dust at sites where grading, trenching, and digging activities occurred in Areas 1, 2, 5, 6, 12, 23, and 25.

Off the NNSS, all NNSA/NFO surface-disturbing activities that cover 5 or more acres are regulated by stand-alone Class II Surface Area Disturbance (SAD) permits issued by the state. No SAD permits were issued in 2022.

4.2.10 Environmental Impact of Nonradiological Emissions

In 2022, NNSS activities produced a total of 17.14 tons of criteria air pollutants and 0.025 tons of HAPs. These small quantities had little, if any, impact on air quality on or around the NNSS. NNSS air pollutant emissions are very low compared to the estimated daily releases from point sources in Clark County, Nevada. For example, the average annual projected emissions of NO_x in Clark County for base year 2002 through projected year 2020 is 37,549 tons per year (Pollack 2007), whereas the estimated annual release from the NNSS in 2022 of 3.57 tons of NO_x represents less than 0.01% of Clark County's projected annual emissions of this criteria pollutant.

Impacts of the chemical release tests at the NNSS are minimized by controlling the amount and duration of each release. Biological monitoring at NPTEC is performed if there is a risk of significant exposure to downwind plants and animals from the planned tests. To date, chemical releases at NPTEC and other locations are such small quantities (when dispersed into the air) that downwind test-specific monitoring has not been warranted. No measurable impacts to downwind plants or animals have been observed.

4.3 References

EPA, see U.S. Environmental Protection Agency.

International Commission on Radiological Protection (ICRP), 2008. *Nuclear Decay Data for Dosimetric Calculations*. ICRP Publication 107. Ann. ICRP 38 (3).

McArthur, R. D., 1991. *Radionuclides in Surface Soil at the Nevada Test Site*. DOE/NV/10845-02, Water Resources Center Publication #45077, Desert Research Institute, Las Vegas, NV.

Mission Support and Test Services, LLC, 2023. *National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions, Calendar Year 2022*. DOE/NV/03624--1733, Las Vegas, NV.

MSTS, see Mission Support and Test Services, LLC.

Pollack, A., 2007. *Clark County Consolidated Emission Inventory Report*. Prepared for Clark County Department of Air Quality Management, ENVIRON International Corporation, Novato, CA.

U.S. Department of Energy, 1996. *National Emission Standards for Hazardous Air Pollutants Submittal - 1995*. DOE/NV/11718--032. U.S. Department of Energy, Nevada Operations Office, Las Vegas, NV.

U.S. Environmental Protection Agency, 2019. CAP88-PC Version 4.1 User Guide, Office of Radiation and Indoor Air, Washington, D.C.

U.S. Environmental Protection Agency, 2001. Letter from Jack P. Broadbent, EPA Region IX Director, Air Division, to Kenneth A. Hoar, DOE Nevada Field [Operations] Office, Environmental, Safety & Health Division, July 23, 2001.

Chapter 5: Water Monitoring

Irene Farnham and Dona Murphy
Navarro Research and Engineering, Inc.

Peggy E. Elliott
U.S. Geological Survey

David M. Black, Elizabeth Burns, Erika A. Lomeli-Uribe, Theodore J. Redding, and Nikolas J. Taranik
Mission Support and Test Services, LLC

This chapter presents the recent results of water monitoring conducted on and near the Nevada National Security Site (NNSS) by the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) and the Environmental Management (EM) Nevada Program. NNSA/NFO and the EM Nevada Program monitor groundwater to provide safe drinking water for NNSS workers and visitors, avoid NNSS groundwater contamination from current activities, and protect the public and environment from areas of known underground contamination that has resulted from historical nuclear testing. Water is monitored to comply with applicable state and federal water quality and water protection regulations, DOE directives, and the Federal Facility Agreement and Consent Order (FFACO), a legally binding agreement between the DOE, the U.S. Department of Defense, and the State of Nevada. Laws and regulations applicable to water monitoring are listed in Table 2-1.

The Community Environmental Monitoring Program (CEMP) and the Nye County Tritium Sampling and Monitoring Program (TSaMP) perform annual, independent radiological monitoring of water supply systems in communities surrounding the NNSS and encourage community involvement in these efforts. The TSaMP is funded through a grant from the EM Nevada Program and the CEMP is funded by NNSA/NFO. Sections 7.2 and 7.3 describe the CEMP and TSaMP monitoring activities in 2022.

5.1 Radiological Monitoring

Radiological Water Monitoring Objectives

Provide data to complete corrective actions prescribed under the FFACO to protect the public from groundwater contaminated by historical underground nuclear testing. Monitor water supply wells on the NNSS to demonstrate safety of the drinking water. Determine compliance with the dose limits to the general public via the water pathway as set by DOE Order DOE O 458.1, “Radiation Protection of the Public and the Environment” (see Chapter 9 for estimates of public dose).

Monitor, operate, and maintain wells downgradient of the NNSS radioactive waste disposal unit in accordance with a Resource Conservation and Recovery Act (RCRA) permit to ensure wastes do not impact groundwater.

Radionuclides¹ have been detected in the groundwater in some areas of the NNSS and Nevada Test and Training Range (NTTR) that are a result of historical underground nuclear tests (UGTs). Between 1951 and 1992, 828 UGTs were conducted, and approximately one-third were detonated near or in the **saturated zone** (NNSA/NFO 2015). These UGTs are geographically grouped into underground test area (UGTA) corrective action units (CAUs), which are in various stages of corrective action (see Section 11). A complete description of the hydrogeological environment in which UGTs were conducted is in *Attachment A: Site Description*.²

The approach for collecting and analyzing groundwater samples varies depending on the specific sampling objective and is described in multiple documents. While the EM Nevada Program sampling in support of UGTA CAU studies and closure requirements is described in a Sampling Plan (EM Nevada Program 2020d) and Closure Reports (NNSA/NFO 2016; NNSA/NFO 2019; EM Nevada Program 2020a,b,c), NNSA/NFO sampling is described in various permits and other authorization documents.

5.1.1 NNSA/NFO and EM Nevada Program Groundwater Sampling Design

The radiological water sampling network consists of 72 sample locations (Figure 5-1), categorized into eight different well types (Table 5-1), with some locations monitored to meet multiple objectives. Risks associated with groundwater contaminated by UGTs remain low because of the slow groundwater movement, physical and chemical

¹ The definition of word(s) in ***bold italics*** may be found by referencing the Glossary, Appendix B.

² *Attachment A: Site Description* is available on the NNSA/NFO web site at <https://nnss.gov/publication-library/environmental-publications/>.

processes that slow radionuclide movement, immobility of some contaminants, radioactive decay, and long distances to publicly accessible groundwater supplies.

Table 5-1. Definitions and objectives for radiological water sample types

Sample Source Type	Purpose	Frequency
Characterization	Used for system characterization or model evaluation	2–3 years, as needed
Source/Plume	Located within the plume of a UGT (i.e., confirmed presence of radionuclides from test)	4 years
Early Detection	Located downgradient of, or near, a UGT and no radionuclides detected above 1,000 picocuries per liter (pCi/L)	2–5 years
Distal	Downgradient of the Early Detection area	5 years
Community	Located on Bureau of Land Management (BLM) or private land; used as a water supply source or is near one	5 years
Closure	Monitoring location supporting closure of an UGTA CAU	As specified by Closure Report
NNSS PWS	Permitted water supply well that is part of a state-designated non-community public water system (PWS) that provides drinking water to workers and visitors on the NNSS	Quarterly
Compliance	Sampled to comply with specific federal/state regulations or permits	As specified by permit

5.1.1.1 Radionuclides of Interest

Most radionuclides produced by NNSS UGTs are relatively immobile in groundwater because they are bound within the melt glass produced during nuclear detonation, have physical processes that slow radionuclide movement, or have chemical properties that cause them to bind strongly to the aquifer rock materials. Analysis of **tritium (^3H)** is required for all sampling locations, because this radionuclide was produced in the highest abundance during nuclear testing and is one of the most mobile in groundwater. These characteristics make ^3H the radionuclide with the greatest potential for impacting groundwater quality. In addition, ^3H is the only radionuclide produced by NNSS UGTs known to have exceeded its U.S. Environmental Protection Agency (EPA) Safe Drinking Water Act (SDWA) **maximum contaminant level (MCL)** of 20,000 pCi/L in sampling locations away from the nuclear test location or outside of tunnels used for conducting UGTs. Though ^3H is one of the most mobile in groundwater, it decays rapidly (half-life of 12.3 years) and is not expected to be detectable when groundwater reaches publicly accessible wells.

Additional radionuclides from NNSS UGTs are analyzed in samples collected at Characterization and Source Plume locations (Table 5-2). These radionuclides, if present, are at insignificant levels (i.e., less than 0.1% of their MCL) unless ^3H is present at concentrations above its 20,000 pCi/L MCL. Therefore, these radionuclides are not required to be analyzed for Early Detection, Distal, and Community sampling locations. Trends in these data will be evaluated to determine whether any additional radionuclides should be monitored in Early Detection wells in the future. **Gross alpha** and **gross beta** are analyzed along with ^3H for the NNSS PWS and compliance wells.

Tritium (^3H) is a radioactive form of hydrogen with a half-life of 12.3 years. The Safe Drinking Water Act limit for ^3H in drinking water is 20,000 pCi/L. If an individual drank water with this amount of ^3H for an entire year, it would amount to approximately the same dose of radiation as a single commercial flight between Los Angeles and New York City.

pCi/L is a unit used to express the amount of radioactivity in one liter of a gas or a liquid. A picocurie is one-trillionth of a **Curie**, and 1 pCi/L is the amount of radioactive material in 1 liter of a gas or liquid that will produce 0.037 disintegrations per second. In the case of ^3H , a disintegration is the emission of a beta particle.

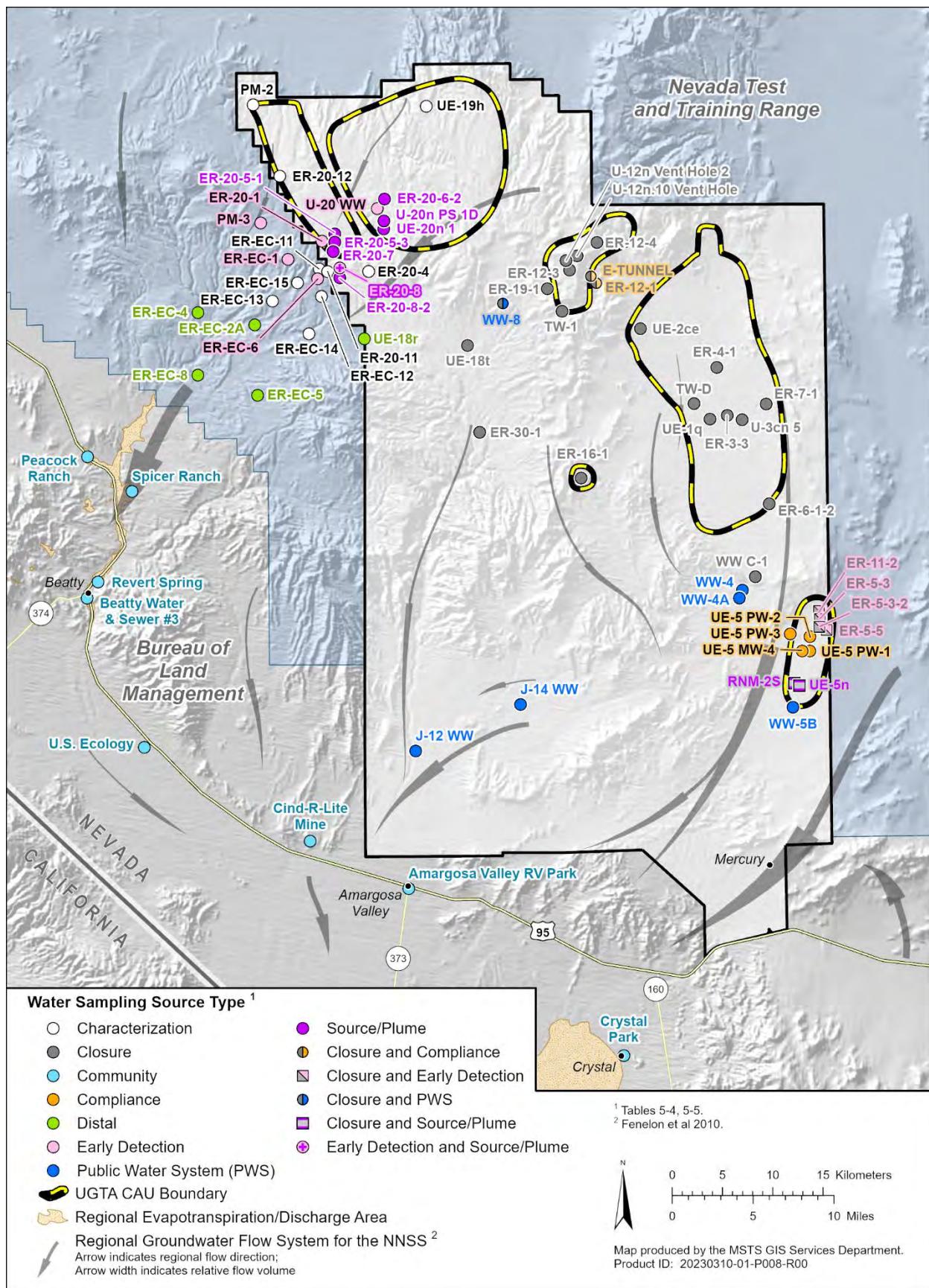


Figure 5-1. NNSS/NFO and EM Nevada Program water sampling network

Table 5-2. Radionuclides analyzed for each sample source type

Type	Radionuclide ¹
Characterization	Gross alpha, gross beta, ^{3}H , ^{14}C , ^{36}Cl , ^{90}Sr , ^{99}Tc , ^{129}I , U, Pu Gamma emitters (^{26}Al , ^{94}Nb , ^{137}Cs , ^{152}Eu , ^{154}Eu , ^{235}U , ^{241}Am , ^{243}Am)
Source Plume	^{3}H , ^{14}C , and ^{129}I (Pahute Mesa CAUs) and ^{3}H , ^{14}C , ^{36}Cl , ^{99}Tc , and ^{129}I (Frenchman Flat)
UGTA Closure, Early Detection, Distal, and Community	^{3}H (additional analyses are performed for select Closure wells as described in Section 5.1.3.1)
NNSS PWS and Compliance	Gross alpha, gross beta, and ^{3}H

¹ See Table 1-5 of Chapter 1 for a listing of full names and half-lives of radionuclide abbreviations listed.

5.1.1.2 Sample Collection Methods

Water sampling methods are based, in part, on the characteristics and configurations of sample locations. For example, wells with dedicated pumps may be sampled from the associated plumbing (e.g., spigots) at the wellhead, while wells without pumps may be sampled using a wireline bailer or a portable pumping system. Most wells in the sample network are single-zone completion wells, meaning that the wells were constructed to collect groundwater samples from a single depth interval. Some wells, however, are multiple-completion wells constructed to allow for collecting groundwater samples at different depth intervals that access multiple formations.

Water samples are collected following the sampling methods described in standard operating procedures. Wells that are sampled using pumps are purged until the stability of certain water quality parameters (e.g., pH, temperature, and electrical conductivity) is achieved. Stabilization of these water quality parameters indicates that formation water is being sampled instead of stagnant water from within and surrounding the wellbore. Other wells are sampled using a depth-discrete bailer to obtain groundwater for certain sampling objectives (e.g., demonstrate early detection of ^{3}H at levels well below the 20,000 pCi/L MCL and to evaluate trends over time).

5.1.1.3 Detection Limits

Standard methods for radionuclide analysis are performed by commercial laboratories that are certified by the Nevada Division of Environmental Protection (NDEP) Bureau of Safe Drinking Water. The **minimum detectable concentration (MDC)** using standard methods is approximately 300 pCi/L, which is well below the EPA SDWA-required detection limit of 1,000 pCi/L and MCL of 20,000 pCi/L. For gross alpha and gross beta **radioactivity**, the MDCs are 2 and 4 pCi/L, respectively, and satisfy their EPA SDWA-required detection limits of 3 and 4 pCi/L, respectively. Samples collected from some wells that are expected to have ^{3}H levels below 300 pCi/L (some Early Detection and Characterization wells) are enriched before ^{3}H analysis. The enrichment process (DOE 1997), referred to throughout this report as low-level ^{3}H analysis, concentrates ^{3}H in a sample to provide a lower MDC, of approximately 2 to 40 pCi/L depending on the laboratory performing the enrichment process.

Analysis routinely includes quality control samples such as duplicates, blanks, and spikes. Chapter 14 describes **quality assurance** and **quality control** procedures for groundwater samples and analyses.

- The standard ^{3}H analysis method can detect ^{3}H at levels of approximately 300 pCi/L.
- The low-level ^{3}H analysis method, which concentrates ^{3}H in a sample through an enrichment process, can detect ^{3}H at levels of 2–40 pCi/L.
- Groundwater samples collected at some Early Detection and Characterization wells are analyzed using the low-level ^{3}H analysis method.

5.1.2 Presentation of Water Sampling Data

NNSA/NFO and the EM Nevada Program classify each well in the sample network into one of four ${}^3\text{H}$ concentration levels (Table 5-3). The four categories are based on the percent of SDWA MCL (20,000 pCi/L) for ${}^3\text{H}$ concentrations measured in the most recent sampling event (Tables 5-4 and 5-5, and Figure 5-2). Fourteen locations currently exceed the SDWA MCL; all are located on the NNSS.

Table 5-3. Tritium concentration categories

${}^3\text{H}$ Concentration in pCi/L	Percent of SDWA MCL	# of locations in each category
Less than 1,000	Less than 5 ^(a)	55
Greater than 1,000 but less than 10,000	5–50	2
Greater than 10,000 but less than 20,000	50–100	1
Greater than 20,000	Greater than 100 (Exceeds SDWA MCL)	14

(a) Includes samples in which ${}^3\text{H}$ is undetectable.

Table 5-4 shows ${}^3\text{H}$ concentrations for the most recent sampling events at wells in the sampling network. For wells with the same classification that were sampled at multiple depths during a single sampling event, the depth with the highest concentration is listed. For example, three *piezometers* and the main completion of Well ER-20-12 are sampled as Characterization wells; Figure 5-2 and Table 5-4 only report the results of the shallowest piezometer for ER-20-12 because the greatest concentration of ${}^3\text{H}$ is associated with this sample location. Data in Table 5-4 are grouped by CAU and then by sample location type. When ${}^3\text{H}$ was not detected, the value is reported as less than the sample's MDC (i.e., <1.5 or <270 when the sample's MDC is 1.5 or 270 pCi/L, respectively). Results from the analyses for radionuclides other than ${}^3\text{H}$ (Table 5-2) are not presented in this report but can be acquired upon request from NNSA/NFO. The ${}^3\text{H}$, gross alpha, and gross beta levels for water samples in 2022 for the NNSS PWS and Compliance sampling locations are listed in Table 5-5.

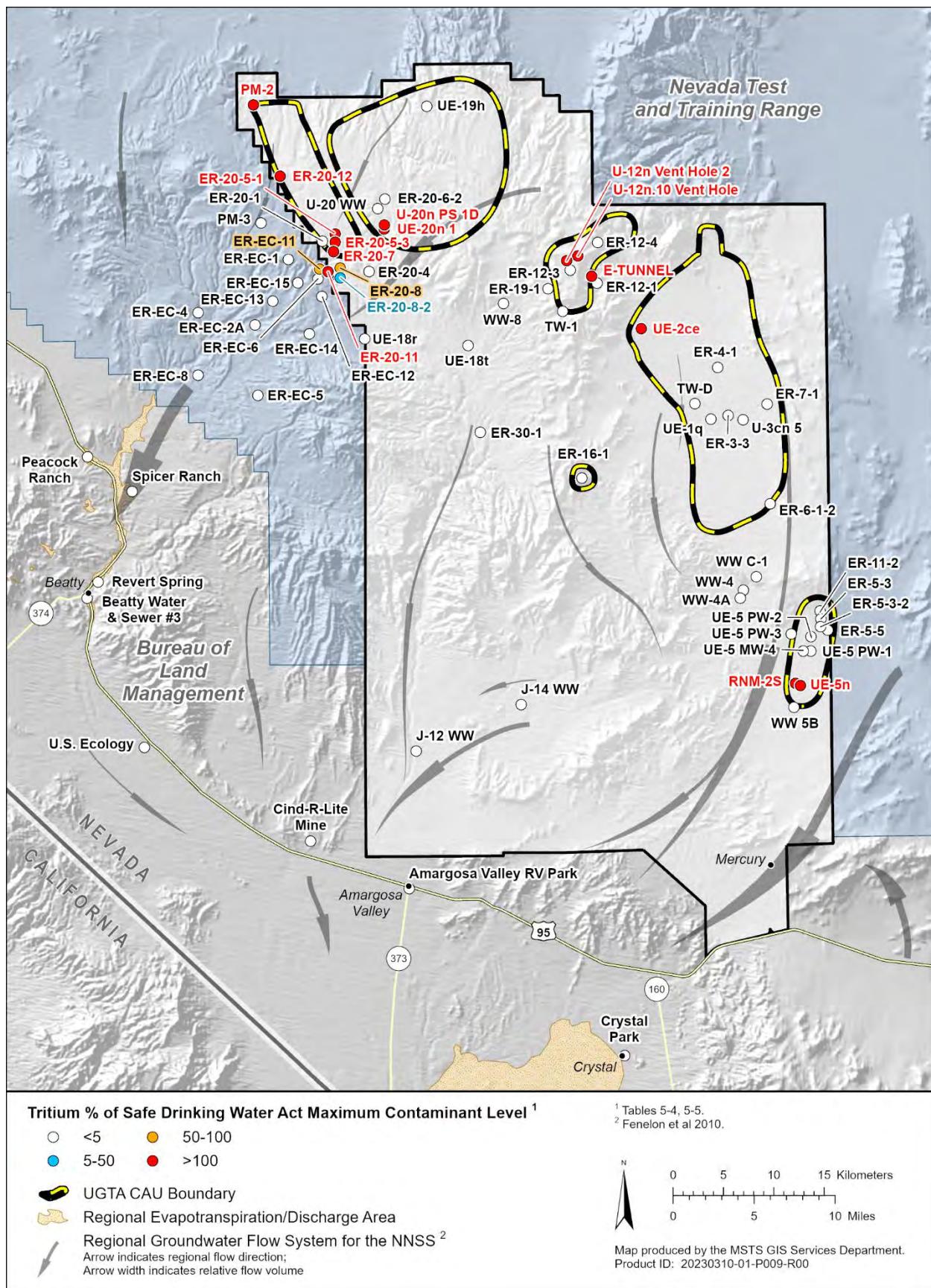


Figure 5-2. Tritium concentration categories at NNSA/NFO and EM Nevada Program sampling locations

Table 5-4. Tritium concentrations for the most recent sample at wells near and downgradient of historical underground nuclear test locations

Sample Location ^(a)	Land Management or NNSS Area	Sample Year	Maximum ³ H Concentration (pCi/L) ^(b)
Yellow highlight indicates ³H levels above the SDWA MCL of 20,000 pCi/L			
Frenchman Flat			
Closure Wells			
ER-5-3 ^(c)	Area 5	2020	<2.5
ER-5-3-2 ^(c,d)	Area 5	2020	<3.0
ER-5-5 ^(c)	Area 5	2020	<3.3
ER-11-2 ^(c)	Area 5	2020	<2.9
RNM-2S ^(e)	Area 5	2020	65,100
UE-5n ^(e)	Area 5	2020	116,000
Rainier Mesa/Shoshone Mountain			
Closure Wells			
E Tunnel ^(f)	Area 12	2022	233,000
ER-12-1 ^(f)	Area 12	2022	<280
ER-12-3 ^(g)	Area 12	2020	<300
ER-12-4	Area 12	2020	<300
ER-16-1	Area 16	2020	<142
ER-19-1 ^(g)	Area 19	2020	<142
ER-30-1	Area 30	2020	<143
TW-1	Area 17	2020	<142
U-12n,10 Vent Hole	Area 12	2020	4,410,000
U-12n Vent Hole 2	Area 12	2020	666,000
UE-18t	Area 18	2020	<143
WW-8 ^(h)	Area 18	2022	<354
Yucca Flat/Climax Mine			
Closure Wells			
ER-3-3	Area 3	2020	<310
ER-4-1	Area 4	2020	<310
ER-5-3-2 ^(d)	Area 5	2020	<3.0
ER-6-1-2	Area 6	2020	<263
ER-7-1	Area 7	2020	<300
TW-D	Area 4	2020	<273
U-3cn 5	Area 3	2020	<280
UE-1q	Area 1	2020	<276
UE-2ce	Area 2	2020	89,900
WW C-1	Area 6	2022	J 50.0 ^(i,l)
Pahute Mesa (Central and Western)			
Characterization Wells			
ER-20-4	Area 20	2022	J <2.8 ^(l)
ER-20-11	Area 20	2021	194,000
ER-20-12 ^(g)	Area 20	2021	36,600
ER-EC-11 ^(g)	NTTR	2021	2,140 ^(j)
ER-EC-12 ^(g)	NTTR	2022	J <2.3 ^(l)
ER-EC-13 ^(g)	NTTR	2019	<2.7
ER-EC-14 ^(g)	NTTR	2019	J <3.0 ^(l)
ER-EC-15 ^(g)	NTTR	2019	<2.8
PM-2 ^(m)	Area 20	2021	92,000
UE-19h ^(m)	Area 19	2021	<320
Source/Plume Wells			
ER-20-5-1	Area 20	2019	20,000,000
ER-20-5-3	Area 20	2019	64,900
ER-20-6-2	Area 20	2021	371
ER-20-7	Area 20	2017	13,600,000
ER-20-8_p2	Area 20	2021	14,200
ER-20-8-2	Area 20	2021	5,900
U-20n PS 1D	Area 20	2019	13,100,000
UE-20n 1	Area 20	2019	32,600,000

Table 5-4. Tritium concentrations for the most recent sample at wells near and downgradient of historical underground nuclear test locations

Sample Location ^(a)	Land Management or NNSS Area	Sample Year	Maximum ³ H Concentration (pCi/L) ^(b)
Yellow highlight indicates ³H levels above the SDWA MCL of 20,000 pCi/L			
Early Detection Wells			
ER-20-1	Area 20	2019	<3.2
ER-20-8_p1	Area 20	2021	206
ER-EC-1	NTTR	2016	<2.9
ER-EC-6	NTTR	2018	U 4.1 ^(k)
PM-3 ^(g)	NTTR	2022	<228
U-20 WW	Area 20	2018	<3.2
Distal Wells			
ER-EC-2A	NTTR	2019	<310
ER-EC-4	NTTR	2018	<2.7
ER-EC-5	NTTR	2019	J <3.1 ^(l)
ER-EC-8	NTTR	2016	<4.5
UE-18r	Area 18	2022	<265
Community Wells/Springs			
Amargosa Valley RV Park	BLM	2022	<298
Beatty Water & Sewer #3 ⁽ⁿ⁾	Beatty	2017	<201
Cind-R-Lite Mine	BLM	2022	<206
Crystal Park	Private land	2020	<223
Peacock Ranch	Private land	2022	<208
Revert Spring	Private land	2019	<247
Spicer Ranch	Private land	2022	<203
U.S. Ecology	BLM	2022	<207

- (a) Only the sample result, not the field duplicate, is reported.
- (b) Concentrations presented as less than (<) a number indicate that ³H levels are less than its sample-specific MDC shown. When the results of multiple samples are below the MDC, the lowest MDC is reported.
- (c) Closure well is also an Early Detection well.
- (d) Closure well for Frenchman Flat and Yucca Flat/Climax Mine CAUs.
- (e) Closure well is also a Source Plume well.
- (f) ER-12-1 and E Tunnel are also Compliance locations (Table 5-5).
- (g) Multiple depths are sampled at this location. The highest value is presented when multiple depths are sampled within the same year.
- (h) WW-8 is also an NNSS PWS well (Table 5-5).
- (i) The reported result is associated with a sample reanalysis. Samples were reanalyzed because the original reported result (51.5 pCi/L) was larger than reported in 2021 (10.7 pCi/L) and some laboratory quality control results were outside of required control limits.
- (j) The ³H concentration reported in 2021 is anomalously low (2,140 pCi/L) when compared to the 18,400 pCi/L concentration reported in 2017 and is presently being evaluated by the EM Nevada Program. Because the 2021 result is anomalous, the 2017 (18,400 pCi/L) result will continue to be used to represent the ³H concentration at this location (see Figure 5-2).
- (k) U qualifier indicates that the reported result is less than the MDC plus the measurement uncertainty and is considered a nondetect.
- (l) J qualifier indicates that the reported result is considered estimated because a quality control measure was outside its acceptable limit (see Chapter 14).
- (m) Well was sampled for CAU characterization, but is not listed as such in the Sampling Plan (EM Nevada Program 2020d).
- (n) Well was not operational during the planned sampling period. Refer to Chapter 7, Table 7-7, BW&S Well No. 3 for the Nye County monitoring data.

Table 5-5. Sample analysis results from NNSS PWS wells and Compliance wells/surface waters in 2022

Sample Location	NNSS Area	Sample Date	Concentration (pCi/L) ^(a)		
			³ H	α ^(b)	β ^(b)
NNSS PWS Wells					
J-12 WW	Area 25	NA all 2022 ^(c)	--	--	--
J-14 WW	Area 25	NA all 2022	--	--	--
WW-4	Area 6	2/2/2022	<287	7.9	4.3
		4/27/2022	<268	7.2	6.2
		8/3/2022	<290	<1.1	2.9
		8/3/2022 FD ^(d)	<292	1.6	8.0
		11/8/2022	<310	7.9	3.9
WW-4A	Area 6	2/2/2022	<289	9.6	6.8
		2/2/2022 FD	<292	6.1	4.3
		4/27/2022	<266	6.1	7.5
		8/3/2022	NA	NA	NA
		11/8/2022	<326	7.0	4.8
		11/8/2022 FD	<358	4.1	4.1
WW-5B	Area 5	2/2/2022	<287	8.0	9.2
		4/27/2022	<267	3.0	14
		8/3/2022	<292	6.3	8.1
		11/8/2022	<306	12	9.9
WW-8	Area 18	2/2/2022	<294	<1.7	3.6
		4/27/2022	<264	<1.3	3.3
		4/27/2022 FD	<267	<1.2	3.7
		8/3/2022	<290	4.0	3.8
		11/8/2022	<354	<1.6	2.7
Compliance Wells/Surface Waters					
UE-5 PW-1	Area 5	2/8/2022	<178	3.1	5.4
		2/8/2022 FD	<185	NA	NA
		2/8/2022 FD	<180	NA	NA
		9/13/2022	<232	2.0	6.3
		9/13/2022 FD	<233	NA	NA
		9/13/2022 FD	<231	2.7	5.4
UE-5 PW-2	Area 5	2/8/2022	<181	2.9	4.8
		2/8/2022 FD	<181	NA	NA
		2/8/2022 FD	<181	NA	NA
		9/13/2022	<231	4.2	5.3
		9/13/2022 FD	<232	NA	NA
		9/13/2022 FD	<229	NA	NA
UE-5 PW-3	Area 5	2/8/2022	<176	3.2	5.7
		2/8/2022 FD	<180	NA	NA
		2/8/2022 FD	<181	2.9	5.8
		9/13/2022	<233	3.4	4.9
		9/13/2022 FD	<235	NA	NA
		9/13/2022 FD	<232	NA	NA
UE-5 MW-4	Area 5	2/8/2022	<180	4.0	5.7
		2/8/2022 FD	<171	NA	NA
		2/8/2022 FD	<182	NA	NA
		9/13/2022	<226	4.4	6.1
		9/13/2022 FD	<228	NA	NA
		9/13/2022 FD	<234	NA	NA
ER-12-1 ^(e)	Area 12	4/19/2022	<280	7.6	7.0
		4/19/2022 FD	<280	7.2	5.6
E Tunnel Wastewater Disposal System ^(e)	Area 12	10/12/2022	233,000	4.9	18.6
		10/12/2022 FD	232,000	3.5	17.9

(a) Concentrations given as less than (<) a number indicate ³H levels are less than its sample-specific MDC shown.

(b) α = gross alpha and β = gross beta.

(c) NA = not applicable, either because the well was not operational, or the analysis was not required.

(d) FD = field duplicate sample.

(e) α in Well ER 12-1 and E Tunnel Wastewater Disposal System is reported as adjusted α .

5.1.3 Discussion of 2022 Sample Results

The following sections discuss results for the eight sample source types that comprise the radiological water-sampling network (Table 5-1). As illustrated in Figure 5-1, Community wells or springs are either on private land or land managed by the BLM, and all other water-sampling network wells are on properties managed by the government. As reflected in Table 5-4 and discussed in the sections below, no UGT-related radionuclides have been detected in the Distal or Community wells. Consistent with the definition of Early Detection wells (^3H levels are less than 1,000 pCi/L), low concentrations of ^3H have been detected at a few locations. As reflected in Table 5-5, sampling results from NNSS PWS wells indicate that water sources used by NNSS personnel are not affected by past UGTs. In addition, all regulatory requirements associated with Compliance samples were satisfied.

5.1.3.1 Closure Wells

Characterization activities have been completed and advancement to the closure stage has been achieved for three UGTA CAUs: Frenchman Flat (CAU 98), Rainier Mesa/Shoshone Mountain (CAU 99), and Yucca Flat/Climax Mine (CAU 97). Closure Reports that describe the required post-closure monitoring program have been developed and approved by NDEP (NNSA/NFO 2016; NNSA/NFO 2019; EM Nevada Program 2020a,b,c). Post-closure monitoring results for these CAUs are summarized below and are further discussed in Section 11.2.1.

Frenchman Flat Post-Closure Monitoring: The Closure Report for the Frenchman Flat CAU, approved by NDEP in 2016 (NNSA/NFO 2016), specifies the monitoring program for the first 5 years post-closure (2016 to 2020). The Frenchman Flat monitoring network currently consists of four Closure wells that are also categorized as Early Detection wells (ER-5-3, ER-5-5, ER-5-3-2, and ER-11-2) and two Closure wells also categorized as Source/Plume wells (RNM-2S and UE-5n) (Table 5-4). These wells were sampled annually for the 5-year period. The 5 years of post-closure data were evaluated to ensure that the long-term monitoring program continues to be protective and to determine whether any changes to the monitoring program are warranted (EM Nevada Program 2022). This evaluation showed the 5-year radionuclide concentrations in groundwater samples to be consistent with the current understanding of groundwater flow within the Frenchman Flat CAU. Within the five years, ^3H was not detected in the Early Detection wells and a decreasing trend in ^3H concentration continued in the Source Plume wells. Groundwater of the Source Plume wells has been impacted by a radionuclide migration experiment at the CAMBRIC UGT. While the monitoring program was indeed found to be protective, recommendations were made to make the program more consistent with the other two closed CAUs (97 and 99) (EM Nevada Program 2022). Future monitoring requirements will be documented in an addendum to the Closure Report.

Rainier Mesa/Shoshone Mountain Post-Closure Monitoring: The Closure Report for the Rainier Mesa/Shoshone Mountain CAU, establishing the post-closure monitoring network, was approved by NDEP in 2020 (EM Nevada Program 2020c). The monitoring network includes 12 sampling locations; two locations, ER-12-3 and ER-19-1, are sampled at two separate depths. Sampling for ^3H is required every 6 years. Additional radionuclides (^3H , ^{14}C , ^{36}Cl , ^{90}Sr , ^{99}Tc , ^{129}I , and $^{238/239/240}\text{Pu}$) are analyzed at three locations that sample water from tunnels where nuclear testing occurred (E Tunnel, U-12n.10 Vent Hole, and U-12n Vent Hole 2). E Tunnel, as well as ER-12-1, are also compliance locations and are discussed in Section 5.1.3.8. Tritium was not detected in the closure wells, with the exception of those accessing the tunnels (Table 5-4).

Yucca Flat/Climax Mine Post-Closure Monitoring: The Closure Report for the Yucca Flat/Climax Mine CAU, establishing the post-closure monitoring network, was approved by NDEP in 2020 (EM Nevada Program 2020a,b). The monitoring network includes ten Closure Wells, all of which are sampled for ^3H . Eight wells in Yucca Flat and one well in Frenchman Flat, ER-5-3-2, are sampled every 6 years and one well in Yucca Flat, WW C-1, is sampled annually for 6 years (2020–2025). Note that ER-5-3-2 is also a monitoring well for the Frenchman Flat CAU. These wells access the lower carbonate aquifer, which is a regional aquifer and the only pathway out of Yucca Flat (Navarro 2019). Except for UE-2ce and WW C-1, ^3H was not detected in the most recent samples (Table 5-4). Well UE-2ce has been impacted by a radionuclide migration experiment at the NASH UGT. WW C-1 was sampled in 2022 and the ^3H concentration was larger (51.5 pCi/L) than reported in 2021.

(10.7 pCi/L). In addition, laboratory quality control results were outside of required control limits, which warranted a request for the laboratory reanalysis. The sample was reprocessed and reanalyzed and the result (50.0 pCi/L) was consistent with the original sample. An evaluation of the WW C-1 ${}^3\text{H}$ data will take place once the 6 years of annual sampling has been completed. It is worth noting that the reported result is well below the 20,000 pCi/L SDWA MCL.

5.1.3.2 Characterization Wells

Characterization wells are either new wells or wells that require additional radionuclide data to establish a baseline and/or to ensure the current list of radionuclides is accurate for monitoring the CAU. A large suite of radionuclides is analyzed in samples collected from Characterization wells (Table 5-2). Once a baseline has been developed, each Characterization well will be reclassified and sampled according to its new type (Source/Plume, Early Detection, or Distal). A total of eight Characterization wells, six accessing multiple (2–4) depths, are located within the Pahute Mesa CAUs (Figure 5-1). Results for these Characterization locations are presented in Table 5-4; only the depth with the greatest ${}^3\text{H}$ concentration is reported for each location. As shown in Table 5-4, the ${}^3\text{H}$ concentration in the Characterization wells ranges from below the 2.7 pCi/L MDC in well ER-EC-13 located on the NTTR to 194,000 pCi/L in well ER-20-11 located on the NNSS (Figure 5-1). While ${}^3\text{H}$ is not present in most wells on the NTTR, it has been detected at ER-EC-11. ER-EC-11 along with the other “ER-EC” wells monitors a contaminant plume believed to originate from the TYBO and BENHAM UGTs, which were detonated in 1975 and 1968, respectively. ER-EC-11 is the first location where a radionuclide from NNSS UGTs had been detected in groundwater beyond NNSS boundaries.

Characterization Wells ER-20-4 and ER-EC-12 were sampled in 2022 and no ${}^3\text{H}$ was detected (Table 5-4). This is consistent with previous samples collected from these locations.

5.1.3.3 Source/Plume Wells

Source/Plume wells are located within the plume from a UGT where ${}^3\text{H}$ is present at or exceeds (or has exceeded) 1,000 pCi/L. Source/Plume wells are analyzed for ${}^3\text{H}$ and additional CAU-specific radionuclides (Table 5-2). Eight Source/Plume wells are in Pahute Mesa and two are in Frenchman Flat. Locations in Pahute Mesa range from those accessing the nuclear test cavity (e.g., U-20n PS 1D) to those downgradient of a UGT (e.g., ER-20-8-2) where lower concentrations are observed (Table 5-4). No Source/Plume wells were sampled in 2022 (Table 5-4).

5.1.3.4 Early Detection Wells

Early Detection wells are the next wells downgradient of a UGT or Source/Plume well and are monitored to detect the presence of a plume well before concentrations reach levels near the 20,000-pCi/L SDWA MCL. Early Detection wells are recategorized as Source Plume wells if ${}^3\text{H}$ levels reach 1,000 pCi/L. In the absence of ${}^3\text{H}$, no other test-related radionuclides are present in historically sampled groundwater; therefore, Early Detection wells are monitored solely for ${}^3\text{H}$. The low-level ${}^3\text{H}$ method is used for the analyses when concentrations are less than 300 pCi/L and the standard ${}^3\text{H}$ method is used when levels exceed 300 pCi/L. Six Early Detection wells are at Pahute Mesa and four are in Frenchman Flat. The Frenchman Flat Early Detection wells are also categorized as Closure Wells and were sampled annually for 5 years after the Frenchman Flat CAU reached the Closure Stage (see Section 5.1.3.1). The Pahute Mesa Early Detection wells are sampled once every 5 years (EM Nevada Program 2020d). Sampling of Early Detection Well, ER-EC-1 (last sampled in 2016), has been delayed because of poor road conditions that have caused it to be inaccessible for sampling. Sampling at this well will take place once the roads have been repaired. One Early Detection well in Pahute Mesa, PM-3, was sampled and analyzed for ${}^3\text{H}$ in 2022. Two depths were sampled and no ${}^3\text{H}$ was detected (i.e., ${}^3\text{H}$ concentration is less than the sample-

${}^3\text{H}$ was detected at 10,600 pCi/L in Well ER-EC-11, a Characterization well downgradient of the Pahute Mesa CAUs, in 2009. This was the first time that a radionuclide from NNSS UGTs had been detected in groundwater beyond NNSS boundaries. In 2017, ${}^3\text{H}$ was detected at 18,400 pCi/L. This concentration is below the EPA-established allowable drinking water limit of 20,000 pCi/L.

The ${}^3\text{H}$ in the 2021 sample from Well ER-EC-11 (2,140 pCi/L) is being evaluated because it is less than anticipated at this location based on the conceptual and numerical groundwater flow and transport model for the Pahute Mesa CAUs. Until the evaluation is complete, the 2017 sampling results will continue to be used to represent the ${}^3\text{H}$ concentration at this well.

specific MDC) at either depth (Table 5-4). This is a reduction from the maximum ${}^3\text{H}$ concentration of 574 pCi/L reported in 2018.

5.1.3.5 Distal Wells

Distal wells are sampled to demonstrate that ${}^3\text{H}$ is not present downgradient of UGTs at levels exceeding the SDWA-required minimum detection limit of 1,000 pCi/L. Distal well samples, collected at a 5-year frequency, are analyzed for ${}^3\text{H}$ using the standard EPA method. Sampling of Distal Well, ER-EC-8 (last sampled in 2016), has been delayed because of poor road conditions that have caused it to be inaccessible for sampling. Sampling at this well will take place once the roads have been repaired. Five Distal wells are in the Pahute Mesa CAUs. One Distal well was sampled in 2022, and no ${}^3\text{H}$ was detected (i.e., ${}^3\text{H}$ concentration is less than the sample-specific MDC) (Table 5-4).

5.1.3.6 Community Wells/Springs

The community sampling network includes eight locations that are off the NNSS and NTTR boundaries (Table 5-4). These wells and springs are used as private, business, or community water supply sources or are near such sources, and they are sampled for ${}^3\text{H}$ every 5 years. Early Detection well samples will detect the arrival of a contaminant plume at very low concentrations (i.e., measuring ${}^3\text{H}$ at 0.01% of its MCL) long before such a plume could be detected in these more distant water supply sources. Samples are analyzed using a standard EPA method. The objective is to demonstrate that ${}^3\text{H}$ is not present at levels exceeding the SDWA-required minimum detection limit of 1,000 pCi/L. Five community wells were sampled in 2022, and no ${}^3\text{H}$ was detected (i.e., ${}^3\text{H}$ concentration is less than the sample-specific MDC) (Table 5-4 and Chapter 7).

5.1.3.7 NNSS Public Water System Wells

Results from the NNSS PWS water wells sampled quarterly in 2022 continue to indicate that historical underground nuclear testing has not impacted the NNSS water supply network. No ${}^3\text{H}$ measurements exceeded MDCs using the EPA standard analysis method (Table 5-5). Gross alpha and gross beta radioactivity were found at concentrations slightly greater than MDCs in most 2022 samples and are believed to represent the presence of naturally occurring radionuclides. However, no water supply samples had gross alpha measurements that exceeded the EPA MCL (15 pCi/L) or gross beta measurements that exceeded the EPA level of concern (50 pCi/L).

5.1.3.8 Compliance Wells/Groundwater Discharges

5.1.3.8.1 RCRA Permitted Wells for the Area 5 Mixed Waste Disposal Unit

Wells UE-5 PW-1, UE-5 PW-2, UE-5 PW-3, and UE-5 MW-4 are sampled semi-annually for ${}^3\text{H}$. They are monitored for ${}^3\text{H}$ and nonradiological parameters (Section 10.3.1) to verify the performance of the Area 5 Mixed Waste Disposal Unit (Cells 18 and 25), which is operated under a RCRA permit. In 2022, standard ${}^3\text{H}$ analyses of water samples from these wells were performed; ${}^3\text{H}$ was not detected in any sample (Table 5-5, Table 10-4), and MDCs were less than the permit-established investigation level of 2,000 pCi/L. Further groundwater analysis is required if an investigation level is exceeded. Results continue to indicate that Cell 18 and Cell 25 radioactive wastes have not contaminated local groundwater. Table 10-4 presents the 2022 sampling results for four additional indicators of groundwater contamination, and all 2022 sample analysis results for these three wells are presented by the NNSS Management and Operating (M&O) Contractor, Mission Support and Test Services, LLC (MSTS), in MSTS (2023).

5.1.3.8.2 NDEP Permitted E Tunnel Wastewater Disposal System

NNSA/NFO manages and operates the NNSS Area 12 E Tunnel Wastewater Disposal System (ETDS) in accordance with the NDEP Bureau of Federal Facilities water pollution control permit (NEV 96021), Revision 1. The permit governs the management of radionuclide-contaminated wastewater that discharges from the E Tunnel portal into a series of conveyance pipes and earthen holding/infiltration ponds.

The permit requires chemical and radiological constituents monitoring of the ETDS effluent and groundwater associated with nearby Well ER-12-1. Tritium, adjusted gross alpha, and gross beta activities are measured in ETDS effluent annually. Groundwater ^3H , adjusted gross alpha, and gross beta activities are required to be measured biennially at Well ER-12-1. Negotiations between NDEP, NNSA/NFO, and the EM Nevada Program resulted in sampling Well ER-12-1 in 2020, in advance of the permit-required 24-month interval. This was negotiated so that the UGTA 6-year sampling interval aligned with the permit's 24-month interval, and both requirements would be satisfied with one sampling event in 2020 and subsequent 6-year intervals. The permissible limits of ^3H , adjusted gross alpha, and gross beta in the ETDS effluent are 1,000,000 pCi/L, 35.1 pCi/L, and 101 pCi/L, respectively. The permissible limits for ^3H , adjusted gross alpha, and gross beta in groundwater of Well ER-12-1 are 20,000 pCi/L, 15 pCi/L, and 50 pCi/L, respectively.

Monitoring personnel sampled Well ER-12-1 on April 19, 2022, and the ETDS effluent on October 12, 2022 (Table 5.5). All radiological parameters were within their permissible and threshold limits. Nonradiological results and associated threshold limits are provided in Section 5.2.4.

5.1.3.8.3 UGTA Well Discharged Groundwater and Fluids

Groundwater and fluids discharged from UGTA wells are regulated through an agreement between DOE and NDEP called the Fluid Management Plan for the UGTA Project (Attachment 1 of NNSA/NFO 2009). The Fluid Management Plan is used in lieu of an NDEP-approved water pollution control permit for management of fluids produced during the drilling, construction, development, testing, experimentation, and/or sampling of wells by the UGTA Activity. The plan provides criteria by which fluids may be discharged on site and applies to groundwater purged (pumped) from the well during sampling. Groundwater ^3H concentrations are measured daily during sampling activities. Groundwater with ^3H greater than or equal to 400,000 pCi/L is discharged to lined sumps to evaporate. Groundwater with ^3H activity less than 400,000 pCi/L may be discharged to either lined/unlined sumps or infiltration areas. Fluid Management Plan samples are collected to analyze for metals, gross alpha, gross beta, and ^3H , unless previously demonstrated that these analyses have satisfied criteria established by the plan.

All requirements of the UGTA Fluid Management Plan were satisfied in 2022. No wells with ^3H greater than or equal to 400,000 pCi/L were pumped for sample collection in 2022. Criteria for all Fluid Management Plan samples were within threshold levels established in the plan.

5.2 Nonradiological Drinking Water and Wastewater Monitoring

Nonradiological Water Monitoring Goals

Ensure that the operation of NNSS PWSs and private water systems provides high-quality drinking water to workers and visitors at the NNSS. Determine if NNSS PWSs are operated in accordance with the requirements in Nevada Administrative Code NAC 445A, "Water Controls," under permits issued by the state. Determine if the operation of commercial septic systems that process domestic wastewater on the NNSS meets operational standards in accordance with the requirements of NAC 445A under permits issued by the state. Determine if the operation of industrial wastewater systems on the NNSS meets operational standards of federal and state regulations as prescribed under the GNEV93001 state permit.

Federal and state laws regulate the quality of drinking water and wastewater on the NNSS. The design, construction, operation, and maintenance of many of the drinking water and wastewater systems are regulated under state permits. NNSA/NFO ensures systems meet applicable water quality standards and permit requirements. The NNSS nonradiological water monitoring goals are presented below. They are met by analyzing water samples, performing assessments, and maintaining documentation. This section describes the results of 2022 activities. Results from radiological monitoring of drinking water on and off the NNSS and of wastewater on the NNSS are discussed in Section 5.1.3.

5.2.1 Drinking Water Monitoring

Six wells on the NNSS are permitted to supply the potable water needs of NNSS operations. These are grouped into three PWSs (Figure 5-3). The largest system (NNSS Main) is classified under its permit as a non-transient non-community PWS and serves the main work areas of the NNSS. The other two systems (NNSS Area 12 and Area 25) are classified as transient non-community PWSs. The PWSs are designed, operated, and maintained in

accordance with the requirements in NAC 445A under permits issued by the NDEP Bureau of Safe Drinking Water. PWS permits are renewed annually.

The three PWSs must meet National Primary Drinking Water Standards and Secondary Standards (set by the state) for water quality. They are sampled according to a 9-year monitoring cycle, which identifies the specific classes of contaminants to monitor at each drinking water source, and the sampling frequency (Table 5-6). At sample locations in buildings, the sampling point for coliform bacteria is a sink within the building. Samples for chemical contaminants are collected at the points of entry to the PWS. Although not required by regulation or by any permit, NNSA/NFO collects samples inside service connections for coliform bacteria to further ensure safe drinking water.

In addition to the monitoring required under the PWS permits, NNSA/NFO continues to evaluate the potential for per- and polyfluoroalkyl substances (PFAS) contamination in the drinking water supply, an emerging concern across the nation. While the NNSS is generally considered a low risk for PFAS contamination of the groundwater, the six permitted wells and PWS points of entry were monitored in 2020, with the samples analyzed by a Nevada certified laboratory. All results were non-detect at less than 1 nanogram per liter (part per trillion). A regulatory MCL has not been established for PFAS compounds, as the EPA and others continue to research this issue. More information can be found at <https://www.epa.gov/pfas>.

For work locations at the NNSS not connected to a PWS, NNSA/NFO hauls potable water in two water tanker trucks. The trucks are permitted by the NDEP Bureau of Safe Drinking Water, and the water they carry is subject to water quality standards for coliform bacteria (Table 5-6). Normal water delivery is to remote service connections and hand-washing stations at construction sites, which are activities not subject to permitting. NNSA/NFO renews the permits for the trucks annually.

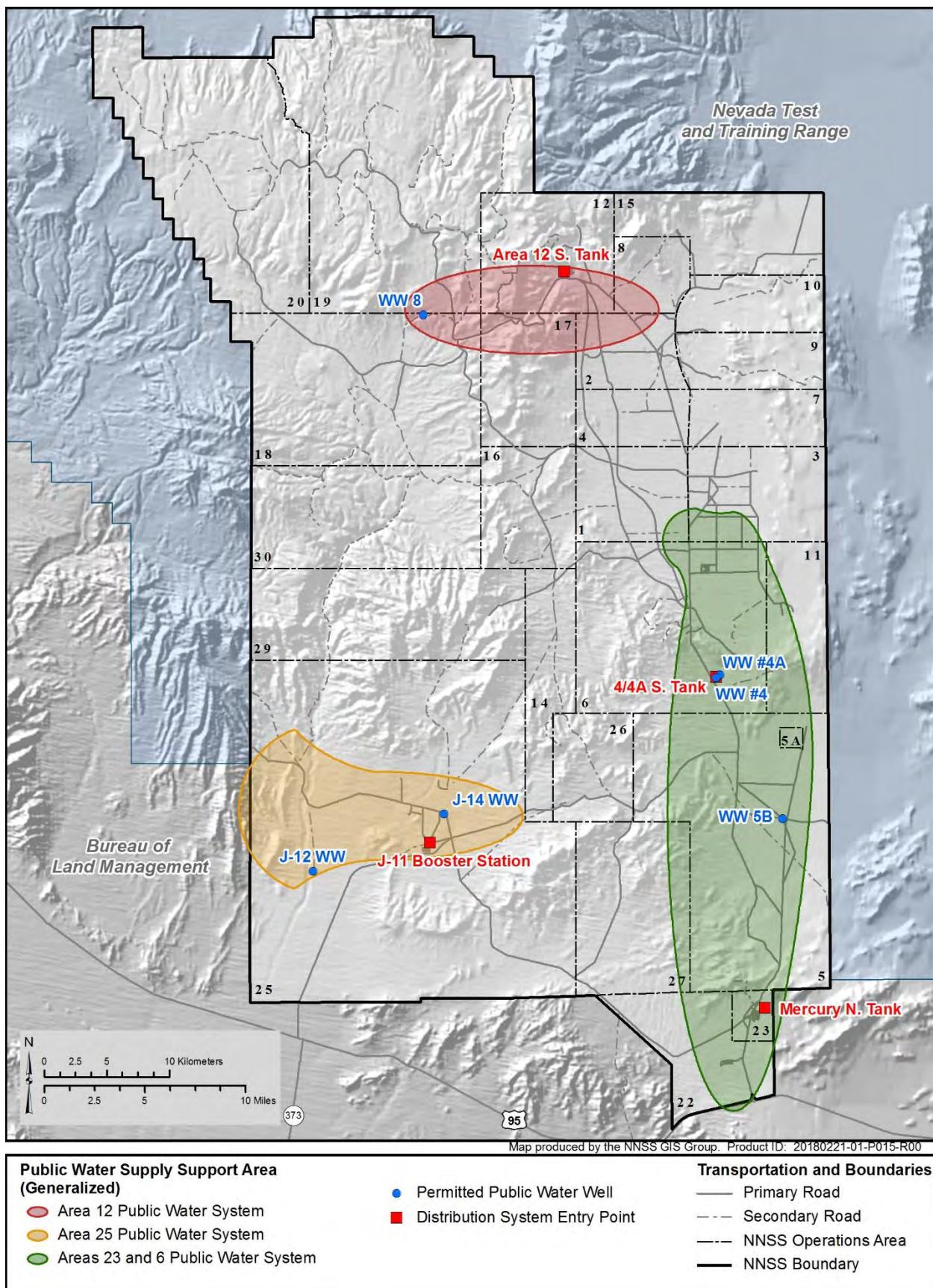


Figure 5-3. Water supply wells and drinking water systems on the NNSS

Table 5-6. Current sampling requirements for permitted NNSS PWSs and water-hauling trucks

System/ Truck	Contaminant or Contaminant Category	Sample Location	Sampling Cycle	Number of Samples	Year Sampled
NNSS Main	National Primary Standards				
	Coliform	WDP-23/6 ^(a)	monthly	2	2022
	Disinfectant residual	WDP-23/6	monthly	2	2022
	Asbestos	WDP-23/6	9 year	1	2016
	Disinfection by-products	WDP-23/6	1 year	1	2022
	Lead and copper	WDP-23/6	3 year	10	2022
	Arsenic	POE-23/6 ^(b)	3 year	1	2020
	IOCs ^(c) - Phase 2 and 5 ^(d)	POE-23/6	9 year	1	2016
	Nitrate	POE-23/6	1 year	1	2022
	Nitrite	POE-23/6	3 year	1	2021
	Nitrate + nitrite	POE-23/6	3 year	1	2021
	SOCs ^(e) - Phase 2 and 5	POE-23/6	6 year	1	2017
	VOCs ^(f) - Phase 2 and 5	POE-23/6	3 year	1	2019
	Secondary Standards				
	Secondary IOCs	POE-23/6	3 year	1	2022
Area 12	National Primary Standards				
	Coliform	WDP-12 ^(g)	monthly	1	2022
	Nitrate	POE-12 ^(h)	1 year	1	2022
	Nitrite	POE-12	3 year	1	2020
	Nitrate + nitrite	POE-12	3 year	1	2020
	Secondary Standards				
	Secondary IOCs	POE-12	3 year	1	2020
Area 25	National Primary Standards				
	Coliform	WDP-25 ⁽ⁱ⁾	monthly	1	2022
	Nitrate	POE-25 ^(j)	1 year	1	2022
	Nitrite	POE-25	3 year	1	2021
	Nitrate + nitrite	POE-25	3 year	1	2021
	Secondary Standards				
	Secondary IOCs	POE-25	3 year	1	2022
Water-hauling Trucks					
Trucks 84846 and 84847	Coliform Bacteria	Backflow preventer	weekly	1	2022

(a) WDP-23/6 = Water delivery points for the NNSS Main PWS: taps within Buildings 1-920A, 5-7, 6-CP-41, 6-644, 6-900, 23-117, 23-143, 23-180, 23-300, 23-531, 23-532, 23-535, 23-614, 23-650, and 23-652.

(b) POE-23/6 = Points of entry for the Area 23 and 6 PWS: Mercury N. Tank and 4/4A S. Tank (Figure 5-3).

(c) IOCs = Inorganic chemicals.

(d) Refers to sets of chemical contaminants in drinking water for which the EPA established MCLs through a series of rules known as the Chemical Phase Rules issued from 1987 (Phase 1) through 1992 (Phase 5); <http://water.epa.gov/lawsregs/rulesregs/sdwa/chemicalcontaminantrules/basicinformation.cfm>.

(e) SOC_s = Synthetic organic chemicals.

(f) VOC_s = Volatile organic compounds.

(g) WDP-12 = Water delivery points for the Area 12 PWS: Building 12-909.

(h) POE-12 = Points of entry for the Area 12 PWS: Area 12 S. Tank (Figure 5-3).

(i) WDP-25 = Water delivery points for the Area 25 PWS: Buildings 25-3123 or 25-4222.

(j) POE-25 = Points of entry for the Area 25 PWS: J-11 Booster Station, and J-14 WW (Figure 5-3).

5.2.1.1 Results of Public Water System and Water-Hauling Truck Monitoring

Water samples are collected in accordance with accepted practices, analyses are conducted by state-certified laboratories, and analytical methods are approved as listed in NAC 445A and Title 40 **Code of Federal Regulations (CFR)** Part 141, “National Primary Drinking Water Standards.” The 2022 monitoring results indicated all the PWSs complied with applicable National Primary Drinking Water Quality Standards. In addition, water samples from the water-hauling trucks were negative for coliform bacteria.

5.2.1.2 State Inspections

Approximately every 3 years, NDEP conducts a sanitary survey of the permitted PWSs that includes an inspection of wells, tanks, and other visible portions of each PWS. NDEP completed a survey in 2022, and no deficiencies were noted. Water-hauling trucks are inspected annually for compliance with NAC 445A; truck inspections were in June 2022, and NDEP renewed both permits.

5.2.2 Domestic Wastewater Monitoring

A total of 20 active and permitted domestic sewage disposal systems are being used on the NNSS: 17 septic systems and 3 sewage lagoons (Figure 5-4). The septic systems are permitted to process/store up to 5,000 gallons of wastewater per day. They are inspected periodically for sediment loading and pumped as required. The NNSS M&O Contractor maintains a septic pumping contractor permit, issued by the NDEP and the Nevada Division of Public and Behavioral Health. State representatives conduct onsite inspections of septic pump trucks and contractor operations. NNSA/NFO performs management assessments and maintenance for domestic wastewater septic systems to document compliance with permit conditions. Management assessments are performed according to existing directives and procedures.

In January 2022, the state conducted an inspection of NNSS septic pump trucks and all three trucks were found to be compliant with permit conditions.

A septic tank pumping contractor permit for three septic tank pump trucks (NY-17-06839) was renewed in July 2022.

5.2.3 Industrial Wastewater Monitoring

Industrial discharges on the NNSS are limited to three sewage lagoon systems: Area 6 Yucca Lake, Area 6 DAF [Device Assembly Facility], and Area 23 Mercury (lagoon systems also receive domestic wastewater) (Figure 5-4). The Yucca Lake system includes two primary lagoons and two secondary lagoons. The DAF system comprises one primary and one secondary lagoon. Both the Yucca Lake and DAF lagoons are lined with compacted native soils and meet state requirements for transmissivity (10^{-7} centimeters per second).

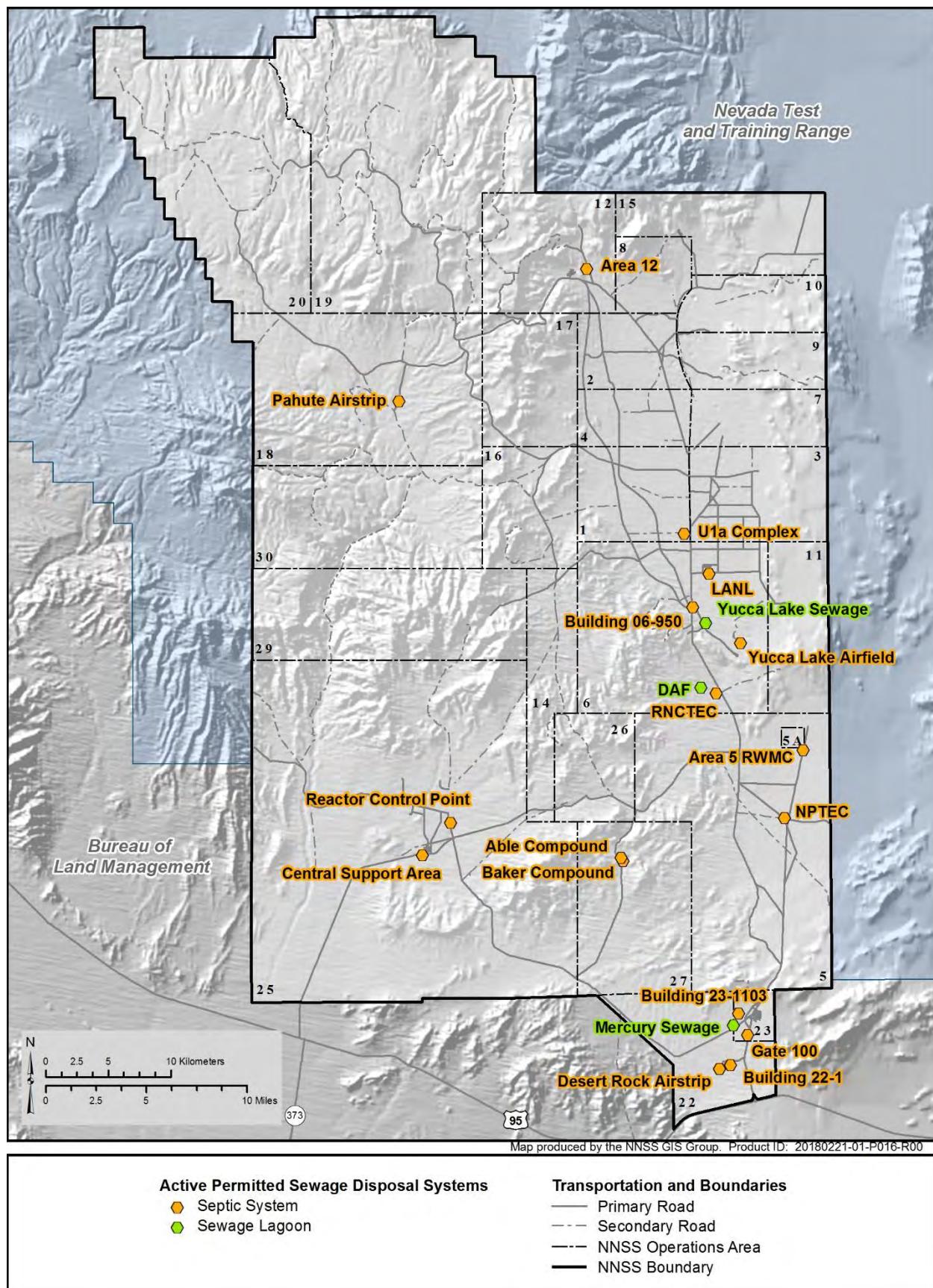


Figure 5-4. Active permitted sewage disposal systems on the NNSS

The Area 23 Mercury system includes one primary lagoon and one secondary lagoon. The primary and secondary lagoons are lined with geosynthetic clay and high-density polyethylene. The lining of the ponds allows these systems to operate as fully contained, evaporative, non-discharging systems. The sewage lagoons operate in compliance with Groundwater Discharge Permit GNEV93001.

5.2.3.1 Quarterly and Annual Influent Monitoring

Sewage systems are monitored quarterly for influent quality. Composite samples from each system are collected over a period of 6 hours and analyzed by state-certified laboratories. Methods for sample collection and analyses are in accordance with NAC 445A and 40 CFR 141. Composite samples are analyzed for three parameters: **5-day biochemical oxygen demand (BOD₅)**, total suspended solids, and pH. In 2022, sample analyses results for influent waters were within permitted limits (GNEV93001) (Table 5-7).

Toxicity monitoring of influent waters of the lagoons was not conducted in 2022. Permit GNEV93001 requires lagoons to be sampled and analyzed for the 29 contaminants listed in Table 4-10 of the Nevada Test Site Environmental Report 2008 (National Security Technologies, LLC [NSTec] 2009) only in the event of specific or accidental discharges of potential contaminants. No specific or accidental discharges occurred in 2022.

Table 5-7. Water quality and flow monitoring results for NNSS sewage lagoon influent waters

Parameter	Units	Minimum and Maximum Values from Quarterly Samples		
		Area 6 Yucca Lake	Area 23 Mercury	Area 6 DAF
BOD ₅	mg/L	74–519	145–587	65–107
Permit Limit		None	None	None
BOD ₅ Mean Daily Load ^(a)	kg/d	1.14–5.06	57.86–134.0 ^(b)	0.53–1.00
Permit Limit		34.43	124.31	15.29
Total Suspended Solids	mg/L	79–134	180–595	20–127
Permit Limit		None	None	None
pH	S.U. ^(c)	8.07–8.12	7.88–8.14	7.02–8.59
Permit Limit		6.0–9.0	6.0–9.0	6.0–9.0
Quarterly Average Flow Rate	GPD ^(d)	1,173–3,226	14,566–45,235	805–1,838
Permit Limit		10,850	73,407	3,080

(a) BOD₅ Mean Daily Load in kilograms per day (kg/d) = (milligrams per liter [mg/L] BOD × liters per day average flow × 3.785)/10⁶.

(b) Lagoon dried for maintenance.

(c) Standard units of pH.

(d) Gallons per day.

5.2.3.2 Sewage System Inspections

NNSA/NFO personnel inspect active systems bi-weekly; no notable observations were made in 2022. NDEP inspects both active and inactive NNSS lagoon systems annually; there were no findings of deficiency in 2022. Inspections evaluate all infrastructure (i.e., field maintenance programs, lagoons, sites, and access roads) for abnormal conditions, weeds, algae blooms, pond color, abnormal odors, dike erosion, burrowing animals, discharge, depth of staff gauge, crest level, excess insect population, maintenance/repairs, and general conditions.

5.2.4 E Tunnel Wastewater Disposal System Monitoring

NNSA/NFO manages and operates the ETDS in Area 12 under a separate water pollution control permit (NEV 96021) issued by the NDEP Bureau of Federal Facilities. The permit regulates the management of radionuclide-contaminated wastewater that drains from the E Tunnel portal into a series of holding ponds. The permit requires ETDS discharge waters to be monitored every 12 months for radiological parameters (Adjusted Gross Alpha, Gross Beta, ³H) and nonradiological parameters (Table 5-8). It also requires nearby Well ER-12-1 to be sampled for the same parameters once every 24 months. ETDS discharge water is also monitored monthly for flow rate, pH, temperature, and specific conductance, and for the volume and structural integrity of the holding ponds. Monitoring data are reported to the NDEP Bureau of Federal Facilities in quarterly and annual reports.

Monitoring personnel sampled Well ER-12-1 on April 19, 2022, and the ETDS effluent on October 12, 2022. All nonradiological parameters were within the threshold limits. Nonradiological results and thresholds are provided in Table 5-9.

Table 5-8. Nonradiological results for E Tunnel Wastewater Disposal System discharge samples

Nonradiological Parameter	ETDS Discharge Water Sampled Every 12 Months (October 2022)		Well ER-12-1 Groundwater Sampled Every 24 Months (April 2022)	
	Threshold (mg/L)	Concentration (mg/L) ^(a)	Threshold (mg/L)	Concentration (mg/L) ^(a)
Cadmium	0.045	<0.001	0.005	<0.0002
Chloride	360	8.9	250	15
Chromium	0.09	<0.001	0.09	<0.006
Copper	1.2	<0.003	1.2	<0.003
Fluoride	3.6	0.26	3.6	<0.5
Iron	5.0	1.3	5.0	3.1
Lead	0.014	0.0008	0.014	<0.0002
Magnesium	135	0.78	135	63
Manganese	0.25	0.015	0.25	0.09
Mercury	0.0018	<0.00007	0.0018	<0.00006
Nitrate nitrogen	9	0.35	9	<1
Selenium	0.045	<0.0015	0.045	<0.0007
Sulfate	450	16	450	380
Zinc	4.5	0.021	4.5	<0.010
Flow Rate (liters/minute)	MR ^(b)	28.8 ^(c)	NA ^(d)	NA
pH (S.U.)	6.0–9.0	7.3 ^(c)	6.0–9.0	7.3 ^(c)
Specific conductance ($\mu\text{S}/\text{cm}$) ^(e)	<1,500	362 ^(c)	<1,500	1038 ^(c)

(a) Concentrations given as less than (<) a number indicate the result is less than the laboratory's reporting limit

(b) Permit requires NNSA/NFO to monitor and report (MR); there are no threshold limits.

(c) Average of 12 monthly measures.

(d) NA = Not applicable.

(e) $\mu\text{S}/\text{cm}$ = microsiemens per centimeter.

5.3 Water-Level and Usage Monitoring

The U.S. Geological Survey (USGS) Nevada Water Science Center collects, compiles, stores, and reports hydrologic data used in determining the local and regional hydrogeological conditions in and around the NNSS. Hydrologic data are collected quarterly, semi-annually, or annually from wells on and off the NNSS. The USGS also has developed models for the Death Valley Regional Groundwater Flow System (Belcher and Sweetkind 2010, Belcher et al. 2017, Halford and Jackson 2020), and manages other NNSS hydrologic and geologic information databases (for example, <https://waterdata.usgs.gov/nv/nwis> and <https://pubs.usgs.gov/ds/2007/297/>).

In 2022, the USGS monitored water levels in 260 wells on and near the NNSS; these included 148 wells on the NNSS and 112 wells off the NNSS. Water levels are monitored to identify where water occurs in the subsurface, changes in the quantity of water in aquifers, the direction of groundwater movement, and groundwater velocity (derived from knowledge of groundwater movement and formation properties). Along with radiological groundwater data presented in Section 5.1, water-level data contribute to the development of UGTA CAU-specific models of groundwater flow and radionuclide transport (Section 11.2.1). A map showing the locations of monitored wells and all water-level data are available on the USGS-U.S. Department of Energy Cooperative Studies in Nevada project website at https://nevada.usgs.gov/doe_nv/.

Groundwater withdrawal data are collected from water supply wells on the NNSS using flow meters and are reported monthly. The principal NNSS water supply wells monitored included WW-4, WW-4A, WW-5B, WW-8 (Figure 5-1), and UE-16d WW. The USGS compiles the water-use data and reports annual withdrawals in millions of gallons. Withdrawal data from these wells for 2022 have been compiled and processed, and are available from the Water Withdrawals page on the USGS-U.S. Department of Energy Cooperative Studies in

Nevada project website at https://nevada.usgs.gov/doe_nv/water_withdrawals.html. Total groundwater withdrawals from these wells in 2022 was about 149 million gallons (Figure 5-5).

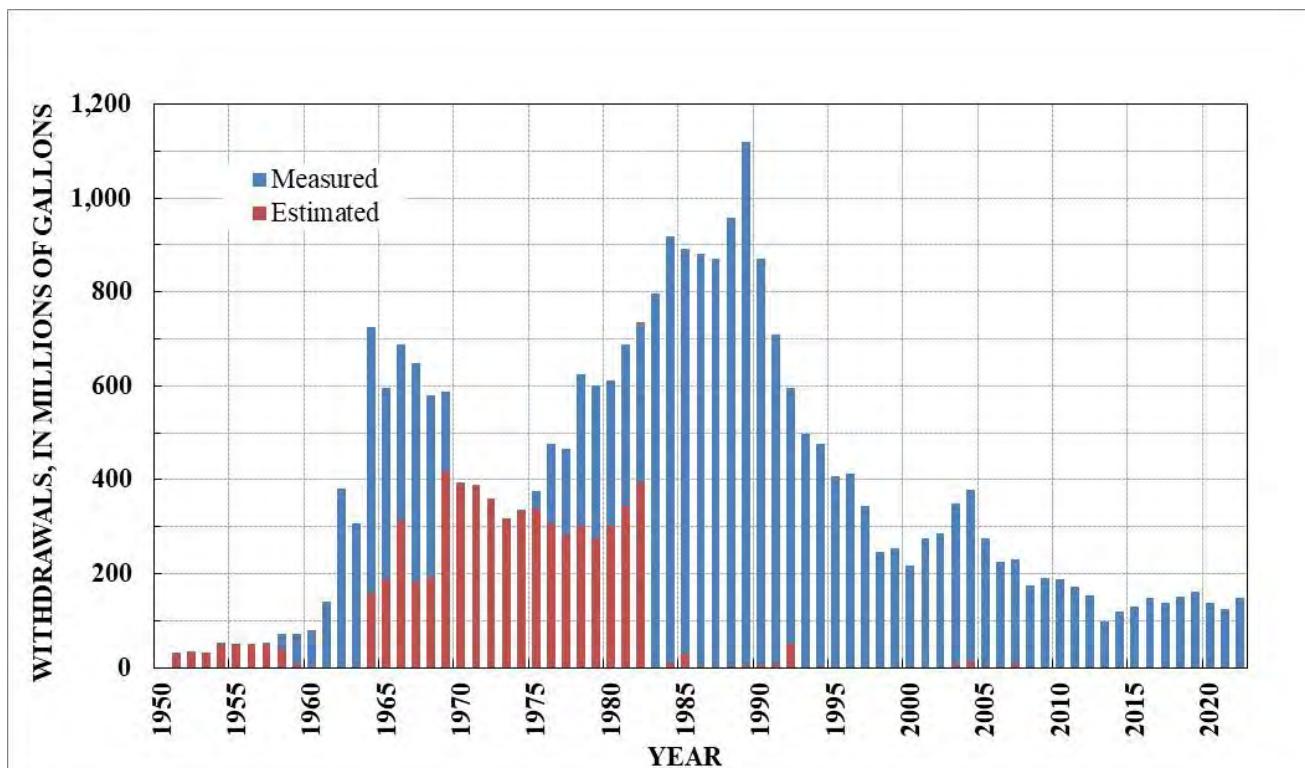


Figure 5-5. Annual withdrawals from the NNSS, 1951 to 2022

5.4 Water Monitoring Conclusions

Groundwater contaminated by historical UGTs does not impact the public or NNSS workers who consume water from wells located off or on the NNSS. Although the potential radiological impact to water resources from past activities on the NNSS is from migration of radionuclides in the groundwater downgradient from the UGTA CAUs, only testing within the Pahute Mesa CAUs has impacted groundwater off the NNSS boundary, while remaining on the NTTR. Furthermore, the detection of ^{3}H above its standard analysis method MDC of 300 pCi/L has only been observed in two wells on the NTTR (ER-EC-11 and PM-3). Seven wells (including ER-EC-11) monitor a contaminant plume of ^{3}H believed to originate from the TYBO and BENHAM UGTs. These seven wells are within 900 ft to 17,000 ft (0.2 to 3.2 miles) of these two UGTs. Similarly, two wells (including PM-3) monitor a contaminant plume of ^{3}H believed to originate from the HANDLEY UGT. Eight other UGTA wells on the NTTR (i.e., “ER-EC” wells) have not shown the presence of man-made radionuclides downgradient of Pahute Mesa. Because of the slow migration of radionuclides in groundwater and the relatively rapid decay of ^{3}H , ^{3}H is not expected to be observed off the NTTR boundary at levels exceeding the SDWA MCL. In fact, ongoing scientific studies indicate that contaminated groundwater at levels exceeding the SDWA MCLs for all radionuclides is not expected to reach publicly accessible areas (see Section 11; Figures 11-4 and 11-6). Samples from community wells, including samples collected by CEMP and TSaMP (Sections 7.2 and 7.3), farther downgradient of Pahute Mesa, also contain no detectable man-made radionuclides.

NNSS wildlife can be exposed to ^{3}H in their drinking water or in their aquatic habitats whenever contaminated waters are retained for evaporation in state-approved ponds or sumps. Examples are the E Tunnel ponds and UGTA groundwater sumps used by wildlife as drinking water and by plants, insects, and amphibians as aquatic habitats. The potential dose to NNSS biota from these water sources is routinely assessed and reported annually in this report (Section 9.2). Each year, results have demonstrated that the doses to biota are less than the limits established to protect plant and animal populations.

Potential nonradiological parameters concerning drinking water and wastewater monitored on the NNSS in 2022 were all less than permit limits, with the following exception: the DAF sewage lagoon exceeded the daily flow limit. The DAF sewage lagoon flow exceedance had no impact, as there was no loss of containment. If present, nonradiological contamination of groundwater from NNSS operations would likely be co-located with the radiological contamination from historical UGTs within UGTA CAUs. It is expected to be minor, however, in comparison to the radiological contamination. For nuclear tests detonated above the water table, potential nonradiological contaminants are not likely to reach groundwater because of their negligible advective and dispersive transport rates through the thick **vadose zone**. Water samples from UGTA investigation wells, which include highly contaminated wells, have not had elevated levels of nonradiological man-made contaminants.

Well drilling, waste burial, chemical storage, and wastewater management are the only current NNSS activities that have the potential to contaminate groundwater with nonradiological contaminants. This potential is very low, however, due to engineered and operational deterrents and natural environmental factors. Current drilling operations procedures include the containment of drilling muds and well effluents in sumps (Section 5.1.3.8.3). Well effluents are monitored for nonradiological contaminants (predominantly lead) to ensure lined sumps are used when necessary. The Area 3 and Area 5 Radioactive Waste Management Sites are monitored to ensure that contaminants do not reach groundwater (Chapter 10). In addition, the potential for mobilization of contaminants from all these sources to groundwater is negligible due to the arid climate, the great depth to groundwater (thickness of the vadose zone), and the proven behavior of liquid and vapor fluxes in the vadose zone (primarily upward liquid movement towards the ground surface due to evapotranspiration).

The EM Nevada Program is responsible for completing environmental corrective actions at sites where surface and shallow subsurface contamination historically occurred. Some of these sites also have nonradiological contaminants such as metals, petroleum hydrocarbons, hazardous organic and inorganic chemicals, and unexploded ordinance (Sections 11.2.2 and 11.3.2). The potential for mobilization of these contaminants to groundwater is negligible due to the same regional climatic, soil, and hydrogeological factors mentioned above.

Water level monitoring continues to be used to develop and refine CAU-specific models of groundwater flow and contaminant transport. Section 11.2.1 of this report describes the status of these models.

Current water usage, monitored annually, has dropped to levels that have not been seen since the early 1960s, due mainly to changes in site operations, and to some extent, recent conservation actions. Within the past several years, NNSA/NFO has taken actions to conserve groundwater by addressing DOE's water efficiency and water management goals, which include reducing both potable and non-potable water use (Chapter 3).

5.5 References

Belcher, W.R., and D.S. Sweetkind, eds., 2010. *Death Valley Regional Groundwater Flow System, Nevada and California—Hydrogeologic Framework and Transient Groundwater Flow Model*. USGS Professional Paper 1711. Available at <https://pubs.usgs.gov/pp/1711/>.

Belcher, W.R., D.S. Sweetkind, C.C. Faunt, M.T. Pavelko, and M.C. Hill, 2017. *An Update of the Death Valley Regional Groundwater Flow System Transient Model, Nevada and California*. USGS Scientific Investigations Report 2016-5150. Available at <https://doi.org/10.3133/sir20165150>.

DOE, see U.S. Department of Energy.

Elliott, P.E., and J.M. Fenelon, 2010. *Database of Groundwater Levels and Hydrograph Descriptions for the Nevada Test Site Area, Nye County, Nevada* (ver. 12.0, April 2022). USGS Data Series 533. Available at <https://doi.org/10.3133/ds533>.

Fenelon, J.M., D.S. Sweetkind, and R.J. Lacznak, 2010. *Groundwater Flow Systems at the Nevada Test Site, Nevada: A Synthesis of Potentiometric Contours, Hydrostratigraphy, and Geologic Structures*. USGS Professional Paper 1771. Available at <https://doi.org/10.3133/pp1771>.

Halford, K.J., and T.R. Jackson, 2020. *Groundwater characterization and effects of pumping in the Death Valley regional groundwater flow system, Nevada and California, with special reference to Devils Hole*. USGS Professional Paper 1863. Available at <https://doi.org/10.3133/pp1863>.

Mission Support and Test Services, LLC, 2023. *Nevada National Security Site 2022 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site*. DOE/NV/03624--1632, Las Vegas, NV. March 2023

MSTS, see Mission Support and Test Services, LLC.

National Security Technologies, LLC, 2009. *Nevada Test Site Environmental Report 2008*. DOE/NV/25946--790, Las Vegas, NV.

Navarro, 2019. *Model Evaluation Report for Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada National Security Site, Nye County, Nevada*, Rev. 1, N/0002653--063. Las Vegas, NV.

NNSA/NFO, see U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office.

NSTec, see National Security Technologies, LLC.

U.S. Department of Energy, 1997. *The Procedures Manual of the Environmental Measurements Laboratory, HASL-300 3H-02, Tritium in Water – Alkaline Electrolysis*. 28th Ed., Vol. I. February, New York, NY.

U.S. Department of Energy Environmental Management Nevada Program, 2020a. *Record of Technical Change to Underground Test Area (UGTA) Closure Report for Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada National Security Site, Nevada*, Rev. 1, DOE/EMNV—0021. Las Vegas, NV.

_____, 2020b. *Underground Test Area (UGTA) Closure Report for Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada National Security Site, Nevada*, Rev. 0, DOE/EMNV--0021. Las Vegas, NV. (DOE/EMNV, 2020).

_____, 2020c. *Underground Test Area (UGTA) Closure Report for Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada National Security Site, Nevada*, Rev. 1, DOE/EMNV-0012, March 2020. Las Vegas, NV.

_____, 2020d. *Underground Test Area (UGTA) Sampling Plan for Corrective Action Units 101 and 102: Central and Western Pahute Mesa, Nevada National Security Site, Nevada*, Rev. 1, DOE/EMNV—0019. Las Vegas, NV.

_____, 2022. *Corrective Action Unit 98: Frenchman Flat Five-Year Evaluation* Nevada National Security Site, Nevada, Rev. 1, DOE/EMNV--0035. Las Vegas, NV.

U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office, 2009. Attachment 1, “Fluid Management Plan for the Underground Test Area Project,” Revision 5, DOE/NV--370. In: *Underground Test Area Project Waste Management Plan*, Revision 3, DOE/NV--343. Las Vegas, NV.

_____, 2015. *United States Nuclear Tests, July 1945 through September 1992*. DOE/NV--209, Revision 16, Las Vegas, NV. Available at https://nnss.gov/wp-content/uploads/2023/08/DOE_NV-209_Rev16.pdf.

_____, 2016. *Underground Test Area (UGTA) Closure Report for Corrective Action Unit 98: Frenchman Flat Nevada National Security Site, Nevada*, Revision 1, DOE/NV--1538-REV 1. Las Vegas, NV.

_____, 2019. *Record of Technical Change to Underground Test Area (UGTA) Closure Report for Corrective Action Unit 98: Frenchman Flat Nevada National Security Site, Nevada*, Rev. 1, DOE/NV--1538; ROTC No. DOE/NV--1538-Rev. 1-ROTC 3, 7 February. Las Vegas, NV.

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 6: Direct Radiation Monitoring

Xianan Liu and Ronald W. Warren
Mission Support and Test Services, LLC

Charles B. Davis
EnviroStat

Direct Radiation Monitoring Program Goals

Assess the proportion of external dose from background radiation versus that from operations at the Nevada National Security Site (NNSS). Measure external radiation to assess the potential external dose to a member of the public from operations at the NNSS (Chapter 9 gives estimates for public dose). Measure external radiation to assess the potential external dose to a member of the public from operations at the Area 3 and 5 Radioactive Waste Management Sites (RWMSs).

Monitor operational activities involving radioactive material, radiation-generating devices, and accidental releases of radioactive material to ensure exposure to members of the public are kept as low as reasonably achievable (ALARA).

Measure external radiation to assess the potential external and absorbed radiation doses to NNSS plants and animals (Section 9.2 gives biota dose assessments). Determine the patterns of exposure rates through time at various soil contamination areas to characterize releases in the environment.

U.S. Department of Energy (DOE) Orders DOE O 458.1, “Radiation Protection of the Public and the Environment,” and DOE O 435.1, “Radioactive Waste Management,” present requirements to protect the public and environment from radiation **exposure**:¹ see descriptions of these orders in Table 2-1. Energy absorbed from radioactive materials outside the body results in an external **dose**. On the NNSS, external dose comes from direct **ionizing radiation** including natural **radioactivity** from cosmic and terrestrial sources as well as man-made radioactive sources. This chapter presents data obtained to assess external dose for 2022. Chapters 4, 5, and 8 present monitoring results for radioactivity from NNSS activities in air, water, and biota, respectively. Those results help scientists estimate potential internal radiation dose to the public via inhalation and ingestion. The total estimated dose, both internal and external, from NNSS activities is presented in Chapter 9.

Direct radiation monitoring is conducted to assess the external radiation environment, detect changes in that environment, respond to releases from DOE National Nuclear Security Administration Nevada Field Office (NNSA/NFO) activities, and measure **gamma radiation** levels near potential exposure sites. In addition, DOE O 458.1 provides that potential exposures to members of the public are to be **ALARA**.

6.1 Measurement of Direct Radiation

Direct (or external) radiation exposure can occur when **alpha particles**, **beta particles**, or electromagnetic (gamma and X-ray) radiation interact with living tissue. Electromagnetic radiation can travel long distances through air and penetrate living tissue, causing ionization within the body tissues. For this reason, electromagnetic radiation is one of the greater concerns of direct radiation exposure. By contrast, alpha and beta particles do not travel far in air (a few centimeters [cm] for alpha, and about 10 meters [m] or 33 feet [ft] for beta particles). Alpha particles deposit only negligible energy to living tissue as they rarely penetrate the outer dead layer of skin and cannot penetrate thin plastic. Beta particles are generally absorbed in the layers of skin immediately below the outer layer.

Direct radiation exposure is usually reported in the unit milliroentgen (mR), which is a measure of exposure in terms of numbers of ionizations in air. The dose in human tissue resulting from an exposure from one of the most common **radionuclides** (cesium-137 [^{137}Cs]) is approximated by equating a 1-mR exposure with a dose of 1 millirem (mrem) (or 0.01 millisievert [mSv]).

¹ The definition of word(s) in **bold italics** may be found by referencing the Glossary, Appendix B.

6.2 Thermoluminescent Dosimetry Surveillance Network Design

A surveillance network of **thermoluminescent dosimeter (TLD)** sample locations (Figure 6-1) monitors NNSS areas with elevated radiation levels from historical nuclear explosive testing, current and past radioactive waste management activities, and/or current operations involving radioactive material or radiation-generating devices.

TLDs have the capability to measure exposure from all sources of ionizing radiation, but with normal use, the TLD will detect only electromagnetic radiation, high-energy beta particles, and in some special cases, neutrons. This is due to the penetrative abilities of the radiation. The TLD used for environmental sampling is the Panasonic UD-814AS, which has three calcium sulfate elements housed in an air-tight, water-tight, ultra-violet light-protected case. Measurements from the three calcium sulfate elements are averaged to assess penetrating gamma radiation.

A pair of TLDs is placed at 1.0 ± 0.3 m (28 to 51 inches [in.]) above the ground at each monitoring location. TLD analysis is performed quarterly using automated TLD readers that are calibrated and maintained by the NNSS Radiological Control Department. Reference TLDs are exposed to a 100 mR ^{137}Cs source under tightly controlled conditions. These are read along with TLDs collected from the network to calibrate their responses.

Active environmental TLDs are set at 105 locations on the NNSS in 2022 (Figure 6-1), along with six control locations. They include the following:

- Background (B) – 10 locations where radiation effects from NNSS operations are negligible.
- Environmental 1 (E1) – 41 locations where there is no measurable radioactivity from past operations, but which are locations of interest due to the presence of people in the area and/or the potential for increased radiation exposure from a current operation.
- Environmental 2 (E2) – 35 locations where there is or has been measurable added radioactivity from past operations; these locations are of interest for monitoring direct radiation trends in the area. Some locations fitting this description are grouped with the Waste Operations category below.
- Waste Operations (WO) – 19 locations in and around the Area 3 and 5 RWMSs.
- Control (C) – Five locations in Building 652 and one in Building 650 (both in Area 23). Control TLDs are kept in stable environments. Those in Building 652 are shielded inside a lead cabinet, and those in Building 650 are shielded by just the building itself. These TLDs are used as a quality check on the TLDs and the analysis process.

This network of TLD locations, along with the analysis of their data, serve to continuously monitor operational activities throughout the NNSS for changes in external radiation measures over time and any accidental releases of radioactive material. TLD data are reviewed annually to identify any patterns of exposure rates through time at various soil contamination areas.

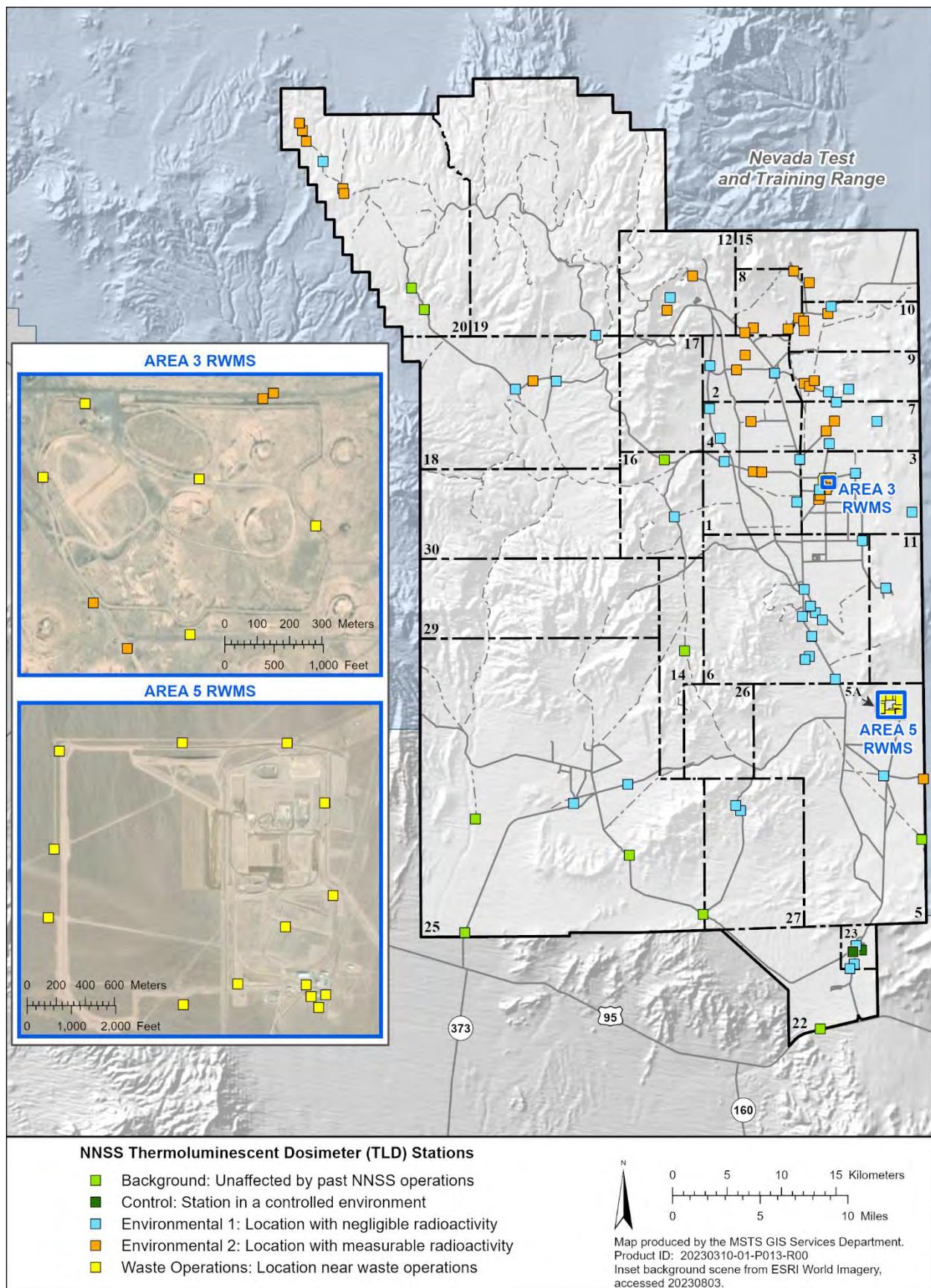


Figure 6-1. Locations of TLDs on the NNSS

6.2.1 Data Quality

Quality assurance (QA) procedures for direct radiation monitoring involve: (1) comparison of readings among the three TLD elements in individual TLDs, (2) comparison of data from the paired TLDs at each location to estimate the measurement and its precision, (3) comparison of current and past data measurements at each TLD location, and (4) review of data from the TLDs in the control locations. The TLDs in control locations allow the detection and estimation of any systematic variations that might be introduced by the measurement process itself.

Quality assurance and **quality control (QC)** protocols (including Data Quality Objectives) are maintained as essential elements of direct radiation monitoring. All procedures are updated based on the American National Standards Institute/Health Physics Society (ANSI/HPS, 2019) QA/QC requirements, including the use of sample packages to thoroughly document each sampling event, rigorous management of databases, and completion of essential training (Chapter 14). The NNSS Radiological Control Department maintains certification through the DOE Laboratory Accreditation Program for **dosimetry**.

Five steps comprise the monitoring process for each environmental TLD: the TLD is (1) annealed (i.e., heated and then cooled) to reset its original unexposed condition, then stored in a shielded location; (2) deployed to the field at the beginning of each quarter; (3) collected from the field at the end of each quarter; (4) again stored in a shielded location; and (5) read to measure exposure. To control for variations related to holding times, an estimate of the additional dose due to holding prior to deployment and following collection in the shielded location is subtracted from the measured quarterly dose before computing annual exposure estimates. This adjustment has been applied retroactively to data from 2003 on. This adjustment resulted in a decrease of estimated dose between 0.39% and 5.84%, averaging 1.71% for locations that were in the field in 2022.

6.2.2 Data Reporting

Direct radiation is recorded as exposure per unit time in milliroentgens per day (mR/d), calculated by dividing the measured exposure per quarter for each TLD by the number of days the TLD was exposed at its measurement location. These are multiplied by 365.25 to obtain annualized values. The estimated annual exposure is the average of the quarterly annualized values; this is the metric used to determine compliance with federal annual dose limits.

6.3 Results

Estimated annual exposures for all TLD locations are listed in Table 6-1. Summary statistics for the five location types are listed in Table 6-2. Data were successfully obtained from all but one of the TLDs during all quarters in 2022; four measurements were rejected due to inadequate inter-element agreement. Otherwise, agreement between the results provided by the paired TLDs was quite good, with an average relative percent difference between measurements of 3.2%. The quarter-to-quarter coefficient of variation (CV) (i.e., the relative standard deviation) ranged from 1.1% to 14.3% (mean = 4.6%) over all locations, excluding Gate 100 Truck Parking 1 (discussed in Section 6.3.2).

6.3.1 Background Exposure

In 2022, the average of the estimated annual exposures among the 10 background locations was 124 mR, ranging from 81 to 173 mR (Table 6-2). A 95% prediction interval (PI) for annual exposures based on the 2022 estimated annual exposures at the background locations (denoted “95% PI from Background Locations” in the plots, Figures 6-2, 6-3, and 6-4) is 45.6 to 203.4 mR. This interval predicts mean annual background exposures at locations where radiation effects from NNSS operations are negligible.

Exposure estimates at all locations include contributions from natural sources of radiation (i.e., cosmic, terrestrial), legacy sources (i.e., contaminated soils from NNSS historical nuclear testing), and current NNSS operational sources. It is important to note that all DOE dose limits to the public are for dose over and above background.

In order to study whether the NNSS TLD system is able to measure very small dose changes in the environment above the background radiation, statistical analyses of historical data from the 10 current background locations was performed, and is summarized in Table 6-3. The baseline background dose at each location is determined using

the most recent 10-year data, in accordance with the standard recommended in ANSI/HPS (2019). The estimated annual exposure was consistent over time at each background location from 2012 to 2021. The average annual exposures of the background locations varied from 79 mR to 162 mR in 2012–2021, and the year-to-year CVs ranged from 1.3% to 2.6% (mean = 2.0%). The relative differences between the 2022 mean exposures and their corresponding average annual exposures of the background locations are very small, ranging from 0% to 7.7%, averaging 4.1%. These results show that the TLDs are sensitive enough to measure radiation exposure over 10 percent of background, and no man-made radiation from NNSS operations was detected at background locations in 2022.

Table 6-1. Annual direct radiation exposures measured at TLD locations on the NNSS

NNSS Area	Location	Number of Quarters	Estimated Annual Exposure (mR) ^(a)		
			Mean ^(b)	Minimum ^(b)	Maximum ^(b)
Background					
5	Old Indian Springs Road	4	81	78	84
14	Mid-Valley	4	151	145	156
16	Stake P-3	4	126	118	140
20	Stake A-112	4	173	167	180
20	Stake A-118	4	163	159	168
22	Army #1 Water Well	4	87	83	90
25	Gate 25-4-P	4	136	129	143
25	Gate 510	4	134	127	138
25	Jackass Flats & A-27 Roads	4	82	77	85
25	Skull Mtn Pass	4	111	108	118
Control					
23	Building 650 Dosimetry	4	60	59	61
23	Lead Cabinet, 1	4	28	26	31
23	Lead Cabinet, 2	4	30	26	38
23	Lead Cabinet, 3	4	28	26	29
23	Lead Cabinet, 4	4	26	24	29
23	Lead Cabinet, 5	4	26	24	28
Environmental 1 ^(c)					
1	BJY	4	128	121	138
1	Sandbag Storage Hut	4	121	114	124
1	Stake C-2	4	126	120	134
2	Stake M-140	4	138	133	143
2	Stake TH-58	4	101	93	112
3	LANL Trailers	4	124	119	127
3	Stake OB-20	4	91	85	96
3	Well ER 3-1	4	129	121	137
4	Stake TH-41	4	116	110	123
4	Stake TH-48	4	123	116	127
5	Water Well 5b	4	116	111	125
6	CP-6	4	75	71	80
6	DAF East	4	105	99	107
6	DAF North	4	110	103	118
6	DAF South	4	148	137	162
6	DAF West	4	94	88	104
6	Decon Facility NW	4	138	132	143
6	Decon Facility SE	4	142	136	147
6	Stake OB-11.5	4	133	130	136
6	Yucca Compliance	4	98	95	102
6	Yucca Oil Storage	4	105	101	108
7	Reitmann Seep	4	133	123	141
7	Stake H-8	4	132	127	136
9	Papoose Lake Road	4	95	83	114
9	U-9cw South	4	108	100	117
9	V & G Road Junction	4	121	115	131
10	Gate 700 South	4	129	124	135
11	Stake A-21	4	137	131	141

Table 6-1. Annual direct radiation exposures measured at TLD locations on the NNSS

NNSS Area	Location	Number of Quarters	Estimated Annual Exposure (mR) ^(a)		
			Mean ^(b)	Minimum ^(b)	Maximum ^(b)
12	Upper N Pond	4	136	128	140
16	3545 Substation	4	144	137	149
18	Stake A-83	4	152	146	157
18	Stake F-11	4	153	144	159
19	Stake P-41	4	168	160	176
20	Stake J-41	4	149	146	154
23	Gate 100 Truck Parking 1	4	83	60	128
23	Gate 100 Truck Parking 2	4	56	54	59
23	Mercury Fitness Track	4	60	57	63
25	HENRE	4	130	125	133
25	NRDS Warehouse	4	129	123	134
27	Cafeteria	4	117	113	121
27	JASPER-1	4	118	115	124
Environmental 2 ^(c)					
1	Bunker 1-300	4	114	110	116
1	T1	4	192	185	197
2	Stake L-9	4	164	155	169
2	Stake N-8	4	335	316	359
3	Stake A-6.5	4	146	135	158
3	T3	4	253	245	262
3	T3 West	4	246	233	263
3	T3a	4	255	248	263
3	T3b	4	357	342	393
3	U-3co North	4	166	157	179
3	U-3co South	4	143	138	147
4	Stake A-9	4	355	330	379
5	Frenchman Lake	4	218	207	232
7	Bunker 7-300	4	178	173	184
7	T7	4	117	110	127
8	Baneberry 1	4	297	284	311
8	Road 8-02	4	123	117	127
8	Stake K-25	4	115	111	118
8	Stake M-152	4	159	153	167
9	B9a	4	131	125	142
9	Bunker 9-300	4	124	120	126
9	T9b	4	373	360	395
10	Circle & L Roads	4	120	115	127
10	Sedan East Visitor Box	4	129	126	132
10	Sedan West	4	200	193	207
10	T10	4	214	209	218
12	T-Tunnel #2 Pond	4	226	213	234
12	Upper Haines Lake	4	106	101	111
15	EPA Farm	4	113	109	118
18	Johnnie Boy North	4	154	148	164
20	Palanquin	4	212	206	218
20	Schooner-1	4	417	402	431
20	Schooner-2	4	211	204	220
20	Schooner-3	4	152	147	159
20	Stake J-31	4	167	160	171
Waste Operations ^(c)					
3	RWMS Center	4	142	131	159
3	RWMS East	4	141	131	151
3	RWMS North	4	134	125	152
3	RWMS South	4	255	242	265
3	RWMS West	4	127	116	138
5	CAU-111	4	130	125	135
5	Lysimeter	4	142	132	148

Table 6-1. Annual direct radiation exposures measured at TLD locations on the NNSS

NNSS Area	Location	Number of Quarters	Estimated Annual Exposure (mR) ^(a)		
			Mean ^(b)	Minimum ^(b)	Maximum ^(b)
5	Pilot Well 3	4	153	146	159
5	Powerline Rd	4	154	142	162
5	RWMS East Gate	4	102	98	109
5	RWMS Expansion NE	4	157	150	165
5	RWMS NE Corner	4	130	122	137
5	RWMS-5 North	4	153	145	158
5	RWMS SW Comer	4	131	126	134
5	Vefa	4	154	143	164
5	Waterline Rd	4	141	134	146
5	WEF North	4	115	111	119
5	WEF South	4	127	125	130
5	WEF West	4	129	122	139

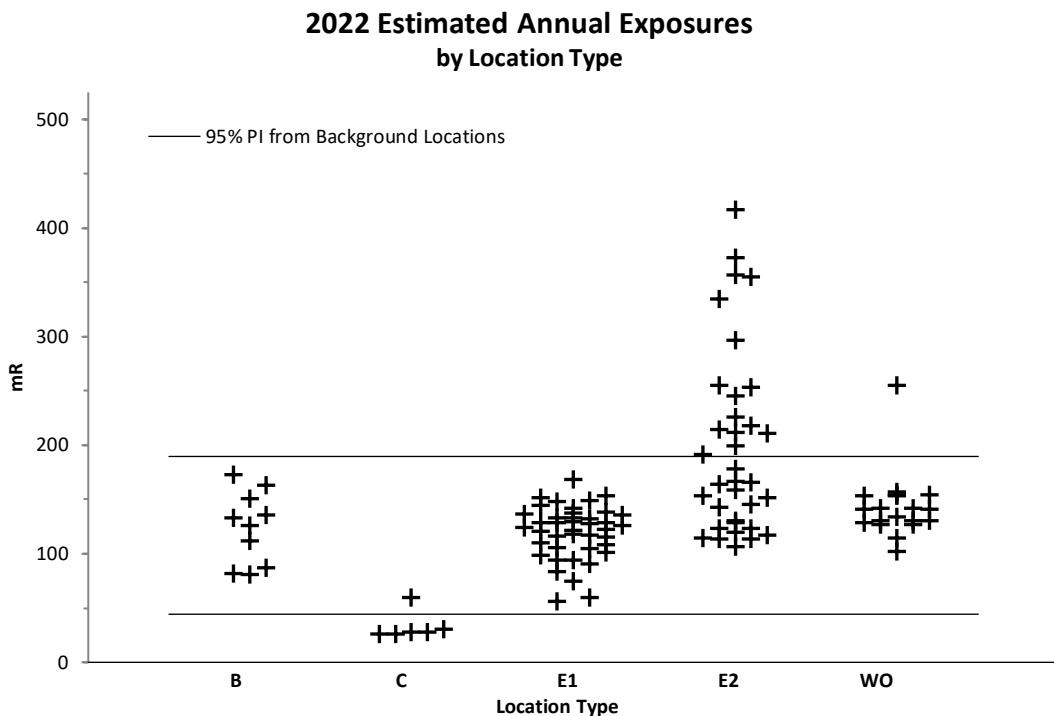
(a) To obtain the estimated daily exposure rates, divide the annual exposure estimates by 365.25.

(b) Mean, minimum, and maximum values from the adjusted quarterly estimates. Each quarterly estimate is the average of two TLD readings per location in all but five instances.

(c) Location types: Environmental 1 = Environmental locations with exposure rates near background, but monitored for potential for increased exposures due to NNSS operations; Environmental 2 = Environmental locations with measurable radioactivity from past operations, excluding those designated WO; Waste Operations = Locations in or near waste operations.

Table 6-2. Summary statistics for mean annual direct radiation exposure by TLD location type

Location Type	Number of Locations	Estimated Annual Exposure (mR)		
		Mean	Minimum	Maximum
Background (B)	10	124	81	173
Environmental 1 (E1)	41	120	56	168
Environmental 2 (E2)	35	199	152	417
Waste Operations (WO)	19	143	102	255
Control, Shielded (C)	5	28	26	30
Control, Unshielded (C)	1	60	60	60


Table 6-3. Summary statistics for exposure history of background TLD locations

Area	Location	Historical Average Annual Exposure(mR) ^(a)	CV(%) ^(b)	Estimated Exposure in 2022 (mR)	Difference(%) ^(c)
5	Old Indian Springs Road	79	1.3	81	2.5
14	Mid-Valley	145	2.6	151	4.1
16	Stake P-3	117	2.4	126	7.7
20	Stake A-112	162	2.2	173	6.8
20	Stake A-118	154	2.7	163	5.8
22	Army #1 Water Well	84	1.9	87	2.4
25	Gate 25-4-P	132	1.3	136	3.1
25	Gate 510	128	1.8	133	4.7
25	Jackass Flats & A-27 Roads	82	2.6	82	0.0
25	Skull Mtn Pass	108	1.7	112	3.7

(a) Average annual exposure was calculated from all available TLD data from 2012 to 2021.

(b) Coefficient of variation = the relative standard deviation.

(c) Relative difference between the 2022 exposure and the average of 2012–2021 estimates.

Figure 6-2. Estimated exposures on the NNSS by location type

6.3.2 Potential Exposure to the Public along the NNSS Boundary

Most of the NNSS is not accessible to the public; the public has limited access only at the southern portion of the NNSS, where Gate 100 is the primary entrance point to the NNSS. The outer parking areas are accessible to the public. Trucks hauling radioactive materials, primarily ***low-level waste (LLW)*** destined for disposal in the RWMSs, often park outside Gate 100 while waiting to enter the NNSS. Two TLD locations were established in October 2003 to monitor this truck parking area.

The TLDs at the north end of the parking area (Gate 100 Truck Parking 2) had an estimated annual exposure of 56 mR in 2022, with quarterly estimates of 56, 59, 56, and 54 mR respectively. The TLD location about 64 m (210 ft) away, on the west side of the parking area (Gate 100 Truck Parking 1), has had elevated exposure levels at various times in its history, likely from waste shipments. Its average value for 2022 was 83 mR, with quarterly estimates of 60, 128, 62, and 83 mR. All results for both locations are within the range of background variation.

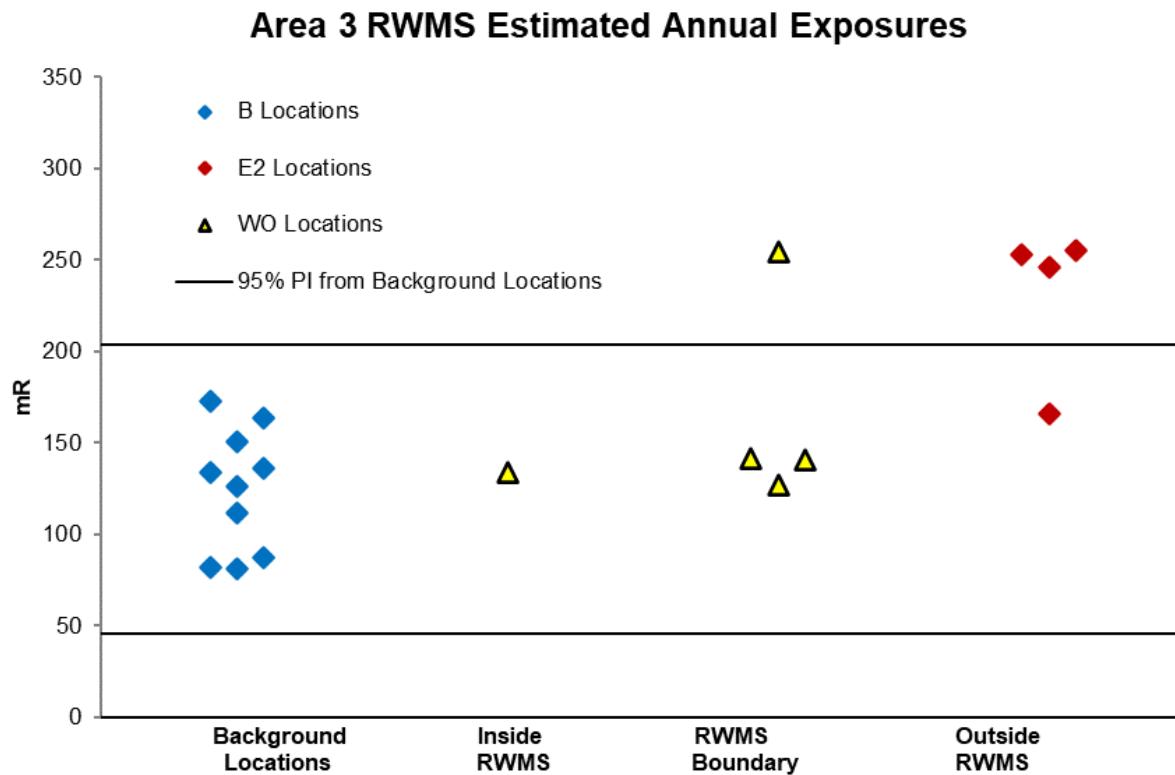
While the public has limited access to the NNSS at Gate 100 along its southern border, others may have access to other boundaries of the NNSS. Most of the NNSS is bounded by the Nevada Test and Training Range (NTTR). Military or other personnel on the NTTR who are not classified as DOE radiological workers would also be subject to the DOE public dose limit of 100 millirem per year (mrem/yr [1 mSv/yr]). Nuclear tests on the NTTR (Double Tracks and Project 57) consisted of experiments (called safety experiments) where weapons were exploded with conventional explosives without going critical (i.e., starting a nuclear chain reaction). These areas, therefore, have primarily alpha-emitting radionuclides that do not contribute significantly to external dose. Historical nuclear testing activities also occurred on the Tonopah Test Range (TTR) (Clean Slate I, II, and III) in the northwest portion of the NTTR. Radiation exposure rates are measured on and around the TTR, and the results are reported by Sandia National Laboratories in the TTR annual environmental report posted at <https://www.sandia.gov/news/publications/>.

A radioactive material area boundary extends beyond the NNSS in the Frenchman Lake region of Area 5 along the southeast boundary of the NNSS. This region was a location of atmospheric weapons testing in the 1950s and is inaccessible to the public. A TLD location was established there in July 2003 to characterize direct radiation levels from this legacy contaminated-soil area and to assess the external dose to personnel not classified as

radiation workers who may visit the area. The estimated annual exposure to a hypothetical person at the Frenchman Lake TLD location in 2022 was 218 mR. This has been declining over time, down from 420 mR in 2003. The estimated above-background dose in 2022 would be approximately 45 to 137 mrem, depending on which background value is subtracted. This may exceed the 100 mrem dose limit to a person residing full time, year-round, at this location, but there are no living quarters or full-time non-radiation workers in this vicinity. Workers specially trained and classified as radiation workers, although they do not work in the vicinity, have a higher allowable dose limit of 5,000 mrem/yr (50 mSv/yr), which would not be exceeded in the vicinity of the Frenchman Lake TLD location.

Based on these results, the potential external dose to a member of the public due to past or present operations at the NNSS does not exceed 100 mrem/yr (1 mSv/yr) and exposures are kept ALARA, as required by DOE O 458.1.

6.3.3 Exposures from NNSS Operational Activities


Forty-one TLDs are placed in locations where either workers and/or the public have the potential to receive radiation exposure from current operations (E1 locations). E1 locations have negligible radioactivity from past operations. The mean estimated annual exposure at these locations was 120 mR in 2022, a little lower than the mean estimated annual exposure at background locations (see Table 6-2). Overall, annual exposures were not different between B and E1 locations (Figure 6-2); the estimated annual exposures at all E1 locations are well within the 95% PI calculated from B locations.

6.3.4 Exposures from Radioactive Waste Management Sites

DOE Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” states that LLW disposal facilities shall be operated, maintained, and closed so that a reasonable expectation exists that the annual dose to members of the public shall not exceed 25 mrem from all exposure pathways combined. The RWMSs are located well within the NNSS boundaries, which are patrolled by security personnel; no member of the public can access these areas for significant periods of time. TLDs placed at the RWMSs show the potential dose from external radiation to a hypothetical person residing year-round at each RWMS.

Between 1952 and 1972, 60 nuclear explosive tests were conducted in Yucca Flat within 400 m (1,312 ft) of the current Area 3 RWMS boundary. Fourteen of these tests were atmospheric tests that left radionuclide-contaminated surface soil and, therefore, elevated radiation exposures across the area. Waste pits in the Area 3 RWMS are **subsidence craters** from seven subsurface tests, which have been filled with LLW and then covered with clean soil. As a result, exposures inside the Area 3 RWMS are low when compared with those at or outside the fence line.

Annual exposures measured inside the Area 3 RWMS and at three of four locations at the boundary were within the range of NNSS background exposures in 2022 (Figure 6-3). The boundary location A3 RWMS South has an estimated exposure above the range of NNSS background; it is 160 m (525 ft) from the site of two atmospheric nuclear explosive tests. The three E2 TLD locations outside the RWMS that are also above the range of NNSS background (Figure 6-3) are a similar distance from the same atmospheric tests, but on the other side, farther from the RWMS boundary. Based on these measurements, it does not appear that waste buried at the Area 3 RWMS would have contributed external exposure to a hypothetical person residing at its boundary during 2022.

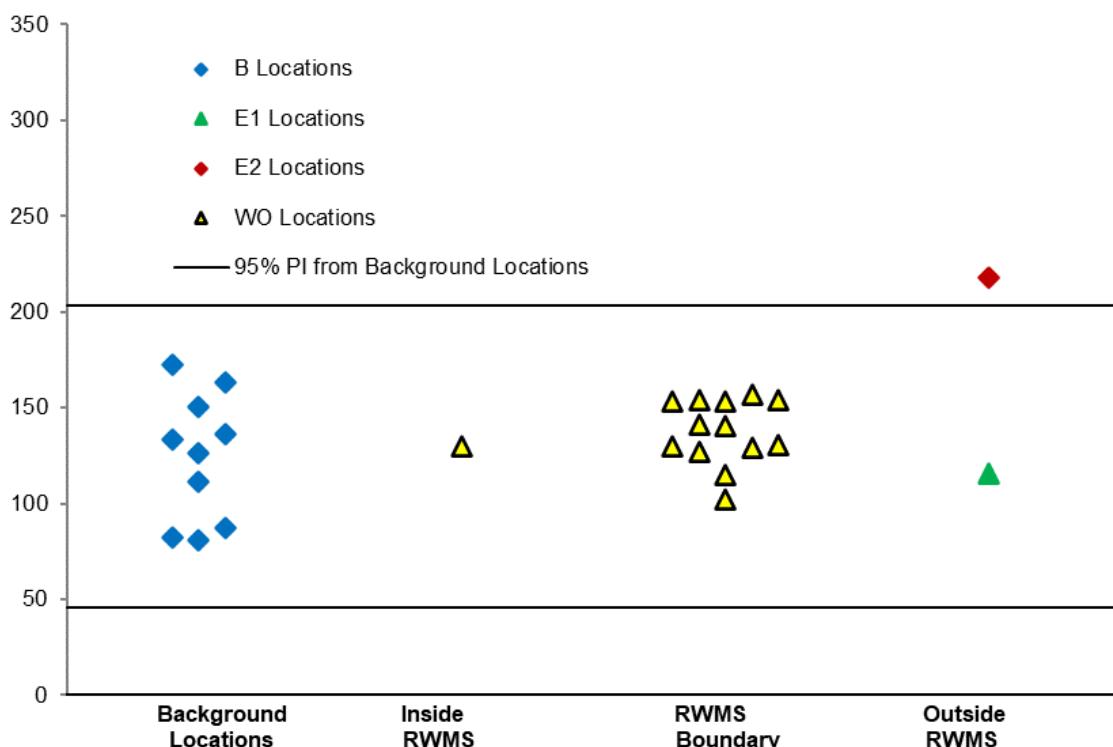


Figure 6-3. 2022 annual exposures in and around the Area 3 RWMS and at background locations

The Area 5 RWMS is located in the northern portion of Frenchman Flat. Between 1951 and 1971, 25 nuclear explosive tests were conducted within 6.3 kilometers (km) (3.9 miles [mi]) of the Area 5 RWMS. Fifteen of these were atmospheric tests and, of the remaining ten, nine released radioactivity to the surface, which contributes to exposures in the area. No nuclear explosive testing occurred within the boundaries of the Area 5 RWMS.

In 2022, estimated annual exposures at Area 5 RWMS TLD locations were within the range of exposures measured at NNSS **background** locations (Figure 6-4). The one location outside the Area 5 RWMS that has an estimated exposure above background levels (the Frenchman Lake TLD location) is within 0.5 km (0.3 mi) of six atmospheric tests conducted on the Frenchman Lake Playa.

Area 5 RWMS Estimated Annual Exposures

Figure 6-4. 2022 annual exposures around the Area 5 RWMS and at background locations

Based on these results, the potential external dose to a member of the public from operations at the Area 3 and Area 5 RWMSs does not exceed the 25 mrem/yr (0.25 mSv/yr) dose limit specified in DOE M 435.1-1. See Section 9.1.2 of this report for a summary of the potential dose to the public from the RWMSs from all exposure pathways.

6.3.5 Exposures to NNSS Plants and Animals

The highest exposure rate measured at any TLD location in 2022 was 431 mR/yr (1.18 mR/d) at the Schooner-1 location during the second quarter (Table 6-1). Given such a large area source, there is very little difference between the exposure measured at a height of 1 m (3.3 ft) and that measured near the ground (e.g., 3 cm, or 1.2 in.) where small plants and animals reside. The daily exposure rate near the ground surface would be less than 2% of the total dose rate limit to terrestrial animals and less than 1% of the limit to terrestrial plants. Hence, doses to plants and animals from external radiation exposure at NNSS monitoring locations are much lower than the dose limits. Doses to biota from both internal and external radionuclides are presented in Section 9.2.

6.3.6 Exposure Patterns in the Environment over Time

Direct radiation monitoring is conducted to help characterize releases from NNSA/NFO activities. Continued monitoring of exposures at locations of past releases on the NNSS helps to accomplish this. Small quarter-to-quarter changes are normally seen in exposure rates from all locations. In 2022, the median CV for measurements between quarters was 3.9%. Gate 100 Truck Parking 1 showed the highest variation, with a CV of 37.8%. The next highest CV was 14.34% at Papoose Lake Road in Area 9. No other environmental locations had CVs over 10%. In the past 10 years (2012–2021) the median CV has ranged from 2.8% to 4.8%; the quarter-to-quarter variability in 2022 is less than 10% relative uncertainty.

Long-term trends are displayed in Figure 6-5 by location type for locations that have been monitored for at least 10 years. The average annual *decay* rates by location group are 0.17% (B), 0.12% (C), 0.20% (E1), 1.75% (E2), and 0.58% (WO). Annual exposures decreased 2.91% per year on average at those locations with significant added man-made radiation, those being the E2 and WO locations, where 2022 estimated exposures were higher than the 95% PI calculated from B locations. These average rates of decay are very similar to those measured from 2008 through 2021. The observed decreases are due to a combination of natural radioactive decay, dispersal, and dilution in the environment.

The locations with the six highest estimated annual exposures in 2022 are Schooner-1 (Area 20), T9B (Area 9), T3B (Area 3), Stake A-9 (Area 4), Stake N-8 (Area 2), and Baneberry 1 (Area 8). Their annual exposures have been decreasing at an estimated rate of 50% every 15, 26, 32, 16, 16, and 33 years, respectively.

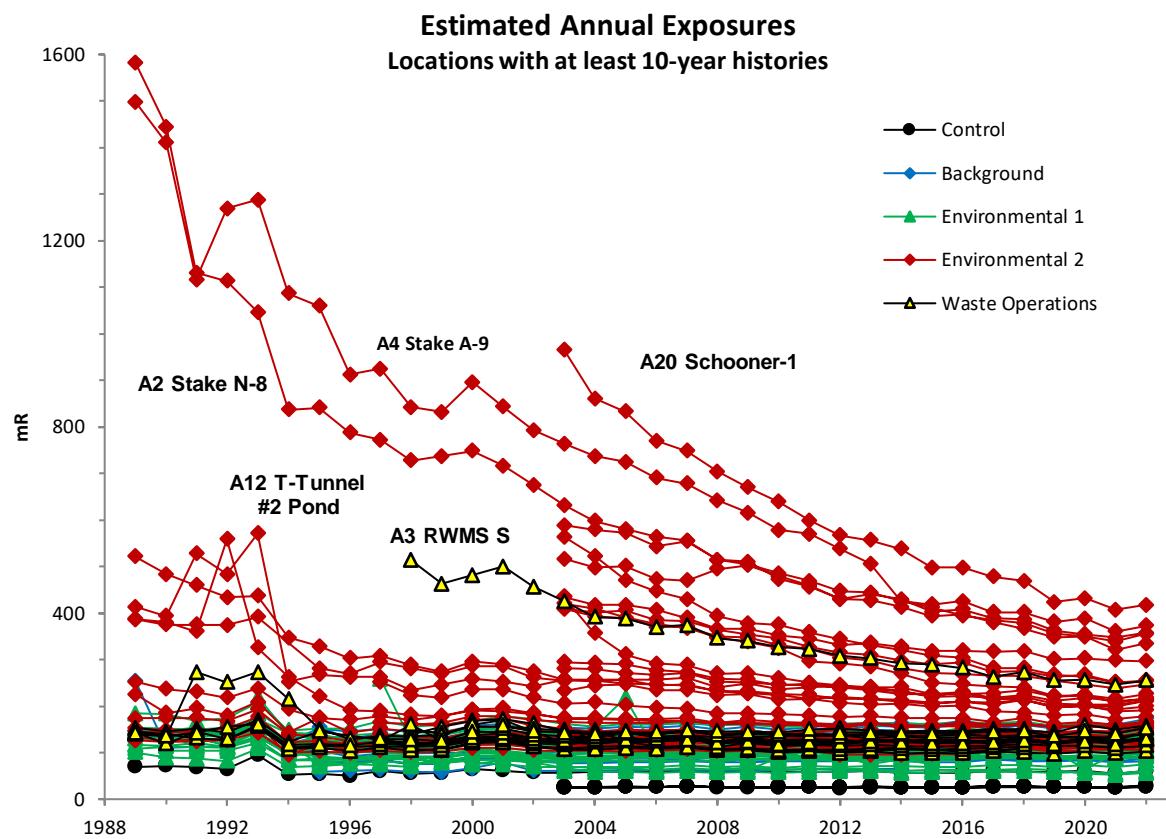


Figure 6-5. Trends in direct radiation exposure measured at TLD locations

6.4 Environmental Impact

Direct radiation exposure to the public from NNSS operations during 2022 was negligible. Radionuclides historically released to the environment on the NNSS have resulted in localized elevated exposures. The areas of elevated exposure are not open to the public, nor do personnel work in these areas full-time. Overall exposures at the RWMSs appear to be generally lower inside and at the boundary than those outside the RWMSs. This is due to the presence of radionuclides released from historical testing distributed throughout the area around the RWMSs compared with the clean soil used inside the RWMSs to cover the waste. The external dose to plants and animals at the location with the highest measured exposure was a small fraction of the dose limit to biota; hence, no detrimental effects to biota from external radiation exposure are expected at the NNSS.

6.5 *References*

American National Standards Institute/Health Physics Society, 2019. *Environmental Dosimetry – Criteria for System Design and Implementation*. N13.37-2014 (R2019), 2019.

ANSI/HPS, see American National Standards Institute / Health Physics Society.

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 7: Community-Based Offsite Monitoring

John O. Goreham, Beverly A. Parker, William T. Hartwell, Lynn H. Karr, and Charles E. Russell
Desert Research Institute

John M. Klenke
Nye County

Community Environmental Monitoring Program Goals

Provide independent monitoring at offsite locations and communicate environmental data relevant to past and continuing activities at the Nevada National Security Site (NNSS). Engage the public through hands-on monitoring of environmental conditions in their communities as they might relate to activities at the NNSS. Communicate environmental monitoring data to the public in a transparent and accessible manner. Provide an educated, trusted, local resource for public inquiries regarding past and present activities at the NNSS.

Two community-based radiological monitoring programs are conducted off the NNSS. They provide independent results for the presence of man-made **radionuclides**¹ in air and groundwater samples from communities surrounding the NNSS.

The **Community Environmental Monitoring Program (CEMP)** was initiated in 1981 and is conducted by the Desert Research Institute (DRI) of the Nevada System of Higher Education. CEMP's mission is to provide data to the public regarding the presence of man-made radionuclides in air and groundwater off the NNSS that could be the result of current operations or past nuclear testing on the NNSS. Initially, the CEMP network functioned as a first line of offsite detection of potential radiation releases from underground nuclear tests at the NNSS. It currently exists as a non-regulatory public informational and outreach program. Monitored and collected data include, but are not necessarily limited to, **background** and airborne radiation data, meteorological data, and **tritium (³H)** concentrations in downgradient community drinking water. Network air monitoring stations, located in Nevada, Utah, and California, are managed by local citizens, many of whom are middle and high school science teachers, whose routine tasks are to ensure equipment is operating normally and to collect air filters and route them to DRI for analysis. These Community Environmental Monitors (CEMs) are also available to discuss the monitoring results with the public and to speak to community and school groups. DRI's responsibilities include maintaining the physical monitoring network through quarterly visits by environmental radiation monitoring specialists, who also participate in training and interfacing with CEMs and interacting with local community members and organizations to provide information related to the monitoring data. DRI also provides public access to the monitoring data through maintenance of a project website at <http://www.cemp.dri.edu/>. A detailed informational background narrative about the CEMP can be found at <http://www.cemp.dri.edu/cemp/moreinfo.html> along with more detailed descriptions of the various types of sensors found at the stations and about outreach activities conducted by the CEMP.

The **Nye County Tritium Sampling and Monitoring Program (TSaMP)** was initiated in 2015 when the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) and the Environmental Management (EM) Nevada Program issued a 5-year grant to Nye County to monitor ³H in wells downgradient of the NNSS. The grant was extended through 2026 and supports the annual sampling of 10 core wells (i.e., the same wells year to year) and 10 additional wells (selected locations change from year to year). The program also supports Nye County's involvement in technical reviews of the Underground Test Area (UGTA) corrective action program (Chapter 11). Nye County coordinates with DRI, CEMs, and Nye County citizens to determine the sample well locations. Due to CEMP's success at involving and educating local communities, the grant directs that data administration and communication to the public of Nye County's program be conducted through the CEMP.

Sections 7.1 and 7.2 of this chapter present the 2022 CEMP air and water monitoring results. Section 7.3 presents the 2022 TSaMP monitoring results. Results from radiological monitoring of air, groundwater, direct radiation,

¹ The definition of word(s) in ***bold italics*** may be found by referencing the Glossary, Appendix B.

and biota conducted on the NNSS and the Nevada Test and Training Range (NTTR) by NNSA/NFO are presented in Chapters 4, 5, 6, and 8.

7.1 CEMP Air Monitoring

In 2022, DRI managed 24 CEMP stations, which compose the Air Surveillance Network (ASN) (Figure 7-1). The ASN stations include various types of equipment to monitor airborne radiation and meteorological conditions. Descriptions of the various types of sensors at the stations can be found at <http://www.cemp.dri.edu/cemp/moreinfo.html>. The air monitoring equipment described in Section 7.1.1 is shown in Figure 7-2.

7.1.1 Air Monitoring Equipment

CEMP Low-Volume Air Sampler Network – In 2022, the CEMP ASN included 23 continuously operating low-volume particulate air samplers. Warm Springs Summit, Nevada, is the only ASN station with no low-volume air sampler. Duplicate continuously operating air samplers are co-located at two randomly selected stations for 3 months (one calendar quarter) before being moved to a new location. Glass-fiber filters from the low-volume particulate samplers are collected every 2 weeks by the CEMs and mailed to DRI. Each quarter, one complete set of filters are selected, prepared, and forwarded to an independent laboratory to be analyzed for **gross alpha** and **beta radioactivity**, as well as gamma **spectrometry**. Samples are held for a minimum of 7 days after collection to allow for the decay of naturally occurring **radon progeny**. Filters not selected for laboratory analysis are archived at DRI.

CEMP Environmental Dosimetry Network – Environmental dosimeters are used at the stations to measure ambient **gamma radiation** from natural and man-made sources. Dosimeters are deployed at 23 of the 24 CEMP stations; a dosimeter is not deployed at Warm Springs Summit due to limited access during the winter months.

For **quality assurance (QA)** purposes, duplicate dosimeters are deployed at three randomly selected stations each quarter. An average daily **exposure** rate is calculated for each quarterly exposure period. The average of the quarterly daily values is multiplied by 365.25 days to obtain the total annual exposure for each station.

CEMP Pressurized Ion Chamber (PIC) Network – The PIC detector measures gamma radiation exposure rates and, because of its sensitivity, may detect low-level exposures that go undetected by other monitoring methods. PICs are in place at all 24 stations in the CEMP ASN. The primary function of the PIC network is to detect changes in ambient gamma radiation due to human activities. In the absence of such activities, ambient gamma radiation rates vary naturally among locations, reflecting differences in altitude (cosmic radiation), **radioactivity** in the soil (terrestrial radiation), and slight variations at a single location due to weather patterns. Because a full suite of meteorological data is recorded at each CEMP station (see next paragraph), variations in PIC readings caused by weather events such as precipitation or changes in barometric pressure are more readily identified. Variations are easily viewed by selecting a station location on the network map shown on the CEMP home page, <http://www.cemp.dri.edu/>, then selecting the desired variables.

CEMP Meteorological (MET) Network – Changing weather conditions can have an effect on measurable levels of background radiation; therefore, meteorological instrumentation is in place at each of the 24 CEMP stations and at the four ranch MET stations that do not monitor airborne radiation: Stone Cabin, Twin Springs, Nyala Ranch, and Anchor Brand Ranch.

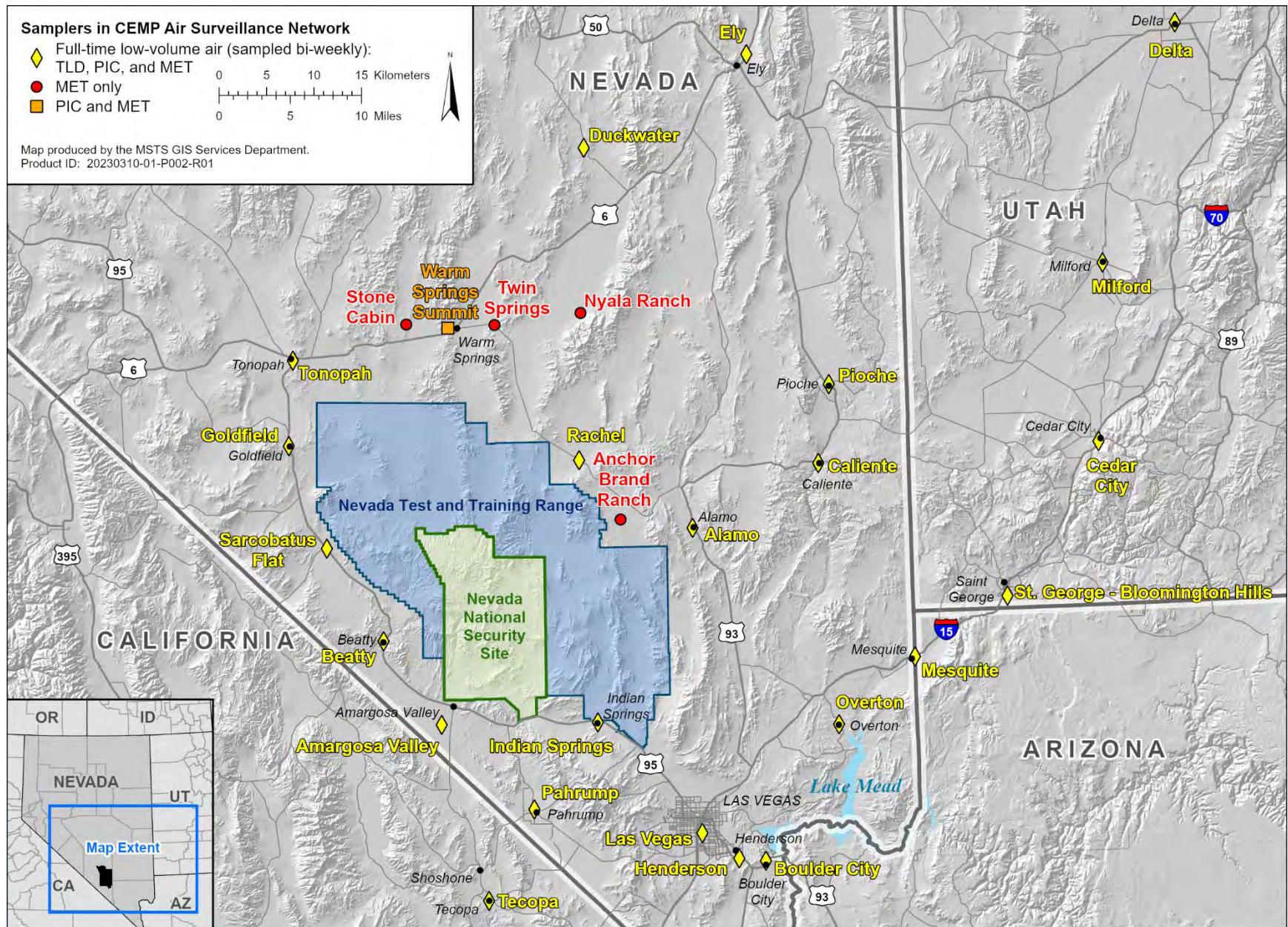


Figure 7-1. 2022 CEMP Air Surveillance Network

The MET network includes sensors that measure air temperature, humidity, wind speed and direction, solar radiation, barometric pressure, precipitation, and soil temperature and moisture. All of these data can be observed real-time at the onsite station display and archived data are available by selecting a station location on the CEMP home page at <http://www.cemp.dri.edu/>.

7.1.2 Air Sampling Methods

Samples of airborne particulates from CEMP ASN stations were collected by drawing air through a 5-centimeter (2-inch) diameter glass-fiber filter at a constant flow rate of 49.5 liters (1.75 cubic feet [ft^3]) per minute at standard temperature and pressure. The actual flow rate and total volume were measured with an in-line air-flow calibrator. The filter is mounted in a holder that faces downward at a height of approximately 1.5 meters (m) (5 feet [ft]) above the ground. The total volume of air collected ranged from approximately 1,030 to 1,290 cubic meters (m^3) (36,000 to 45,000 ft^3), depending on the elevation of the station and changes in air temperature and/or pressure.

Air sampling occurs full-time year-round at all stations, but only one sample per quarter from each station is selected for routine analysis.

Figure 7-2. CEMP station in Tonopah, Nevada

7.1.3 Air Sampling Results

7.1.3.1 Gross Alpha and Gross Beta

Gross alpha, gross beta, and gamma spectrometry analyses of the air filters collected in 2022 were performed by a new lab. The new lab is accredited by the DOE Consolidated Audit Program-Accreditation Program, meaning it has demonstrated successful completion of the American Association for Laboratory Accreditation evaluation process. This includes an assessment of the laboratory's compliance against the Department of Defense (DoD) / Department of Energy (DOE) Consolidated Quality Systems Manual (QSM) (currently version 5.4, January 2021). The QSM is based on Volume 1 of The NELAC Institute (TNI) Standards (September 2009), which incorporates International Organization for Standardization (ISO) International Electrotechnical Commission (IEC) ISO/IEC 17025:2005 and 17025:2017. More specifically, the new lab is accredited to perform U.S. Environmental Protection Agency (EPA) method 9310 for gross alpha and gross beta, and method (Health and Safety Laboratory) HASL-300 Ga-01-R for gamma spectrometry. It demonstrated acceptable Mixed Analyte Performance Evaluation Program performance in 2022 for the detection of americium-241 (^{241}Am), cesium-134 (^{134}Cs), and cesium-137 (^{137}Cs) for radiological air filters.

The mean annual gross alpha activity (shown in Table 7-1) for all CEMP sampling locations in 2022 (9.61×10^{-15} microcuries per milliliter [$\mu\text{Ci}/\text{mL}$]) is an approximately fivefold increase from that reported in 2021 (1.91×10^{-15} $\mu\text{Ci}/\text{mL}$). Some degree of deviation from historical results is to be expected with a change of laboratory. The scientific literature demonstrates that it is not unusual that a sample sent to several laboratories will yield widely disparate values of the gross alpha activity, as the measured activity depends appreciably on the radionuclide used as the calibration standard, as well as the geometry of the film of the calibration standard versus that of the sample (Arndt and West 2004). These and related factors are likely responsible for the disparity between the gross alpha results for all CEMP sampling locations in 2022 provided by the new lab versus the historical record, rather than an actual increase in ambient alpha activity.

Analyses of gross alpha and gross beta in airborne particulate samples are used to screen for long-lived radionuclides in the air. Clean Air Act National Emission Standards for Hazardous Air Pollutants (NESHAP) Concentration Levels do not exist for gross alpha and gross beta in air, because these measurements include naturally occurring radionuclides in uncertain amounts. Instead, assessment of NESHAP compliance on the NNSS is determined through alpha and gamma spectrometry. The CEMP uses gross alpha and gross beta analyses because they are obtained relatively quickly and economically and are useful to identify increases that require further investigation through gamma spectrometry.

CEMP filters are analyzed for 17 gamma-emitting radionuclides (including ^{241}Am and ^{137}Cs). As will be discussed in further detail, ^{137}Cs was not detected in any of the 2022 samples. ^{241}Am was detected in one sample (collected on September 25, 2022, from the Caliente station) with a reported activity of 2.90×10^{-15} $\mu\text{Ci}/\text{mL}$. Interestingly, this sample with the ^{241}Am detection had the lowest gross alpha activity of all the samples analyzed for the entire year. With the exception of the lone ^{241}Am detection, no other manmade radionuclides were detected by gamma spectrometry in the 2022 samples. It should also be noted that the annual exposure rates measured by the PICs at the CEMP stations are consistent with previous years' exposure rates. Gross alpha results will continue to be monitored, and any deviations from the 2022 results will be noted.

Table 7-1. Gross alpha results for the CEMP offsite ASN in 2022

Station	Number of Samples	Gross Alpha ($\times 10^{-15}$ $\mu\text{Ci}/\text{mL}$)			
		Mean	Standard Deviation	Minimum	Maximum
Alamo	5	6.72	1.77	4.50	9.45
Amargosa Valley	4	7.79	3.16	3.95	12.51
Beatty	4	9.09	2.49	6.52	12.15
Boulder City	4	10.02	5.54	5.61	19.36
Caliente	5	13.13	12.41	3.64	36.62
Cedar City	5	8.93	3.54	5.54	13.68
Delta	4	10.92	9.55	5.11	27.45
Duckwater	4	8.69	4.36	3.85	15.75
Ely	4	7.15	2.65	4.08	10.61
Goldfield	4	8.34	4.14	4.62	15.35
Henderson	4	10.31	5.49	6.05	19.75
Indian Springs	4	8.73	3.54	4.15	13.64
Las Vegas	4	17.40	9.20	6.06	30.84
Mesquite	5	8.85	3.26	6.91	15.34
Milford	4	10.95	7.91	4.89	24.56
Overton	5	8.24	4.40	5.11	16.88
Pahrump	4	12.38	6.02	4.66	20.27
Pioche	5	9.04	3.17	5.77	14.74
Rachel	4	7.30	3.32	4.28	12.92
Sarcobatus Flats	4	8.90	4.31	5.48	16.22
St. George, Bloomington Hills (BH)	5	9.07	2.21	6.51	13.15
Tecopa	5	8.88	4.31	5.31	17.00
Tonopah	4	11.18	6.11	5.41	20.41
All Stations	100	9.61	5.97	3.64	36.62

The mean annual gross beta activity across all sample locations (Table 7-2) was 1.53×10^{-14} $\mu\text{Ci}/\text{mL}$. Gross beta activity was detected in all air samples and, overall, was similar to previous years' levels.

Table 7-2. Gross beta results for the CEMP offsite ASN in 2022

Station	Number of Samples	Gross Beta ($\times 10^{-14}$ $\mu\text{Ci/mL}$)			
		Mean	Standard Deviation	Minimum	Maximum
Alamo	5	1.34	0.28	1.00	1.70
Amargosa Valley	4	1.35	0.12	1.19	1.52
Beatty	4	1.44	0.27	1.15	1.78
Boulder City	4	1.55	0.30	1.30	2.06
Caliente	5	1.69	0.54	1.03	2.39
Cedar City	5	1.45	0.26	1.08	1.89
Delta	4	1.77	0.86	0.91	3.20
Duckwater	4	1.35	0.31	0.93	1.82
Ely	4	1.11	0.07	1.01	1.20
Goldfield	4	1.38	0.39	0.98	2.00
Henderson	4	1.63	0.51	1.13	2.48
Indian Springs	4	1.40	0.08	1.30	1.52
Las Vegas	4	1.54	0.39	1.09	2.18
Mesquite	5	1.66	0.38	1.04	2.11
Milford	4	1.79	0.62	1.18	2.81
Overton	5	1.65	0.40	1.21	2.36
Pahrump	4	1.48	0.08	1.37	1.59
Pioche	5	1.41	0.14	1.28	1.65
Rachel	4	1.40	0.41	0.98	2.07
Sarcobatus Flats	4	1.56	0.58	1.10	2.54
St. George (BH)	5	1.81	0.40	1.49	2.54
Tecopa	5	1.73	0.29	1.39	2.12
Tonopah	4	1.50	0.47	0.91	2.20
All Stations	100	1.53	0.43	0.91	3.20

7.1.3.2 Gamma Spectrometry

As with gross alpha and beta, gamma spectrometry analysis was performed on one set of samples from the low-volume air sampling network each quarter. As in previous years, man-made gamma-emitting radionuclides were not detected in any samples, with the exception of one sample collected from the Caliente station on September 25, 2022; ^{241}Am was detected at an activity of 2.90×10^{-15} $\mu\text{Ci/mL}$. In a number of the samples, naturally occurring beryllium-7 (^7Be) was detectable. This radionuclide is produced by cosmic ray interaction with nitrogen in the atmosphere. The mean annual activity for ^7Be for the sampling network was 4.21×10^{-14} $\mu\text{Ci/mL}$.

7.1.4 Environmental Dosimetry Results

The environmental dosimeters are mounted in a Plexiglas holder approximately 1m (3.3 ft) above the ground and are exchanged quarterly. Dosimeter results are not presented for the Warm Springs Summit station because access is limited in the winter, which does not allow for the required quarterly change of the dosimeter. The total mean annual exposure for 2022 ranged from 13 milliroentgens (mR) (0.13 millisieverts [mSv]) at Overton, Nevada, to 139 mR (1.39 mSv) at Milford, Utah, with a mean annual exposure of 72 mR (0.72 mSv) for all operating locations.

Table 7-3. Dosimeter monitoring results for the CEMP offsite ASN in 2022

Station	Number of Quarters	Estimated Annual Exposure (mR) ^(a)		
		Mean ^(b)	Minimum ^(b)	Maximum ^(b)
Alamo	4	65	57	73
Amargosa Valley	4	64	43	78
Beatty	4	112	106	118
Boulder City	4	66	57	72
Caliente	3	81	77	83
Cedar City	4	56	47	68
Delta	4	56	46	65
Duckwater	4	80	61	94
Ely	4	53	42	57

Table 7-3. Dosimeter monitoring results for the CEMP offsite ASN in 2022

Station	Number of Quarters	Estimated Annual Exposure (mR) ^(a)		
		Mean ^(b)	Minimum ^(b)	Maximum ^(b)
Goldfield	4	90	81	98
Henderson	4	76	64	83
Indian Springs	4	52	39	65
Las Vegas	3	62	49	83
Mesquite	4	50	47	54
Milford	4	115	95	139
Overton	4	28	13	39
Pahrump	4	25	18	36
Pioche	4	90	72	107
Rachel	4	102	92	108
Sarcobatus Flats	4	109	102	114
St. George (BH)	4	76	62	86
Tecopa	4	64	45	77
Tonopah	4	96	72	108

(a) To obtain daily exposure rates, divide annual exposure rates by 365.25.

(b) Mean, minimum, and maximum values are from quarterly estimates.

7.1.5 Pressurized Ion Chamber Results

The PIC data presented in this section are based on daily averages of gamma exposure rates from each station. Table 7-4 lists the maximum, minimum, and standard deviation of daily averages (in microroentgens per hour [$\mu\text{R}/\text{hr}$]) for periods in 2022 when data were available. It also shows the average gamma exposure rate for each station during the year (in $\mu\text{R}/\text{hr}$), as well as the total annual exposure (in milliroentgens per year [mR/yr]). The exposure rate ranged from 73.50 mR/yr (0.74 mSv/yr) in Pahrump, Nevada, to 163.72 mR/yr (1.64 mSv/yr) at Milford, Utah. Background levels of environmental gamma exposure rates in the United States (from combined effects of terrestrial and cosmic sources) vary between 49 and 247 mR/yr (Committee on the Biological Effects of Ionizing Radiation III 1980). Averages for selected regions of the United States were compiled by the EPA and are shown in Table 7-5. The annual exposure levels observed at the CEMP stations in 2022 are well within these United States background levels and are consistent with previous years' exposure rates.

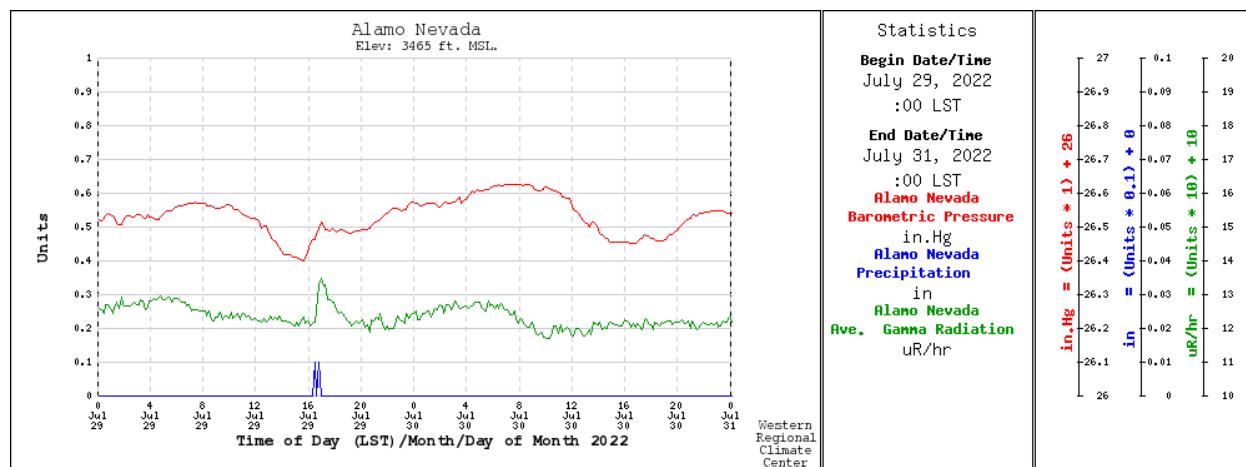
Table 7-4. PIC monitoring results for the CEMP offsite ASN in 2022

Station	Daily Average Gamma Exposure Rate ($\mu\text{R}/\text{hr}$)				Annual Exposure (mR/yr)
	Mean	Standard Deviation	Minimum	Maximum	
Alamo	12.7	0.35	12.0	13.8	111.60
Amargosa Valley	11.4	0.15	11.1	12.2	100.04
Beatty	16.3	0.34	15.4	17.2	142.96
Boulder City	14.9	0.14	14.5	15.3	130.70
Caliente	15.4	0.20	15.0	16.1	135.08
Cedar City	13.1	0.21	12.3	14.3	114.76
Delta	12.6	0.20	12.3	13.6	110.55
Duckwater	15.4	0.27	14.4	16.2	134.64
Ely	11.6	0.32	11.0	12.7	101.53
Goldfield	15.2	0.35	14.4	17.2	133.33
Henderson	13.8	0.33	13.0	14.8	121.33
Indian Springs	11.1	0.21	10.7	11.7	97.15
Las Vegas	10.7	0.28	10.0	11.3	93.56
Mesquite	11.4	0.16	11.1	12.0	100.04
Milford	18.7	0.30	18.1	19.8	163.72
Overton	10.8	0.19	10.4	11.5	94.35
Pahrump	8.4	0.18	8.0	8.9	73.50
Pioche	15.9	0.49	14.1	17.0	139.63
Rachel	15.3	0.29	14.5	16.6	134.12
Sarcobatus Flats	16.8	0.22	15.8	17.6	146.82

Table 7-4. PIC monitoring results for the CEMP offsite ASN in 2022

Station	Daily Average Gamma Exposure Rate ($\mu\text{R}/\text{hr}$)					Annual Exposure (mR/yr)
	Mean	Standard Deviation	Minimum	Maximum		
St. George (BH)	13.9	0.19	13.4	14.5		121.41
Tecopa	12.9	0.53	10.7	14.2		113.27
Tonopah	15.9	0.35	14.9	17.0		139.37
Warm Springs Summit	18.3	0.72	16.9	20.4		159.96

Table 7-5. Average natural background radiation (excluding radon) for selected U.S. cities


City	Annual Exposure (mR/yr)
Denver, CO	186
Fort Worth, TX	92
Las Vegas, NV	122
Los Angeles, CA	115
New Orleans, LA	92
Portland, OR	115
Richmond, VA	92
Rochester, NY	92
St. Louis, MO	115
Tampa, FL	92
Wheeling, WV	115

Source: <https://www.epa.gov/radiation/calculate-your-radiation-dose>. “Calculate Your Radiation Dose,” (Access Date: 4/5/2023)

7.1.6 Environmental Impact

Results of analyses conducted on data obtained from the CEMP network of low-volume particulate air samplers, dosimeters, and PICs showed no measurable evidence at CEMP stations of offsite impacts from radionuclides from NNSA/NFO activities. No man-made gamma-emitting radionuclides were detected, with the exception of one sample. Dosimeter and PIC results remained consistent with previous years' background levels and are well within average background levels observed in other parts of the United States (Table 7-5).

Occasional elevated gamma readings (10%–50% above normal average background) detected by the PICs in 2022 were associated with precipitation events and/or low barometric pressure. Low barometric pressure can result in the release of naturally occurring radon and its progeny from the surrounding soil and rock. Precipitation events can result in the “rainout” of globally distributed radionuclides occurring as airborne particulates in the upper atmosphere. Figure 7-3, generated from the CEMP website, illustrates an example of this phenomenon.

Figure 7-3. An example of the effect of meteorological phenomena on background gamma readings at the Alamo, Nevada, CEMP station for July 29 through 31, 2022

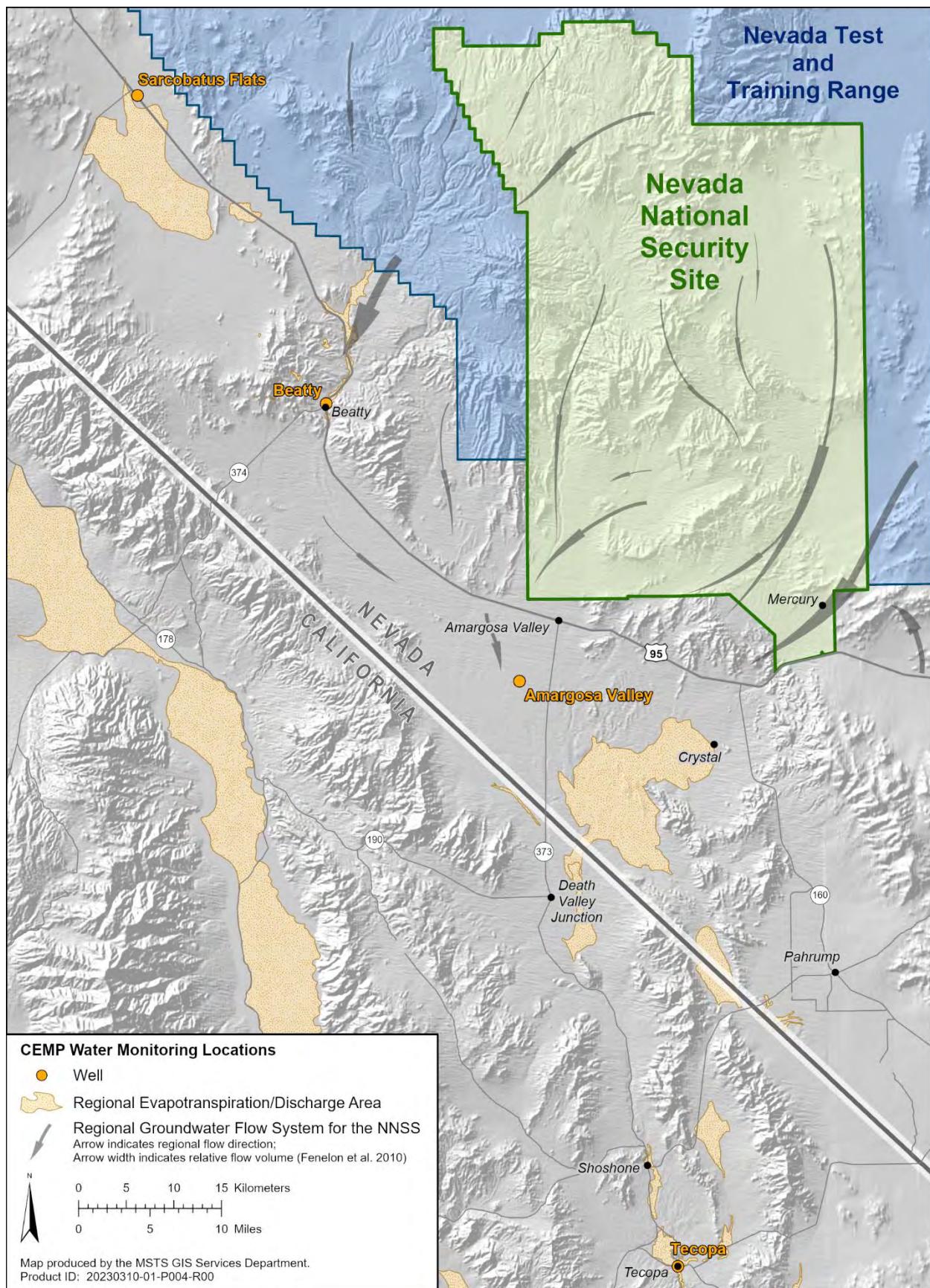
7.2 CEMP Groundwater Monitoring

CEMP groundwater monitoring is a non-regulatory program; its purpose is outreach and information to the public. Water samples are collected and analyzed for the presence of man-made radionuclides that could be the result of past nuclear testing on the NNSS. The CEMP monitors four groundwater wells downgradient of the NNSS (Figure 7-4). Water samples are collected by DRI personnel and analyzed for ${}^3\text{H}$. Tritium is one of the most abundant radionuclides generated by an underground nuclear test, and because it is a constituent of the water molecule itself, it is also one of the most mobile. DRI provides public access to water monitoring data through CEMP's website at <http://www.cemp.dri.edu/>.

7.2.1 Sample Locations and Methods

In August and September 2022, DRI sampled four wells. Sample locations (Figure 7-4) were selected based upon input from participating CEMs in communities located downgradient of the NNSS. All wells were sampled at a water delivery point (i.e., faucet). Each sample originated from water distribution lines connected to submersible pumps that sampled the local groundwater system. Water was allowed to flow from each water delivery point for 5 to 15 minutes prior to obtaining a sample in order to purge stagnant water from the distribution lines. This process ensured the resultant sample was representative of local groundwater. Table 7-6 lists sample locations, date sampled, and sampling method.

Table 7-6. CEMP water monitoring locations sampled in 2022


Monitoring Location Description	Latitude ^(a)	Longitude ^(a)	Date Sampled	Sample Collection Method
Amargosa Valley school well	36°34.19'	-116°27.50'	8/16/2022	By hand from line off well head
Beatty Water and Sewer municipal water distribution system	36°50.00'	-116°49.44'	8/16/2022	By hand from well head
Sarcobatus Flats well	37°16.77'	-117°01.08'	8/16/2022	By hand at residential source
Tecopa well feeding municipal reverse osmosis unit	35°50.60'	-116°12.11'	9/01/2022	By hand from well head feeding Tecopa water kiosk

(a) Coordinate datum is WGS84 and was obtained using a GPS [global positioning system].

Samples were sent to ARS Aleut Analytical Laboratory in Port Allen, Louisiana, who performed ${}^3\text{H}$ analysis using an EPA-approved method consisting of unenriched scintillation counting. The **decision level (L_c)** for this counting process was less than 267 picocuries per liter (pCi/L). The L_c is based on the variability of multiple measures of samples, which establish laboratory background. If a sample exceeds the L_c, it is considered distinguishable from background. The **Minimum Detectable Concentration (MDC)** considers both the variability associated with multiple measures of the background and the variability associated with multiple measures of a laboratory control sample containing trace quantities of ${}^3\text{H}$. In 2022, the MDC for ${}^3\text{H}$ was approximately 541 pCi/L; this is a more rigorous threshold than the L_c, dictating that the sample be distinguishable from background at a confidence of 95%. The L_c and the MDC are approximately 1.3% and 2.7% of the EPA limit for ${}^3\text{H}$ in drinking water (respectively); the EPA limit is 20,000 pCi/L. QA and **quality control** procedures are described in Chapter 15.

7.2.2 Results of Groundwater Monitoring

Tritium analyses from ARS Aleut Analytical for the four groundwater samples yielded results that were all quantifiably below background (\leq the MDC of approximately 541 pCi/L). Public access to monitoring data is available on the DRI CEMP website at <http://www.cemp.dri.edu/>.

Figure 7-4. 2022 CEMP water monitoring locations

7.3 Nye County Tritium Sampling and Monitoring Program

The Nye County TSaMP was initiated in 2015 in response to the county's request to expand its support of offsite community-based monitoring of wells for ${}^3\text{H}$. A 12-year grant from the EM Nevada Program supports the county's annual sampling of 20 locations downgradient of the NNSS: 10 core locations (i.e., the same locations year to year) and 10 additional locations (selected locations change from year to year). The grant also supports Nye County's involvement in technical reviews of the UGTA corrective action program (Chapter 11). To help determine sample locations, Nye County coordinates with DRI, who conducts the CEMP, with the CEMP's CEMs, and Nye County citizens. Nye County communicates their TSaMP activities and results to the public through poster presentations at annual DOE EM-funded Groundwater Open House meetings (Section 11.6), presentations at annual CEMP meetings, articles published in the Pahrump Valley Times, and this annually published report.

In 2022, in addition to the 10 core locations (9 wells and 1 spring), Nye County sampled 8 wells and 2 springs. (Table 7-7 and Figure 7-5). Selected locations for 2022 were in the same general areas as 2015–2021 and were chosen for their position within the projected groundwater flow path from the NNSS, proximity to downgradient communities, and recommendations provided by CEMs or Nye County citizens. Wells managed by Nye County and being sampled for ${}^3\text{H}$ under the TSaMP were initially drilled as part of the Early Warning Drill Program (“EWDP” labeled wells) or as Nye County Groundwater Evaluation Wells (“NC-GWE” labeled wells). Nye County also takes water levels in these wells on a quarterly basis through funding from the Nye County Water District’s Water Level Measurement Program. Some locations selected for sampling under the TSaMP may include NNSA/NFO wells or locations that are also sampled under the NNSS Integrated Groundwater Sampling Plan (Section 5.1) or under the CEMP.

All wells without integrated pumps were sampled using either an air-powered submersible positive displacement pump or a 3-inch submersible electric pump. A minimum of three well volumes was pumped from each well prior to sampling in order to purge water from the pump tubing and well annulus and ensure samples are representative of local groundwater conditions. Community wells, which include domestic or municipal wells, were sampled from the dedicated pump discharge. Four private domestic wells were sampled in 2022, with the samples also being collected from the dedicated pump discharge. Sampling of private domestic wells was incorporated into the TSaMP program in 2018 to expand the spatial distribution of sampling sites and to provide a means to increase community involvement. Three springs were sampled in 2022, with samples being collected directly from the spring discharge.

All samples were analyzed for ${}^3\text{H}$ by Radiation Safety Engineering, Inc., in Chandler, Arizona, using an EPA-approved, unenriched scintillation counting method. The sample MDCs for this method were either 341 or 348 pCi/L, respectively, which is less than 2% of the EPA limit for ${}^3\text{H}$ in drinking water (20,000 pCi/L). Analytical methods included the use of quality control samples such as duplicates, blanks, and spikes. Nye County's quality assurance procedures for ${}^3\text{H}$ sampling are documented in Test Plan TPN-11.8 (2019), “Groundwater Sampling and Analysis for the Nye County Tritium Sampling and Monitoring Program,” and Work Plan WP-11, “Groundwater Chemistry Sampling and Analysis” (2019), which are available on the Nye County website at <http://www.co.nye.nv.us/index.aspx?NID=901>.

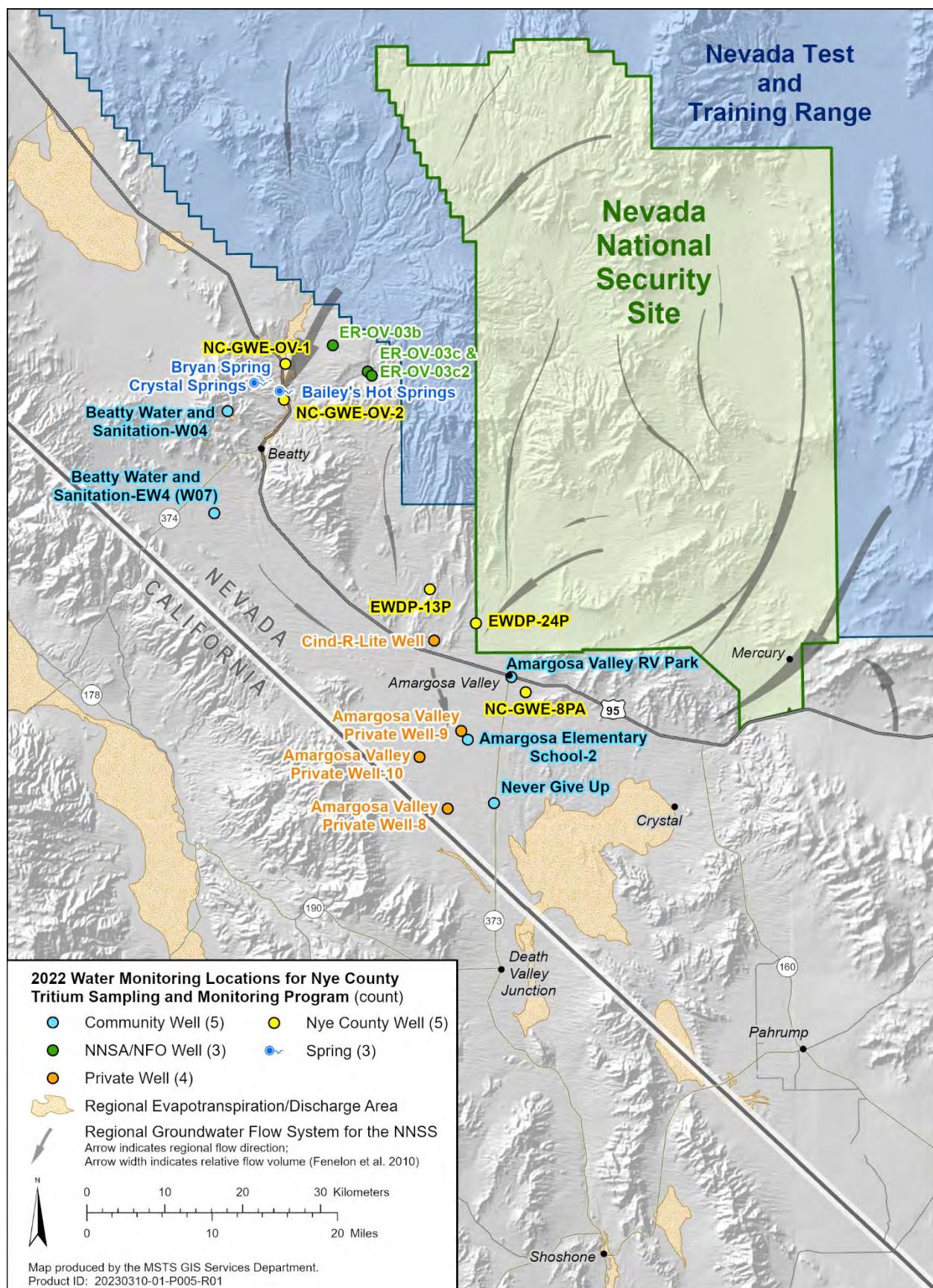


Figure 7-5. 2022 Nye County TSaMP water monitoring locations

Table 7-7. Nye County TSaMP water monitoring locations, results, and dates sampled

Sample Locations	Latitude ^(a)	Longitude ^(a)	Date Sampled	H ³ Activity MDC (pCi/L)
Nye County Wells				
EWDP-13P*	36.74441	-116.51395	11/17/2022	<341
EWDP-24P*	36.70466	-116.44799	11/15/2022	<341
NC-GWE-8PA*	36.62442	-116.37708	11/14/2022	<341
NC-GWE-OV-1*	37.00618	-116.72076	11/28/2022	<341
NC-GWE-OV-2*	36.96455	-116.72298	11/28/2022	<341
NNSA/NFO Wells				
ER-OV-03b	37.02745	-116.65228	12/13/2022	<341
ER-OV-03c	36.99678	-116.60200	12/15/2022	<341
ER-OV-03c2	36.99681	-116.60197	12/14/2022	<341
Community Wells				
Amargosa Elementary School-2*	36.56988	-116.46063	11/29/2022	<341
Amargosa Valley RV Park*	36.64205	-116.39751	11/30/2022	<341
BW&S Well EW4 (W07)	36.83337	-116.82393	11/21/2022	<341
Beatty Water and Sanitation-W04*	36.95155	-116.80433	11/21/2022	<341
Never Give Up ^(b)	36.49617	-116.42356	11/29/2022	<341
Private Wells				
Amargosa Valley Private Well-08	36.49	-116.49	12/6/2022	<341
Amargosa Valley Private Well-09	36.58	-116.47	12/6/2022	<348
Amargosa Valley Private Well-10	36.55	-116.53	12/6/2022	<341
Cind-R-Lite Well	36.68490	-116.50819	11/30/2022	<341
Springs				
Bailey's Hot Springs*	36.97472	-116.72250	11/16/2022	<341
Bryan Spring	36.98418	-116.75910	11/16/2022	<341
Crystal Springs	36.98677	-116.75399	12/1/2022	<341

*Core locations are sampled each year.

(a) Coordinates are North American Datum 1983.

(b) Formerly Northwest Academy.

All ³H analysis results were below background, i.e., \leq the MDC. Similar to the CEMP water sampling results (Section 7.2) and those of the community wells within NNSA/NFO's water sampling network (Section 5.1.3.6), Nye County's monitoring confirms that ³H from past underground nuclear testing on the NNSS is not present in these wells.

The wells and water supply systems within the CEMP and Nye County monitored network downgradient of the NNSS continue to show no evidence of ³H contamination from past underground nuclear testing on the NNSS. To date, the maximum concentration of ³H observed off site is at ER-EC-11 on the NTTR. Tritium at ER-EC-11 was reported as 18,400 pCi/L in 2017 (NNSS Environmental Report 2017, Table 5-4 [Mission Support and Test Services, LLC, 2018]). Well ER-EC-11 is approximately 0.72 kilometers (km) (0.45 mile [mi]) west of the NNSS boundary (Figure 5-2). Additional sampling and analyses will continue as part of the Phase II investigation for the Central and Western Pahute Mesa, and groundwater characterization and modeling activities are ongoing to forecast the extent of offsite contamination over the next 1,000 years (Section 11.2.1). The nearest CEMP water monitoring locations downgradient of the NNSS are Amargosa Valley and Beatty, approximately 70 km (43 mi) and 40 km (25 mi), respectively, southwest of Well ER-EC-11.

7.4 **References**

Arndt, Michael F., and Lynn E. West. 2004. "A study of the factors affecting the gross alpha measurement and a radiochemical analysis of some groundwater samples from the state of Wisconsin exhibiting an elevated gross alpha activity." University of Wisconsin–Madison, Madison, Wisconsin.

Committee on the Biological Effects of Ionizing Radiation III, 1980. *The Effects on Populations of Exposure to Low Levels of Ionizing Radiation: 1980*. National Academy Press, Washington, D.C.

Mission Support and Test Services LLC, 2018. *Nevada National Security Site Environmental Report 2017*. DOE/NV/03624--0270, Las Vegas, Nevada.

TPN-11.8, 2019. *Groundwater Sampling and Analysis for the Nye County Tritium Sampling and Monitoring Program*. Test Plan: Nye County Nuclear Waste Repository Project Office, Pahrump, Nevada.

WP-11, 2019. *Groundwater Chemistry Sampling and Analysis for the Nye County Tritium Sampling and Monitoring Program*. Work Plan: Nye County Nuclear Waste Repository Project Office, Pahrump, Nevada.

Chapter 8: Radiological Biota Monitoring

Ronald W. Warren

Mission Support and Test Services, LLC

Radiological Biota Monitoring Goals

Collect and analyze biota samples for radionuclides to estimate the potential dose to humans who may consume plants or game animals from the Nevada National Security Site (NNSS) (see Chapter 9 for the estimates of dose to humans). Collect and analyze biota samples for radionuclides to estimate the **absorbed radiation dose**¹ to NNSS biota (see Chapter 9 for the estimates of dose to NNSS plants and animals). Collect and analyze soil samples at the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) to provide evidence that the burrowing activities of fossorial animals have or have not compromised the integrity of the soil-covered waste disposal units.

Historical atmospheric nuclear explosive testing, releases from underground nuclear tests, and radioactive waste disposal sites provide potential sources of radiation contamination and **exposure** to NNSS plants and animals (biota). U.S. Department of Energy (DOE) Order DOE O 458.1, “Radiation Protection of the Public and the Environment,” requires DOE sites to monitor **radioactivity** in the environment to ensure the public does not receive a radiological **dose** greater than 100 millirems per year from all pathways of exposure, including the ingestion of contaminated plants and animals. DOE O 458.1 also requires monitoring to ensure aquatic and terrestrial plant and animal populations are protected from excessive radiological dose.

The U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office land-use practices on the NNSS discourage the harvesting of plants or plant parts (e.g., pine nuts and wolfberries) for direct consumption by humans. Some edible plant material might be taken off site and consumed, but this is generally not allowed and, if it does occur, is very limited. Game animals on the NNSS might travel off the site and become available through hunting for consumption by the public, which makes the ingestion of game animals the primary potential biotic pathway for dose to the public.

Plants and game animals are sampled annually from contaminated NNSS sites to estimate doses to persons hypothetically consuming them, to measure the potential for **radionuclide** transfer through the food chain, and to determine if NNSS biota are exposed to radiation levels harmful to their own populations. Biota and soil samples from the RWMSs are also periodically collected to assess the integrity of waste disposal cells. This chapter describes the biota-monitoring program designed to meet public and environmental radiation protection regulations (Section 2.4) and presents the field sampling and analysis results from 2022. The estimated dose to humans potentially consuming NNSS plants and animals and the dose to biota from these radionuclides are presented in Chapter 9.

8.1 Species Selection

The goal for vegetation monitoring is to sample the plants most likely to have the highest contamination within the NNSS environment. They are generally found inside demarcated radiological areas near the locations of historical aboveground or near-surface nuclear tests. The species selected for sampling represent the most dominant life forms (e.g., trees, shrubs, herbs, or grasses) at these sites. Woody vegetation (i.e., shrubs versus forbs or grasses) is sampled because it is reported to have deeper penetrating roots and potentially higher concentrations of **tritium (³H)** (Hunter and Kinnison 1998). Woody vegetation also is a major source of browse for game animals that might potentially migrate off site. Grasses and forbs are sampled when present because they are also a source of food for wildlife. Plant parts collected for analysis represent new growth over the past year. Pine nuts from singleleaf pinyon pine trees, which may be consumed by humans, are also sampled periodically.

¹ The definition of word(s) in **bold italics** may be found by referencing the Glossary, Appendix B.

When determining the potential dose to animals, the goal of sampling is to select species that are most exposed and most sensitive to the effects of radiation. In general, mammals and birds are more sensitive to radiation than fish, amphibians, reptiles, or invertebrates (DOE Standard DOE-STD-1153-2019, “A Graded Approach for Evaluating Radiation Doses to Aquatic and Terrestrial Biota”). The list of species used to assess the potential dose to animals in Table 8-1 reflects this graded approach and the fact that no native fish or amphibians are found on the NNSS.

The game animals monitored to assess the potential dose to the public meet three criteria: (1) they are a species consumed by humans; (2) they have a home range that overlaps a contaminated site and, as a result, have the potential for relatively high radionuclide body burdens from exposure to contaminated soil, air, water, or plants at the contaminated site; and, (3) they are sufficiently abundant at a site that an adequate tissue sample can be acquired for laboratory analysis. These criteria limit the candidate game animals to those listed in Table 8-1. Mule deer, pronghorn antelope, bighorn sheep, and predatory game animals such as mountain lions or bobcats are only collected as the opportunity arises, that is, if they are found dead on the NNSS (e.g., killed by a predator or accidentally hit by a vehicle). Tissues from species analogous to big game, such as feral horses or burros, may be collected opportunistically as well. If game animals are not sufficiently abundant at a particular site or at a particular time, non-game small mammals may be used as an *analog* (Table 8-1).

A habitat-use study of mule deer and pronghorn antelope was initiated in November 2019. A total of 23 mule deer and 20 pronghorn antelope were captured. GPS [global positioning system] collars were put on all the 23 mule deer and on 18 of the pronghorn antelope. Part of this study is to learn how these animals use the NNSS, how much time they may spend in radiologically contaminated areas, and what the potential dose is to the animals and to someone who may consume them. Samples were collected from study animals that died during 2022, where possible.

The sampling strategy to assess the integrity of radioactive waste containment includes sampling plants, animals, and soil excavated by ants or small mammals on top of waste covers. Plants are generally selected by size, with preference for larger shrubs, under the assumption that they have deeper roots and therefore would be more likely to penetrate buried waste. Small mammals selected for sampling meet three criteria: (1) they are fossorial (i.e., they burrow and live predominantly underground), (2) they have a home range small enough to ensure that they reside most of the time on the waste disposal site, and (3) they are sufficiently abundant at a site to acquire an adequate tissue sample for laboratory analysis. These criteria limit the animals to those listed in Table 8-1. Soils excavated by ants or small mammals are also selected for sampling based on size, with preference for larger ant mounds and animal burrow sites, under the assumption that these burrows are deeper and have a higher potential for penetrating waste.

Table 8-1. NNSS animals monitored for radionuclides

Small Mammals	Large Mammals	Birds	Reptiles
Game Animals Monitored for Dose Assessments			
Cottontail rabbit (<i>Sylvilagus audubonii</i>)	Mule deer (<i>Odocoileus hemionus</i>) Pronghorn antelope (<i>Antilocapra americana</i>)	Mourning dove (<i>Zenaida macroura</i>)	Desert tortoise (<i>Gopherus agassizii</i>)
Jackrabbit (<i>Lepus californicus</i>)	Mountain lion (<i>Puma concolor</i>) Desert bighorn sheep (<i>Ovis canadensis nelsoni</i>) Bobcat (<i>Lynx rufus</i>)	Chukar (<i>Alectoris chukar</i>) Gambel's quail (<i>Callipepla gambelii</i>)	

Animals Monitored for Integrity of Radioactive Waste Containment or as Game Animal Analogs

Kangaroo rats (*Dipodomys spp.*)

Mice (*Peromyscus spp.*)

Antelope ground squirrel (*Ammospermophilus leucurus*)

Desert woodrat (*Neotoma lepida*)

8.2 Site Selection

The monitoring program design focuses on sampling sites with the highest concentrations of radionuclides in natural media (e.g., soil and surface water) and relatively high densities of candidate animals. Five contaminated sites and their associated control sites have been identified and monitored over many years. Each year, biota from one or two of these sites is sampled, and each of the sites is sampled once every 5 years. They are E Tunnel Ponds, Palanquin/Schooner Craters, Sedan Crater, T2, and Plutonium Valley (Figure 8-1), and each is associated with one type of legacy contamination area (see list below). The control site selected for each contaminated site has similar biological and physical features. Control sites are sampled to document the radionuclide levels representative of *background*.

- **Runoff areas or containment ponds associated with underground or tunnel test areas.** Contaminated water draining from test areas can form surface water sources that are important, given the limited availability of surface water on the NNSS. Therefore, they have a high potential for transferring radionuclides to plants and to wildlife seeking surface water. The associated monitoring site is E Tunnel Ponds below Rainier Mesa. This contaminated site, along with its control site, was sampled in 2022.
- **Plowshare sites in alluvial fill at lower elevations with high surface contamination.** The historical *Plowshare Program*, conducted throughout the NNSS, explored the potential use of nuclear explosives for peaceful purposes. Surface and shallow subsurface nuclear detonations at these alluvial, low elevation sites have distributed contaminants over a wide area, usually in the lowest precipitation areas of the NNSS. The associated monitoring site is Sedan Crater in Yucca Flat. It was last sampled in 2020.
- **Plowshare sites in bedrock or rocky fill at higher elevations with high surface contamination.** Surface and shallow subsurface nuclear detonations at these Plowshare Program sites distributed contaminants over a wide area, usually in the highest precipitation areas of the NNSS. Two monitored sites are in this category: Palanquin Crater and Schooner Crater. Both sites were last sampled in 2018.
- **Atmospheric test areas.** These sites have highly disturbed soils due to the removal of topsoil during historical cleanup efforts and due to the sterilization of soils from heat and radiation during testing. The same areas were often used for multiple nuclear tests. The associated monitoring site is T2 in Yucca Flat. It was last sampled in 2021.
- **Aboveground safety experiment sites.** These areas are typified by current radioactive soil contamination, primarily in the form of plutonium and uranium. The associated monitoring site is Plutonium Valley in Area 11. It was last sampled in 2019.

Soil sampling is also conducted periodically at radioactive waste disposal locations on the NNSS to assess whether fossorial small mammals are being exposed to buried wastes and, therefore, whether the integrity of waste containment is compromised. Two radioactive waste disposal facilities are sampled:

- **Area 3 RWMS.** Waste disposal cells within the Area 3 RWMS were created within subsidence craters resulting from underground nuclear testing. Two closed cells containing bulk *low-level radioactive waste* are craters U-3ax and U-3bl, which were combined to form the U-3ax/bl disposal unit (Corrective Action Unit 110). U-3ax/bl is covered with a vegetated, native alluvium closure cover that is at least 2.4 meters (m) (8 feet [ft]) thick. It was last sampled in 2020.
- **Area 5 RWMS.** Waste disposal has occurred at the Area 5 RWMS since the early 1960s. There are 11 closed disposal cells containing bulk low-level radioactive waste. The cells are unlined pits and trenches that range in depth from 4.6 to 15 m (15 to 48 ft). Efforts are currently being made to establish native vegetation on the cover cap of the 92-Acre Area, which caps multiple waste cells. The cover cap is approximately 2.4 m (8 ft) thick. It was last sampled in 2020.

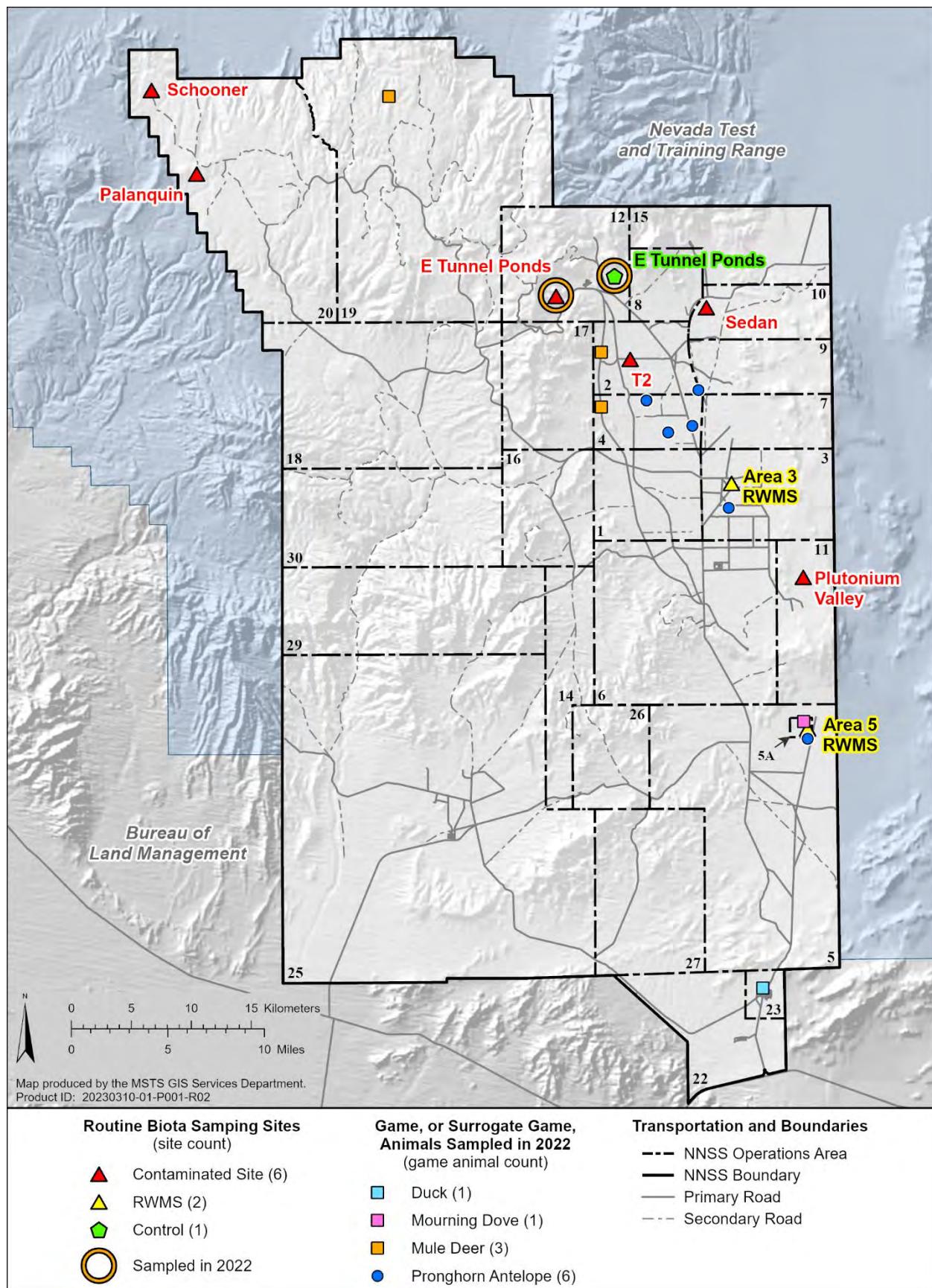


Figure 8-1. Radiological biota monitoring sites on the NNSS

8.3 Sampling and Analysis

In 2022, the E Tunnel Ponds and the E Tunnel Ponds Control site were sampled for plants and animals. The E Tunnel Ponds are just southeast of Rainier Mesa in Area 12, in the northern part of the NNSS (Figure 8-1). Radionuclide-contaminated water and soils occur at this site. The ponds were constructed to collect and hold water that is contaminated (mainly from ^{3}H), which drains out of E Tunnel where nuclear testing was conducted. The water is perched groundwater that has percolated through fractures in the tunnel system. There are eight basins that make up the E Tunnel Ponds (Figure 8-2). Ponds 1 through 5 received water from 1970 through 2013 with various ponds receiving water at intermittent times. Ponds 6a through 6c received water from 2009 to present. The E Tunnel Ponds Control Site is an uncontaminated natural spring (Whiterock Spring) 5.2 kilometers west-northwest of the E Tunnel Ponds.

In 2022, no biota or soil sampling was conducted at the Area 3 or Area 5 RWMSs. The last sampling of the RWMSs in 2020 did not suggest that burrowing animals had come into contact with buried waste (Mission Support and Test Services, LLC, 2021).

Figure 8-2. E Tunnel Pond basins

8.3.1 Plants

On August 25, 2022, plants were sampled at the E Tunnel Ponds and its Control location (Figure 8-1 and Table 8-2). Five composite plant samples were collected from the E Tunnel Ponds. Two were collected in the empty basins of Ponds 4 and 5, and three were collected around the outflow of Pond 6b. Three composite plant samples were collected at the Control location, each within 150 m of Whiterock Spring. Sampled species represented common vegetation at each site (Table 8-2).

All samples consisted of about 150 to 500 grams (5.3 to 17.6 ounces) of fresh-weight plant material and were composites, as described in Table 8-2. The species sampled (Table 8-2) represent common vegetation at each site.

Plant leaves and stems were handpicked and stored in airtight Mylar bags. Rubber gloves were used by samplers and changed between each composite sample. Samples were labeled and stored in an ice chest. Within 4 hours of collection, the samples were delivered to the laboratory for processing. Water was separated from the samples by distillation and the dry plant material was homogenized. The water and dried plant tissues were submitted for

analysis of americium-241 (^{241}Am), strontium-90 (^{90}Sr), plutonium-238 (^{238}Pu), $^{239+240}\text{Pu}$, and gamma emitting radionuclides (including cobalt-60 [^{60}Co], europium isotopes, and cesium-137 [^{137}Cs]).

Table 8-2. Plant samples

Location	Common Name	Scientific Name	Name Code	Sample Description
E Tunnel Ponds (basins of ponds 4 and 5)				
	Bottlebrush squirreltail	<i>Elymus elymoides</i>	EEL	Composite of mixed grass dominated by EEL
	Rubber rabbitbrush	<i>Ericameria nauseosus</i>	ERNA	Composite from about 15 plants
E Tunnel Ponds (near outlet of pond 6b)				
	Rubber rabbitbrush	<i>Ericameria nauseosus</i>	ERNA	Composite from about 10 plants
E Tunnel Ponds (under outlet of pond 6b)				
	Ditch rabbitsfoot grass	<i>Polypogon interruptus</i>	POIN	Composite from a one large bunch
	Water speedwell	<i>Veronica anagallis</i>	VEAN	Composite from a one large bunch
Control				
	Indian ricegrass	<i>Achnatherum hymenoides</i>	ACHY	Composite from about 12 bunches of grass
	White sagebrush	<i>Artemisia ludoviciana</i>	ARLU	Composite from about 10 plants
	Rubber rabbitbrush	<i>Ericameria nauseosus</i>	ERNA	Composite from about 20 plants

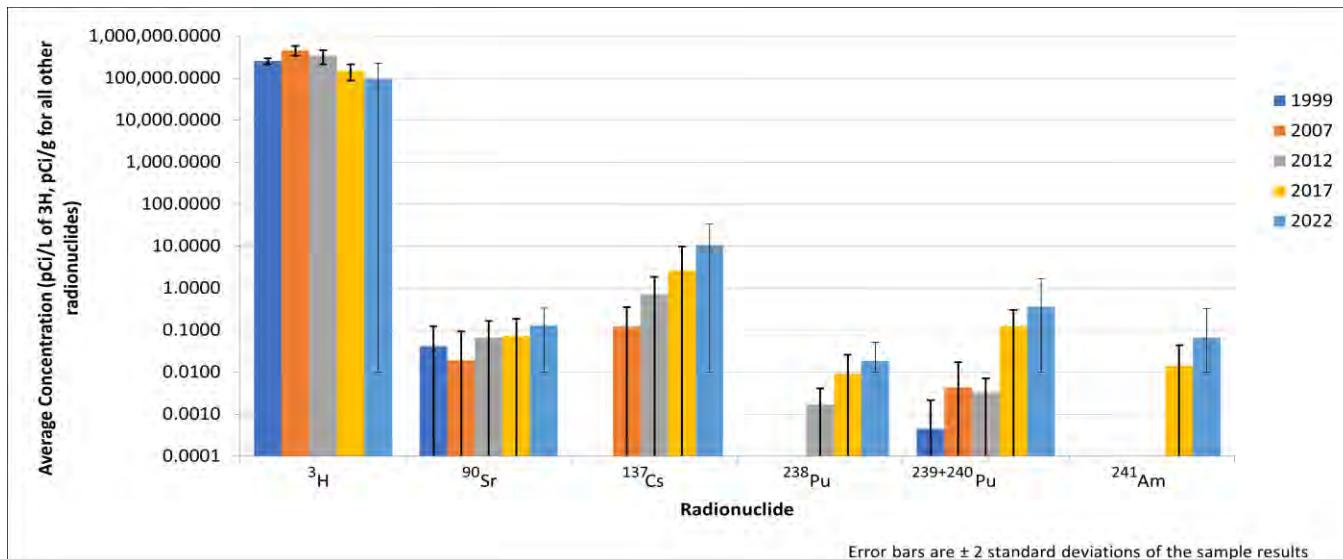

Results of radiological analyses are shown in Table 8-3. All samples from the E Tunnel Ponds had at least two of the following man-made radionuclides detected: ^{241}Am , ^{137}Cs , ^{3}H , ^{238}Pu , $^{239+240}\text{Pu}$, and ^{90}Sr . Average concentrations of all the radionuclides were higher than at the control site, particularly ^{137}Cs and ^{3}H , which is expected due to the water from E Tunnel being in contact with contamination from historical testing. Only $^{239+240}\text{Pu}$ and ^{90}Sr were detected at low concentrations in plant samples from the Control site ($^{239+240}\text{Pu}$ in ACHY and ARLU; and ^{90}Sr in ARLU and ERNA). Concentrations of ^{3}H at the E Tunnel Ponds are decreasing, but other radionuclides had higher concentrations compared with past samples (Figure 8-3). This is likely due to the locations of samples collected during 2022. Instead of around the edge of the old pond shorelines, samples were collected in the bottom of empty pond basins and near, or directly below, the outlet from a pond.

Table 8-3. Concentrations of man-made radionuclides in plants

Sample	Radionuclide Concentrations \pm Uncertainty ^(a)					
	^{3}H (pCi/L)	^{90}Sr (pCi/g)	^{137}Cs (pCi/g)	^{238}Pu (pCi/g)	$^{239+240}\text{Pu}$ (pCi/g)	^{241}Am (pCi/g)
E Tunnel Ponds (basin of Ponds 4 and 5)						
EEL	2,290 \pm 500	0.265 \pm 0.073	3.350 \pm 0.725	0.0452 \pm 0.0186	1.5300 \pm 0.1500	0.3010 \pm 0.0495
ERNA	56,500 \pm 5,200	0.046 \pm 0.045	0.084 \pm 0.156	0.0100 \pm 0.0139	0.0742 \pm 0.0188	0.0121 \pm 0.0123
Average	29,395	0.155	1.717	0.0276	0.8021	0.1566
Average MDC ^(b)	370	0.079	0.307	0.0234	0.0103	0.0170
E Tunnel Ponds (outlet of Pond 6b)						
ERNA	119,000 \pm 10,700	0.044 \pm 0.040	16.700 \pm 2.240	0.0054 \pm 0.0138	0.0065 \pm 0.0061	0.0011 \pm 0.0124
POIN	156,000 \pm 13,900	0.084 \pm 0.043	5.470 \pm 0.998	0.0082 \pm 0.0139	0.0789 \pm 0.0194	0.0121 \pm 0.0118
VEAN	144,000 \pm 12,900	0.217 \pm 0.061	27.500 \pm 3.510	0.0237 \pm 0.0171	0.1240 \pm 0.0264	0.0057 \pm 0.0147
Average	139,667	0.115	16.557	0.0124	0.0698	0.0063
Average MDC ^(b)	291	0.065	0.313	0.0247	0.0105	0.0226

Table 8-3. Concentrations of man-made radionuclides in plants

Sample	Radionuclide Concentrations \pm Uncertainty ^(a)					
	^3H (pCi/L)	^{90}Sr (pCi/g)	^{137}Cs (pCi/g)	^{238}Pu (pCi/g)	$^{239+240}\text{Pu}$ (pCi/g)	^{241}Am (pCi/g)
Control						
ACHY	-97 \pm 180	0.024 \pm 0.052	-0.189 \pm 0.325	0.0091 \pm 0.0142	0.0152 \pm 0.0106	0.0059 \pm 0.0151
ARLU	-88 \pm 175	0.099 \pm 0.058	-0.023 \pm 0.383	0.0093 \pm 0.0139	0.0155 \pm 0.0104	0.0049 \pm 0.0151
ERNA	-160 \pm 158	0.085 \pm 0.050	0.059 \pm 0.220	0.0011 \pm 0.0132	0.0095 \pm 0.0082	0.0086 \pm 0.0150
Average	-115	0.070	-0.051	0.0065	0.0134	0.0065
Average MDC ^(b)	307	0.084	0.550	0.0240	0.0133	0.0265

(a) Picocuries per liter/gram wet weight of sample \pm 2 standard deviations(b) Sample specific lab-reported **minimum detectable concentration (MDC)****Figure 8-3. Concentration in vegetation sampled at the E Tunnel Ponds, 1999–2022**

8.3.2 Animals

State and federal permits were secured to trap specific small mammals and birds in 2022 and opportunistically sample large mammal mortalities on the NNSS. Small mammal trapping occurred August 18 through September 22, 2022. One cottontail rabbit was captured from the E Tunnel Pond site, specifically in the basin of Pond 4. Two cottontail rabbits and four mourning doves were captured from the control site (Table 8-4). Six pronghorn antelope, three mule deer, one mourning dove, and one goldeneye duck (*Bucephala clangula*) were sampled opportunistically during 2022. Four of the pronghorn antelope and one of the mule deer were study animals captured and fitted with GPS collars in November 2019. Details of the samples are listed in Table 8-4.

The entire bodies of the rabbits, doves, and duck were taken as samples. Muscle tissue was collected from the pronghorn antelope and all mule deer. Liver tissue was also collected from three pronghorn antelope; one from Area 2, and Pronghorn #2 and #3 from Area 4, because they were study animals and had the availability of tissue (very fresh kill that had not been scavenged by wildlife). All samples were homogenized and water distilled from all, except the liver samples (assumed same as the muscle) for ^3H analysis. The tissue samples were submitted for ^{90}Sr , ^{238}Pu , $^{239+240}\text{Pu}$, ^{241}Am , and gamma spectrometry analysis.

Table 8-4. Animal samples

Routine Monitoring Samples			
Location	Sample	Collection Date	Sample Description
E Tunnel Ponds	Cottontail Rabbit	8/23/2022	Whole body
Control	Cottontail Rabbit #1	8/25/2022	Whole body
	Cottontail Rabbit #2	9/7/2022	Whole body
	Mourning Doves	9/7/2022 & 9/8/2022	Composite of whole body of four doves

Opportunistic Samples			
Location	Sample	Collection Date	Sample Description
Area 23	Goldeneye Duck	4/11/2022	Whole body of adult male found dead near Building 23-776
Area 5	Mourning Dove	4/27/2022	Whole body of adult found in the Area 5 RWMS
Area 2	Mule Deer	10/18/2022	Muscle from adult female killed by a vehicle on Tippipah Highway
Area 4	Mule Deer	4/12/2022	Muscle from young male killed by a vehicle on Tippipah Highway
Area 19	Mule Deer	8/22/2022	Muscle from adult male (GPS collar ID 705959) killed by a mountain lion
Area 2	Pronghorn	9/1/2022	Muscle and liver from adult female (GPS collar ID 705942) found dead in Crepe Crater
Area 3	Pronghorn	9/12/2022	Muscle from adult male (GPS collar ID 705967) found dead on the 3-12 Road
Area 4	Pronghorn #1	7/14/2022	Muscle from male fawn killed by a vehicle on Mercury Highway
Area 4	Pronghorn #2	9/7/2022	Muscle and liver from adult female (GPS collar ID 705941) found dead near Ice Cap
Area 4	Pronghorn #3	10/20/2022	Muscle and liver from adult female (GPS collar ID 705953) found dead northwest of Big Explosives Experimental Facility
Area 5	Pronghorn	8/15/2022	Muscle from adult male found dead about 100 m south of the Area 5 RWMS

Radionuclide concentration results are listed in Table 8-5. As expected, elevated concentrations of man-made radionuclides were measured in the rabbit from the E Tunnel Ponds due to contamination from the E Tunnel. $^{239+240}\text{Pu}$ was detected in the most samples; however, the radionuclide with the highest concentration was tritium – specifically, in samples near the Area 5 RWMS (dove and pronghorn from Area 5). ^{90}Sr was also detected in the Area 5 Pronghorn antelope, and only ^{137}Cs and ^{241}Am were detected in the E Tunnel Ponds Cottontail Rabbit. ^{238}Pu was only detected in the Area 4 Pronghorn #2 muscle sample. No man-made radionuclides were detected in any of the mule deer, the Control location Cottontail Rabbit #1 and doves, the Area 23 duck, and the Area 2 and Area 3 pronghorn antelope.

Table 8-5. Concentrations of man-made radionuclides in animals

Sample	Radionuclide Concentrations \pm Uncertainty ^(a)					
	^3H (pCi/L) ^(b)	^{90}Sr (pCi/g) ^(c)	^{137}Cs (pCi/g) ^(c)	^{238}Pu (pCi/g) ^(c)	$^{239+240}\text{Pu}$ (pCi/g) ^(c)	^{241}Am (pCi/g) ^(c)
E Tunnel Ponds (Pond 4)						
Cottontail Rabbit	1,720 \pm 354	0.063 \pm 0.048	0.185 \pm 0.072	0.0079 \pm 0.0129	0.1800 \pm 0.0311	0.0405 \pm 0.0185
MDC	290	0.076	0.051	0.0220	0.0110	0.0230
Control						
Cottontail Rabbit #1	23 \pm 215	0.045 \pm 0.045	0.036 \pm 0.071	0.0062 \pm 0.0137	0.0031 \pm 0.0075	0.0011 \pm 0.0109
Cottontail Rabbit #2	-323 \pm 161	0.063 \pm 0.046	0.028 \pm 0.090	0.0041 \pm 0.0113	0.0107 \pm 0.0072	0.0103 \pm 0.0110
Average	-150	0.054	0.032	0.0052	0.0069	0.0057
Average MDC ^(d)	337	0.072	0.141	0.0221	0.0115	0.0193
Doves	-141 \pm 177	0.009 \pm 0.039	0.007 \pm 0.060	0.0170 \pm 0.0119	0.0060 \pm 0.0051	0.0063 \pm 0.0074
MDC	294	0.069	0.112	0.00174	0.0065	0.0120
Opportunistic Sampling						
Area 23 Duck	153 \pm 193	0.057 \pm 0.069	0.006 \pm 0.042	0.0022 \pm 0.0051	0.0014 \pm 0.0060	0.0064 \pm 0.0078
MDC	319	0.116	0.079	0.0089	0.0110	0.0117

Table 8-5. Concentrations of man-made radionuclides in animals

Sample	Radionuclide Concentrations \pm Uncertainty ^(a)					
	³ H (pCi/L) ^(b)	⁹⁰ Sr (pCi/g) ^(c)	¹³⁷ Cs (pCi/g) ^(c)	²³⁸ Pu (pCi/g) ^(c)	²³⁹⁺²⁴⁰ Pu (pCi/g) ^(c)	²⁴¹ Am (pCi/g) ^(c)
Area 5 Dove	2,570 \pm 398	0.038 \pm 0.043	-0.276 \pm 0.672	0.0024 \pm 0.0093	0.0008 \pm 0.0061	0.0089 \pm 0.0259
	MDC	246	0.070	0.780	0.0170	0.0121
Area 2 Mule Deer	117 \pm 217	0.043 \pm 0.044	-0.001 \pm 0.035	0.0000 \pm 0.0036	0.0011 \pm 0.0030	-0.0006 \pm 0.0054
Area 4 Mule Deer	308 \pm 211	0.013 \pm 0.050	-0.002 \pm 0.060	0.0024 \pm 0.0047	0.0000 \pm 0.0054	0.0062 \pm 0.0058
Area 19 Mule Deer	99 \pm 324	0.026 \pm 0.042	-0.011 \pm 0.081	0.0023 \pm 0.0103	0.0015 \pm 0.0038	0.0009 \pm 0.0019
Mule Deer Average	175	0.027	-0.005	0.0016	0.0009	0.0022
Average MDC	419	0.077	0.110	0.0112	0.0078	0.0071
Area 2 Pronghorn (muscle)	-113 \pm 178	0.037 \pm 0.046	0.000 \pm 0.023	0.0013 \pm 0.0170	0.0039 \pm 0.0069	0.0048 \pm 0.0141
Area 2 Pronghorn (liver)	NM ^(e)	0.059 \pm 0.043	0.050 \pm 0.114	0.0095 \pm 0.0082	0.0021 \pm 0.0052	0.0011 \pm 0.0122
Area 3 Pronghorn	-35 \pm 173	-0.016 \pm 0.035	0.0030 \pm 0.109	0.0000 \pm 0.0035	0.0026 \pm 0.0046	0.0103 \pm 0.0105
Area 4 Pronghorn #1	134 \pm 169	-0.001 \pm 0.002	0.005 \pm 0.053	0.0001 \pm 0.0004	0.0002 \pm 0.0003	-0.0002 \pm 0.0003
Area 4 Pronghorn #2 (muscle)	-20 \pm 184	0.049 \pm 0.042	-0.074 \pm 0.135	0.0100 \pm 0.0071	0.0054 \pm 0.0051	-0.0430 \pm 0.0361
Area 4 Pronghorn #2 (liver)	NM ^(e)	-0.006 \pm 0.036	-0.047 \pm 0.103	0.0025 \pm 0.0045	0.0042 \pm 0.0038	0.0050 \pm 0.0114
Area 4 Pronghorn #3 (muscle)	444 \pm 249	0.042 \pm 0.042	0.002 \pm 0.076	0.0051 \pm 0.0054	0.0010 \pm 0.0020	0.0089 \pm 0.0102
Area 4 Pronghorn #3 (liver)	NM ^(e)	0.033 \pm 0.044	-0.019 \pm 0.062	0.0111 \pm 0.0121	0.0102 \pm 0.0067	0.0017 \pm 0.0047
Area 5 Pronghorn	11,500 \pm 2,450	0.061 \pm 0.040	0.002 \pm 0.062	0.0072 \pm 0.0094	0.0032 \pm 0.0045	0.0019 \pm 0.0046
Pronghorn Average	1,985	0.029	-0.006	0.0052	0.0037	-0.0011
Average MDC	416	0.061	0.156	0.0124	0.0065	0.0228

(a) Uncertainty is \pm 2 standard deviations.

(b) Picocuries per liter water from sample.

(c) Picocuries per gram wet weight of sample.

(d) Average sample-specific MDC.

(e) Not measured.

8.4 Data Assessment

Biota sampling results confirm that man-made radionuclide concentrations are higher at the E Tunnel Ponds compared with its control location and near other areas with radionuclides like the Area 5 RWMS. Though NNSS-related radionuclides are detected in some plants and animals, the levels pose negligible risk to humans and biota. Mobile game animals (mule deer and pronghorn antelope) are shown to uptake radionuclides from NNSS sources, but the potential dose to a person hunting and consuming these animals is well below dose limits to members of the public (see Section 9.1.1.2). Also, radionuclide concentrations were below levels considered harmful to the health of the plants and animals; the dose resulting from observed concentrations was less than 4 percent of dose limits set to protect populations of plants and animals (see Section 9.2).

8.5 References

Hunter, R. B., and R. R. Kinnison, 1998. *Tritium in Vegetation on the Nevada Test Site, U.S. Department of Energy, December 1998, In: Nevada Test Site Routine Radiological Environmental Monitoring Plan, Appendices*. DOE/NV/11718--244. Bechtel Nevada, Las Vegas, NV.

Mission Support and Test Services, LLC, 2022. Nevada National Security Site Environmental Report 2021, DOE/NV/03624--1486, Las Vegas, NV, prepared for the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office.

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 9: Radiological Dose Assessment

Ronald W. Warren and Phillip D. Worley
Mission Support and Test Services, LLC

Radiological Dose Assessment Goals

Determine if the maximum radiation dose to a member of the general public from airborne radionuclide emissions at the Nevada National Security Site (NNSS) complies with the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) limit of 10 millirems per year (mrem/yr) (0.1 millisieverts per year [mSv/yr]). Determine if radiation levels from the Radioactive Waste Management Sites (RWMSs) comply with the 25 mrem/yr (0.25 mSv/yr) dose limit to members of the public as specified in U.S. Department of Energy (DOE) Manual DOE M 435.1-1, “Radioactive Waste Management Manual.” Determine if the total radiation dose (total effective dose equivalent [TEDE]) to a member of the general public from all possible pathways (direct exposure, inhalation, ingestion of water and food) as a result of NNSS operations complies with the limit of 100 mrem/yr (1 mSv/yr) established by DOE Order DOE O 458.1, “Radiation Protection of the Public and the Environment.” Determine if the radiation dose (in a unit of measure called a rad) to NNSS biota complies with the following limits set by DOE Standard DOE-STD-1153-2019, “A Graded Approach for Evaluating Radiation Doses to Aquatic and Terrestrial Biota.”

The U.S. Department of Energy requires DOE facilities to estimate the radiological **dose**¹ to the general public, plants, and animals in the environment caused by past or present facility operations. These requirements are specified in DOE O 458.1 and in DOE O 435.1, “Radioactive Waste Management” (Table 2-1). To estimate these radiological doses, **radionuclide** concentration data gathered on the NNSS are used along with dose conversion factors published in DOE-STD-1196-2021, “**Derived Concentration Technical Standard**.” The dose conversion factors take into account the different population fractions of age and sex to give representative dose coefficients for a reference person within the U.S. population. The 2022 data are presented in Chapters 4, 5, 6, and 8 of this report, and include the results for onsite monitoring of air, water, direct radiation, and biota, and for offsite monitoring of groundwater. The independent offsite air and groundwater data presented in Chapter 7, “Community-Based Offsite Monitoring,” provide extra assurance to the public that estimated doses do not underestimate potential offsite **exposures** to NNSS-related radiation. The specific goals for the dose assessment component of radiological monitoring are described below.

9.1 Dose to the Public

This section identifies the possible pathways by which the public could be exposed to radionuclides present in the environment due to past or current NNSS activities. It describes how field-monitoring data are used with other NNSS data sources (e.g., radionuclide inventory data) to provide input to the dose estimates, and presents the estimated 2022 public dose attributable to U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) activities from each pathway and from all pathways combined. The public dose due to radioactive waste operations on the NNSS is also assessed, and a description of the program that controls the release of NNSS materials having residual **radioactivity** into the public domain is provided.

9.1.1 Dose from Possible Exposure Pathways

Air, groundwater, and biota are routinely sampled to document the amount of radioactivity in these media and to provide data to assess the potential radiation dose received by the general public.

¹ The definition of word(s) in ***bold italics*** may be found by referencing the Glossary, Appendix B.

The potential pathways by which a member of the general public residing off site might receive a radiation dose resulting from past or present NNSS operations include the following:

- Inhalation of, ingestion of, or direct external exposure to airborne radionuclide emissions transported off site by wind
- Ingestion of wild game animals that drink from surface waters and/or eat vegetation containing NNSS-related radioactivity
- Ingestion of plants containing radioactivity from NNSS-related activities
- Drinking water from underground *aquifers* containing radionuclides that have migrated from the sites of past underground nuclear tests or radioactive waste management sites
- Exposure to direct radiation along the borders of the NNSS

The subsections below address all of the potential pathways and their contribution to the 2022 estimated public dose.

9.1.1.1 Dose from NNSS Air Emissions

Six air particulate and *tritium* (3H) sampling stations located near the boundaries and the center of the NNSS are approved by U.S. Environmental Protection Agency (EPA) Region 9 as *critical receptor samplers* to demonstrate compliance with the NESHAP public dose limit of 10 mrem/yr (0.1 mSv/yr) from air emissions. The annual average concentration of an airborne radionuclide must be less than the NESHAP Concentration Level for Environmental Compliance (abbreviated as *compliance level /CL/*) (Table 4-1). The CL for each radionuclide represents the annual average concentration of that radionuclide in air that would result in a TEDE of 10 mrem/yr. If multiple radionuclides are detected at a station, then compliance with NESHAP is demonstrated when the sum of the fractions (determined by dividing each radionuclide's concentration by its CL and then adding the fractions together) is less than 1.0.

The critical receptor sampling stations can be thought of as worst case for an offsite receptor because these samplers are close to emissions sources (Figures 4-1, 4-2). Table 9-1 displays the distances between the critical receptor monitoring stations and points where members of the public potentially live, work, and/or go to school. The distance between the sampling location and the closest onsite emission location is also listed (Figure 4-1).

Table 9-1. Distance between critical receptor air monitoring stations and nearest points of interest

Critical Receptor Station	Distance ^(a) and Direction ^(b) to Nearest Offsite Locations and Onsite Emission Location			
	Residence	Business/Office	School	NNSS Emission Source
Area 6, Yucca	47 km SW Amargosa Valley	38 km SSE American Silica ^(c)	54 km SE Indian Springs	2.4 km SW Area 6, Grouped Area Sources
Area 10, Gate 700 S	49 km ENE Anchor Brand Ranch	56 km NNE Rachel	75 km SSE Indian Springs	2.6 km SW Area 10, Sedan Crater
Area 16, 3545 Substation	46 km SSW Amargosa Valley	46 km SSW Amargosa Valley	58 km SSW Amargosa Valley	1.6 km NW Area 16, Grouped Area Sources
Area 20, Schooner	36 km WSW Sarcobatus Flat	20 km WSW Tolicha Peak	56 km SSW Beatty	0.3 km ESE Area 20, Schooner Crater
Area 23, Mercury Track	24 km SW Crystal	6.0 km SE American Silica	31 km SSW Indian Springs	0.2 km ESE Area 23, Building 652
Area 25, Gate 510	4 km S Amargosa Valley	3.5 km S Amargosa Valley	15 km SW Amargosa Valley	21 km NNE Area 25, nearest portion of Grouped Area Sources

(a) Distance is shown in kilometers (km). For miles, multiply by 0.62.

(b) N=north, S=south, E=east, W=west in all direction combinations shown.

(c) The American Silica mine was not active in 2022, but is the closest business to the SE of the NNSS.

In 2022, the man-made radionuclides detected in samples from at least one air monitoring station included tritium (3H), cesium-137 (^{137}Cs), americium-241 (^{241}Am), plutonium-238 (^{238}Pu), and plutonium-239+240 ($^{239+240}Pu$) (Section 4.1). The annual average concentrations of these radionuclides were well below their CLs and the sum of fractions for each location were all less than 1.0 (Table 4-11). The use of second quarter maximum air

concentrations for detected radionuclides in calculating the annual average air concentrations (see Chapter 4) resulted in the sum of fractions being higher than normal, yet still more than 10 times below the standard. As in previous years, 2022 data from the six critical receptor stations show that the NESHAP public dose limit of 10 mrem/yr (0.1 mSv/yr) was not exceeded.

The radioactive air emissions from each 2022 NNSS source were modeled using the *Clean Air Package, 1988*, model (CAP88, Version 4.1; EPA 2019). The highest value (0.061 mrem/yr [0.00061 mSv/yr]) is predicted to be a person residing on the Nevada Test and Training Range (NTTR). More detailed information regarding the estimation of the dose to the public from airborne radioactivity in 2022 from all activities conducted by NNSA/NFO on the NNSS and its Nevada support facilities is reported in Mission Support and Test Services, LLC (MSTS) (2023).

9.1.1.2 *Dose from Ingestion of Game Animals from the NNSS*

Three game species (mule deer, bighorn sheep, and mourning doves) have been shown to travel off the NNSS and be available to hunters (Giles and Cooper 1985; Hall and Perry 2019; National Security Technologies, LLC [NSTec] 2009). In fact, one mule deer captured on the NNSS and fitted with a radio-collar in 2019 was taken by a hunter near Kawich Peak in October 2020 (MSTS 2021). Because of this, big game animals are sampled opportunistically when natural mortalities or road-kills occur on the NNSS and small game animals are sampled annually near known radiologically contaminated areas to give conservative (worst-case) estimates of the level of radionuclides that hunters may consume if these animals are harvested off the NNSS. In 2022, the following animals were sampled (Figure 8-1 and Tables 8-4 and 8-5):

- One cottontail rabbit from E Tunnel Ponds, Area 12.
- Two cottontail rabbits from a control site for the E Tunnel Ponds, Area 12.
- Five mourning doves, one from Area 5 and four from Area 12.
- One duck (common golden-eye) found dead in Area 23.
- Three mule deer; one that died from predation in Area 19, and two that were hit by vehicles on NNSS roads (one in Area 2 and one in Area 4). The deer from Area 19 was a study animal fitted with a GPS [global positioning system] collar in 2019.
- Six pronghorn; one killed by a vehicle in Area 4 and five that died from unknown causes (two in Area 4 and one each in Areas 2, 3, and 5). Four of the six pronghorn were fitted with GPS collars in 2019.

The potential **committed effective dose equivalent (CEDE)** to an individual consuming game animals was calculated for each animal sampled in 2022 unless no man-made radionuclides were detected in animals from a particular location. The following assumption/parameters were used to estimate dose:

- Analysis results from all samples were included in calculating dose from consuming a particular species as long as the radionuclide was detected, i.e., the analysis result was above the **minimum detectable concentration**, in at least one sample of that species at a particular location. The opportunistic samples are grouped as all being from the same location (NNSS) for this assessment.
- If the analytical result for a radionuclide concentration in the sample was a negative value (resulting from a **background** measurement higher than what was observed in the sample), then the concentration for that sample was set to zero.
- The **maximally exposed individual (MEI)** consumes one of each species of animal sampled from each location during the year, which had at least one detected man-made radionuclide:
 - one cottontail rabbit (167 grams [g]) from the E Tunnel Ponds
 - one dove (304 g) from Area 5
 - one pronghorn antelope (20.0 kg muscle, 1.13 kg liver)
- The moisture content of the muscle tissue samples of all species is 73%.
- Dose coefficients for per capita ingestion of milk as defined by DOE-STD-1196-2021 are used; they are for a hypothetical person representing an aggregate of individuals in the U.S. population and dose coefficients for milk are used instead of those for water ingestion because they are more restrictive (result in higher dose estimate).

- The entire committed dose is considered to be received during the calendar year.

Dose coefficients, listed in DOE-STD-1196-2021, were multiplied by the amount of radioactivity potentially ingested to obtain the potential dose (mrem CEDE) (Table 9-2). The average and maximum CEDEs for each monitored location and for each animal species are presented in Table 9-2. No man-made radionuclides were detected in the doves from Area 12, the duck from Area 23, or any of the mule deer, so no dose is calculated from these animals. Based on the 2022 samples, an individual who consumes one animal of each sampled species from each location (where opportunistic large game samples were considered to be from one location, i.e., the entire NNSS) may receive an estimated dose of 0.25 mrem (0.0025 mSv) based on the averages. To put this dose in perspective, it is about 40% of the dose received from naturally occurring cosmic radiation during a 2-hour airplane flight at 39,000 feet. From consuming just one animal sampled in 2022, the maximum would come from eating 20.0 kg of meat with concentrations observed in the pronghorn sampled in Area 5 (Table 8-5) and would result in a dose of 0.54 mrem (0.0054 mSv) (Tables 9-2 and 9-3).

Table 9-2. CEDE from ingesting game animals on the NNSS

Location and Sample	Committed Effective Dose Equivalent (mrem) ^(a)						Species Average	Species Max					
	³ H ^(b)	⁹⁰ Sr	¹³⁷ Cs	²³⁸ Pu	²³⁹⁺²⁴⁰ Pu	²⁴¹ Am							
E Tunnel Ponds													
Cottontail	0010.0		0.0016		0.0301	0.0047	0.0365	0.0365					
E Tunnel Ponds Control													
Cottontail #1					0.0005		0.0005	0.0012					
Cottontail #2					0.0018		0.0018	0.0018					
Doves		No manmade radionuclides detected					0.0000	0.0000					
Opportunistic Samples													
Opportunistic samples from natural mortality or accidental road kills													
Location and Sample	³ H ^(b)	⁹⁰ Sr	¹³⁷ Cs	²³⁸ Pu	²³⁹⁺²⁴⁰ Pu	²⁴¹ Am	Total	Species Average					
Area 23 Duck	No manmade radionuclides detected						0.0000	0.0000					
Area 5 Dove	0.00001						0.00001	0.00001					
Area 2 Mule Deer	No manmade radionuclides detected in any mule deer						0.0000	0.0000					
Area 4 Mule Deer													
Area 19 Mule Deer													
Area 2 Pronghorn ^(c)	0.0000	0.1784		0.0248	0.0782		0.2814	0.2125					
Area 3 Pronghorn	0.0000	0.0000		0.0000	0.0521		0.0000						
Area 4 Pronghorn #1	0.0005	0.0000		0.0024	0.0050		0.0079						
Area 4 Pronghorn #2 ^(c)	0.0000	0.0000		0.1924	0.1139		0.3063						
Area 4 Pronghorn #3 ^(c)	0.0017	0.0000		0.1088	0.0321		0.1425						
Area 5 Pronghorn	0.0438	0.2928		0.1365	0.0639		0.5369						

CEDE from consuming 1 animal of each species = 0.25 mrem (using averages) and 0.58 mrem (using maximums)

(a) Based on dose coefficients in Appendix A of DOE-STD-1196-2021 for a Reference Person. Dose only calculated for radionuclides that were detected in at least one sample from a species and location.

(b) Calculated from tritium concentration in water from tissue and water content of muscle tissue samples is 73%.

(c) These samples had both muscle and liver samples; dose is based on consumption of both muscle and liver.

A person may consume animals from locations on the NNSS other than where samples were collected in 2022; therefore, Table 9-3 presents the maximum CEDE for humans consuming various species of wildlife from all animals sampled from 2001–2022. Table 9-3 gives a worst-case scenario based on radionuclide analyses of NNSS game animal samples over the past 22 years.

The highest CEDE from consuming just one animal (12.9 mrem or 0.129 mSv) would be from the pronghorn sampled in 2018 from Area 9 (Table 9-3). This represents 12.9% of the annual dose limit for members of the public.

Table 9-3. Maximum CEDEs to a person hypothetically ingesting NNSS game animals sampled from 2001–2022

Game Animal	Sample Location	Year Sampled	Amount Consumed	CEDE for Consumption of One Animal (mrem)
Bighorn Sheep	Area 25 (captured study animal)	2015	all muscle	0.170
Bobcat	Area 25 (roadkill)	2012	all muscle	0.032
Burro	Area 5 (roadkill)	2020	all muscle	0.486
Chuckar	Area 12 (E Tunnel)	2001	breast muscle	0.006
Cottontail Rabbit	Area 12 (E Tunnel Ponds)	2022	whole body	0.037
Gambel's Quail	Area 2 (T2)	2002	all muscle	0.004
Jackrabbit	Area 10 (Sedan)	2015	all muscle	1.298
Mountain Lion	NTTR (natural mortality of study lion NNSS4)	2013	all muscle	0.095
Mourning Dove	Area 20 (Palanquin control but likely from sump of Well U-20n)	2003	breast muscle	0.032
Mule Deer	Area 19 (killed by a mountain lion)	2014	all muscle	3.228
Pronghorn	Area 9 (likely killed by coyotes)	2018	all muscle	12.869

9.1.1.3 Dose from Ingestion of Plants from the NNSS

Current NNSS land-use practices discourage the harvesting of plants or plant parts for direct consumption by humans. However, it is possible that individuals with access will collect and consume edible plant material. One species in particular, the pinyon pine tree, produces pine nuts that are harvested and consumed across the western United States. Pinyon pine trees grow throughout regions of higher elevation on the NNSS. The most recent year pine nuts were sampled was in 2013. These were from three locations on the NNSS: Area 15, Area 17, and in Area 12 near the E Tunnel Ponds. The estimated dose from consuming them was shown to be extremely low (0.00056 mrem or 0.0000056 mSv) and a negligible contribution to the total potential dose to a member of the public (NSTec 2014). No other edible plant materials have been collected for analysis on the NNSS in recent history, and no edible plants were sampled in 2022.

9.1.1.4 Dose from Drinking Contaminated Groundwater

The 2022 groundwater monitoring data indicate that groundwater from offsite private and community wells and springs has not been impacted by past NNSS nuclear testing operations (Sections 5.1.3.6, 7.2, and 7.3). No man-made radionuclides have been detected in any sampled wells accessible to the offsite public or in sampled private wells or springs. These field monitoring data also agree with the forecasts of current groundwater flow and contaminant transport models discussed in Chapter 11. Therefore, drinking water from underground aquifers containing radionuclides is not a possible pathway of exposure to the public residing off site.

9.1.1.5 Dose from Direct Radiation Exposure along NNSS Borders

The direct exposure pathway from **gamma radiation** to the public is monitored routinely (Chapter 6). In 2022, the only place where the public had the potential to be exposed to direct radiation from NNSS operations was at Gate 100, the primary entrance to the site on the southern NNSS border. Trucks hauling radioactive materials, primarily **low-level waste (LLW)** being shipped for disposal at the Area 5 RWMS, park outside Gate 100 while waiting for entry. Only during these times is there a potential for exposure to the public due to NNSS activities. However, no member of the public resides or remains full-time at the Gate 100 truck parking area. Therefore, dose from direct radiation is not included as a current pathway of exposure to the public residing off site.

9.1.2 Dose from Waste Operations

DOE M 435.1-1 states that LLW disposal facilities shall be operated, maintained, and closed so that a reasonable expectation exists that annual dose to members of the public shall not exceed 10 mrem through the air pathway and 25 mrem through all pathways for a 1,000-year compliance period after closure of the disposal units. Because of this long compliance period, a Performance Assessment and Composite Analysis is completed to estimate future doses and potential releases into the future (Section 10.3). Given that the RWMSs are located well within the NNSS boundaries and public access is limited (e.g., tours), members of the public have access only for brief

periods. However, for purposes of documenting current potential impacts, the pathways for radionuclide movement from waste disposal facilities are monitored.

In 2022, external radiation from waste operations measured near the boundaries of the Area 3 and Area 5 RWMSs could not be distinguished from background levels at those locations (Section 6.3.4). Area 3 and Area 5 RWMS operations would have contributed negligible external exposure to a hypothetical person residing near the boundaries of these sites and would have resulted in no dose to the offsite public.

The dose from the air pathway can be estimated from air monitoring results from stations near the RWMSs (Figure 4-2 and Table 10-5). Mean concentrations of radionuclides in air at the Area 3 and Area 5 environmental sampler locations were, at the most, only 11% of their CLs (Table 10-5).

There is no exposure, and therefore no dose, to the public from groundwater beneath waste disposal sites on the NNSS. Groundwater monitoring indicates that man-made radionuclides have not been detected in wells accessible to the offsite public or in private wells or springs (Sections 5.1.3.6, 7.2, and 7.3). Also, groundwater and *vadose zone* monitoring at the Area 3 and Area 5 RWMSs, conducted to verify the performance of waste disposal facilities, has not detected the migration of radiological wastes into groundwater (Sections 10.3.1 and 10.3.2). Based on these results, potential dose to members of the public from LLW disposal facilities on the NNSS from all pathways is negligible.

9.1.3 Total Offsite Dose to the Public from All Pathways

The DOE-established radiation dose limit to a member of the general public from all possible pathways as a result of NNSA/NFO facility operations is 100 mrem/yr (1 mSv/yr), excluding background radiation, while considering air transport, ingestion, and direct exposure pathways. For 2022, the only plausible pathways of public exposure to man-made radionuclides from current or past NNSS activities included the air transport pathway and the ingestion of game animals. The doses from these pathways are combined in Table 9-4 to present an estimate of the total 2022 dose to the MEI residing off site.

The MEI for the air pathway was considered to be a person residing on the NTTR east of the NNSS (Section 9.1.1.1). If the offsite MEI were assumed to also eat wildlife from the NNSS, additional dose would be received. Based on 2022 samples, the additional dose from consuming one animal may range up to 0.54 mrem (0.0054 mSv) if a person ate the equivalent of 20.0 kg of meat with concentrations observed in the pronghorn sampled in Area 5 (Table 9-2). When the 0.061 mrem (0.00061 mSv) dose from the air pathway is added, the TEDE to this hypothetical MEI from all exposure pathways combined due to NNSA/NFO activities would be 0.60 mrem/yr (0.0060 mSv/yr) (Table 9-4).

Table 9-4. Estimated radiological dose to hypothetical MEI of the general public from 2022 NNSS activities

Pathway	Dose to MEI		Percent of DOE 100 mrem/yr Limit
	(mrem/yr)	(mSv/yr)	
Air ^(a)	0.061	0.00061	0.06
Water ^(b)	0.00	0.00	0.00
Wildlife ^(c)	0.54	0.0054	0.54
Direct ^(d)	0.00	0.00	0.00
All Pathways	0.60	0.0060	0.60

(a) Based on highest offsite dose predicted from modeled 2022 air emissions (Section 9.1.1.1).

(b) Based on all offsite groundwater sampling conducted by NNSA/NFO to date (Section 5.1).

(c) Based on consuming one animal sampled in 2022, which would result in the highest dose (Table 9-2).

(d) Based on 2022 gamma radiation monitoring data at the NNSS entrance (Section 6.3.1).

The total dose of 0.60 mrem/yr to the hypothetical MEI is 0.60% of the DOE limit of 100 mrem/yr and about 0.2% of the total dose that the MEI receives from natural background radiation (360 mrem/yr [3.6 mSv/yr]) (Figure 9-1). Natural background radiation consists of cosmic radiation, terrestrial radiation, radiation from radionuclides within the composition of the human body (primarily potassium-40), and radiation from the inhalation of naturally occurring radon and its *progeny*. The cosmic and terrestrial components of background

radiation shown in Figure 9-1 were estimated from the annual mean radiation exposure rate measured with a pressurized ion chamber (PIC) at Indian Springs by the Community Environmental Monitoring Program (97.15 milliroentgens per year [mR/yr]; Table 7-4). The radiation exposure in air, measured by the PIC in units of mR/yr, is conservatively approximated to be equivalent to the unit of mrem/yr for tissue. The portion of the background dose from the internally deposited, naturally occurring radionuclides and from the inhalation of radon and its *daughters* were estimated at 31 mrem/yr (0.31 mSv/yr) and 229 mrem/yr (2.29 mSv/yr), respectively (Figure 9-1), using the approximations by the National Council on Radiation Protection and Measurements (2006).

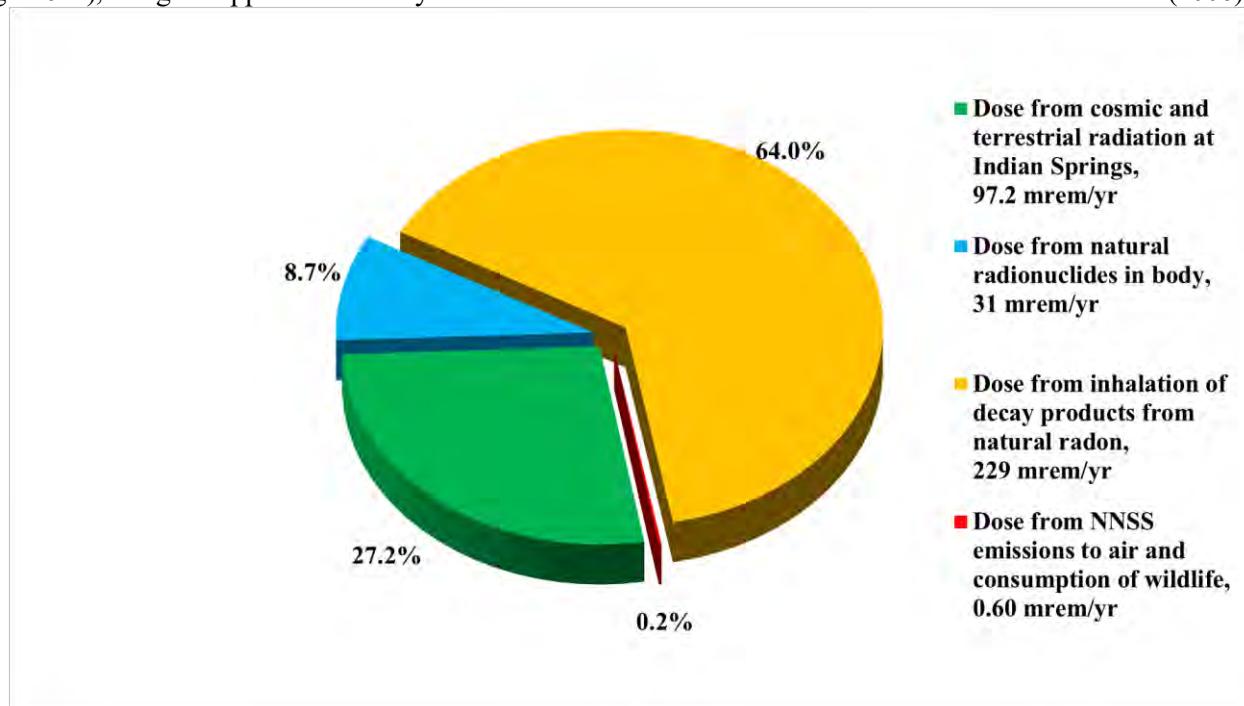


Figure 9-1. Comparison of radiation dose to the MEI from the NNSS and natural background (% of total) in 2022

9.1.4 Collective Population Dose

The **collective population dose** to residents within 80 km (50 miles [mi]) is the product of the predicted individual doses multiplied by the population potentially receiving those doses. The CAP88 modeled doses from 2022 air emissions for the estimated 528,650 people who lived within 80 km (50 mi) of NNSS emission sources resulted in a collective dose of 0.27 person-rem/yr. This 2022 calculation verifies the relatively low dose risk from the NNSS.

9.1.5 Release of Property Containing Residual Radioactive Material

In addition to discharges to the environment, the release of DOE property containing residual radioactive material is a potential contributor to the dose received by the public. The release of property off the NNSS is controlled. No vehicles, equipment, structures, or other materials can be released from the NNSS for unrestricted public use unless the amount of residual radioactivity on such items is less than the authorized limits. The default authorized limits for 2022 are specified in the *Nevada National Security Site Radiological Control Manual* (RadCon Manual) (RCMC 2018) and are consistent with the limits set by DOE O 458.1. These limits, excerpts from the RadCon Manual Table 4-2, are shown in Table 9-5. The RadCon Manual was revised effective October 2022, but the Table 4-2 release limits were not changed.

All NNSA/NFO contractors use a risk-based graded approach for release of material and equipment for unrestricted public use. Either items are surveyed prior to release to the public, or a process knowledge evaluation is conducted to verify that the material has not been exposed to radioactive material or beams of radiation capable of generating radioactive material. In some cases, both a radiological survey and a process knowledge evaluation are performed (e.g., a radiological survey is conducted on the outside of the item, and a process knowledge form

is signed by the custodian to address inaccessible surfaces). Items are evaluated/surveyed prior to shipment to the NNSA/NFO property/excess warehouse. All contractors also complete material surveys prior to release and transport to the Area 23 landfill. The only exception is for items that could be internally contaminated; these items are submitted to Waste Generator Services for disposal using one of the facilities that can accept LLW. Excess items that can be free-released are either donated to interested state agencies, federal agencies, or universities; redeployed to other onsite users; or sold on an auction website. No released items had residual radioactivity in excess of the limits specified in Table 9-5.

Independent verification of radiological surveys and process knowledge evaluations is achieved through NNSA/NFO program oversight and through assessments. DOE O 458.1, which includes the process of releasing property to the public, has been incorporated into the site's Radiological Control Manager's Council Internal Assessment Schedule, and DOE O 458.1 assessments are scheduled to occur once every 3 years. An assessment was conducted in 2022, and NNSS property release activities were found to comply with DOE O 458.1.

Table 9-5. Allowable total residual surface contamination for property released off the NNSS

Radionuclide	Residual Surface Contamination (dpm/100 cm ²) ^(a)		
	Removable	Average ^(b) (Fixed and Removable)	Maximum Allowable ^(c) (Fixed and Removable)
Transuranics, ¹²⁵ I, ¹²⁹ I, ²²⁶ Ra, ²²⁷ Ac, ²²⁸ Ra, ²²⁸ Th, ²³⁰ Th, ²³¹ Pa	20	100	300
Th-natural, ⁹⁰ Sr, ¹²⁶ I, ¹³¹ I, ¹³³ I, ²²³ Ra, ²²⁴ Ra, ²³² U, ²³² Th	200	1,000	3,000
U-natural, ²³⁵ U, ²³⁸ U, and associated <i>decay</i> products, alpha emitters (α)	1,000 α	5,000 α	15,000 α
Beta (β)-gamma (γ) emitters (radionuclides with decay modes other than alpha emission or spontaneous fission) except ⁹⁰ Sr and others noted above	1,000 $\beta+\gamma$	5,000 $\beta+\gamma$	15,000 $\beta+\gamma$
³ H and tritiated compounds	10,000	N/A	N/A

(a) Disintegrations per minute per 100 square centimeters (cm²).

(b) Averaged over an area of not more than 1 square meter (m²).

(c) Applicable to an area of not more than 100 cm².

9.2 Dose to Aquatic and Terrestrial Biota

DOE requires their facilities to evaluate the potential impacts of radiation exposure to biota in the vicinity of DOE activities. To assist in such an evaluation, DOE's Biota Dose Assessment Committee developed DOE-STD-1153-2019. This standard established the following radiological dose limits for plants and animals. Dose rates equal to or less than these are expected to have no direct, observable effect on plant or animal reproduction:

- 1 radiation absorbed dose per day (rad/d) (0.01 grays per day [Gy/d]) for aquatic animals
- 1 rad/d (0.01 Gy/d) for terrestrial plants
- 0.1 rad/d (1 milligray per day) for terrestrial animals

DOE-STD-1153-2019 also provides concentration values for radionuclides in soil, water, and sediment to use as a guide to determine if biota are potentially receiving radiation doses above the limits. These concentrations are called the Biota Concentration Guide (BCG) values. They are defined as the minimum concentration of a radionuclide that would cause dose limits to be exceeded using very conservative uptake and exposure assumptions.

NNSS biologists use the graded approach described in DOE-STD-1153-2019. The approach is a three-step process consisting of a data assembly step, a general screening step, and an analysis step. The analysis step consists of site-specific screening, site-specific analysis, and site-specific biota dose assessment. The following information is required by the graded approach:

- Identification of terrestrial and aquatic habitats on the NNSS with radionuclides in soil, water, or sediment
- Identification of terrestrial and aquatic biota on the NNSS in contaminated habitats and at risk of exposure

- Measured or calculated radionuclide concentrations in soil, water, and sediment in contaminated habitats on the NNSS that can be compared to BCG values to determine the potential for exceeding biota dose limits
- Measured radionuclide concentrations in NNSS biota, soil, water, and sediment in contaminated habitats on the NNSS to estimate site-specific dose to biota

A comprehensive biota dose assessment for the NNSS using the graded approach was reported in the *Nevada Test Site Environmental Report 2003* (BN 2004). The assessment demonstrated that the potential radiological dose to biota on the NNSS was not likely to exceed dose limits. Data from monitoring air, water, and biota across the NNSS suggest no significant change to NNSS surface conditions; therefore, the biota dose evaluation conclusion remains the same for 2022.

9.2.1 Site-Specific Biota Dose Assessment

The site-specific biota dose assessment phase of the graded approach centers on the actual collection and analysis of biota. To obtain a predicted internal dose to biota sampled in 2022, the RESRAD-BIOTA, Version 1.8, computer model (DOE 2004) was used. Maximum concentrations of man-made radionuclides detected in plant and animal tissue (Tables 8-3 and 8-5) were entered into the model. External dose was based on the measured annual exposure rate using the maximum quarterly **thermoluminescent dosimeter (TLD)** measurement made close to each biota sampling site (Table 6-1), minus the average background exposure rate (Table 6-2). If the average background exposure rate was higher than the monitored location, then man-made external dose was set to zero.

The 2022 site-specific estimated dose rates to biota were all below the DOE limits for both plants and animals (Table 9-6). The highest dose rate (0.047 rad/d) was predicted for vegetation at the E Tunnel Ponds and it was 0.5% of the DOE dose limit. This was dominated by $^{239+240}\text{Pu}$ in grass sampled from the basins of E Tunnel Ponds 4 and 5, and accounted for about 71% of the total dose.

Table 9-6. Site-specific dose assessment for terrestrial plants and animals

Location ^(a)	Estimated Radiological Dose (rad/d)		
	Internal ^(b)	External ^(c) (TLD)	Total
Terrestrial Plants			
E Tunnel Ponds	0.004353	0.000301	0.004654
E Tunnel Ponds Control	0.000073	0.000137	0.000210
		DOE Dose Limit:	1
Terrestrial Animals			
E Tunnel cottontail rabbit (Area 12)	0.001249	0.000234	0.001484
E Tunnel Control cottontail rabbits (Area 12)	0.000163	0.000076	0.000239
E Tunnel Control doves (Area 12)	No manmade radionuclides detected	0.000054	0.000054
Duck (Area 23)	No manmade radionuclides detected	0.000011	0.000011
Dove (Area 5)	0.000001	0.000811	0.000812
Mule Deer (all samples collected during 2022)	No manmade radionuclides detected	0.000047	0.000047
Pronghorn (max concentrations from various)	0.000123	0.000004	0.000128
		DOE Dose Limit:	0.1

(a) For information on plants and animals sampled, see Chapter 8.

(b) Based on maximum concentrations of each man-made radionuclide detected in a plant or animal sampled at that location.

(c) Based on TLD measured exposure rates at or near the sample location. See Chapter 6 for information on direct radiation.

9.3 Dose Assessment Summary

Radionuclides in the environment as a result of past or present NNSS activities result in a potential dose to the public or biota much lower than the dose limits set to protect the public health and the environment. The estimated dose to the MEI for 2022 was 0.60 mrem/yr (0.0060 mSv/yr), which is 0.60% of the dose limit set to protect human health. Dose to biota at the NNSS sites sampled in 2022 were less than 2% of dose limits set to protect plant and animal populations. Based on the low potential doses from NNSS radionuclides, impacts from those radionuclides are expected to be negligible.

9.4 References

Bechtel Nevada, 2004. *Nevada Test Site Environmental Report 2003*. DOE/NV/11718--971, Las Vegas, NV.

BN, see Bechtel Nevada.

DOE, see U.S. Department of Energy.

EPA, see U.S. Environmental Protection Agency

Giles, K. R., and J. Cooper, 1985. *Characteristics and Migration Patterns of Mule Deer on the Nevada Test Site*, EPA 600/4-85-030 (DOE/DP/00539-054), U.S. Environmental Protection Agency, Las Vegas, NV.

Hall, D. B., and J.A. Perry, 2019. *Ecological Monitoring and Compliance Program 2018 Report*. DOE/NV/03624--0599, Las Vegas, NV.

Mission Support and Test Services, LLC, 2021. *Nevada National Security Site Environmental Report 2020*. DOE/NV/03624--1210, Las Vegas, NV.

———, 2023. *National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions Calendar Year 2022*. DOE/NV/03624--1733, Las Vegas, NV.

MSTS, see Mission Support and Test Services, LLC.

National Council on Radiation Protection and Measurements, 2006. *Ionizing Radiation Exposure of the Population of the United States*. NCRP Report Number 160, National Council on Radiation Protection and Measurements, Bethesda, MD.

National Security Technologies, LLC, 2009. *Nevada Test Site Environmental Report 2008*. DOE/NV/25946--790, Las Vegas, NV. OSTI ID: 963883.

———, 2014. *Nevada Test Site Environmental Report 2013*. DOE/NV/25946--2182, Las Vegas, NV. OSTI ID: 1154955.

NSTec, see National Security Technologies, LLC.

Radiological Control Manager's Council, 2018. *Nevada National Security Site Radiological Control Manual*. DOE/NV/03624--0257, Rev. 0, Las Vegas, NV. OSTI ID: 1473982.

RCMC, see Radiological Control Manager's Council

U.S. Department of Energy, 2004. *Users Guide, Version 1; RESRAD-BIOTA: A Tool for Implementing a Graded Approach to Biota Dose Evaluation*. DOE/EH-0676 (also Interagency Steering Committee on Radiation Standards [ISCORS] Technical Report 2004-02), Washington D.C.

U.S. Environmental Protection Agency, 2019. *CAP88-PC Version 4.1 User Guide*, Office of Radiation and Indoor Air, Washington, D.C.

Chapter 10: Waste Management

Troy S. Belka, David M. Black, Louis B. Gregory, and Ronald W. Warren

Mission Support and Test Services, LLC

George C. DeLullo, Dona F. Murphy

Navarro Research and Engineering, Inc.

Waste Management Goals

Ensure disposal systems meet performance objectives. Manage and safely dispose of all types of wastes. Ensure wastes received for disposal at the Nevada National Security Site (NNSS) meet NNSS acceptance criteria. Manage and monitor wastes and waste sites for the protection of the worker, the public, and the environment.

Several federal and state regulations govern the safe management, storage, and disposal of radioactive, hazardous, and solid wastes generated or received on the NNSS (Tables 2-1 and 2-3). This chapter describes waste management operations and compliance with applicable environmental/public safety regulations. The U.S. Department of Energy (DOE) Environmental Management (EM) Nevada Program, in coordination with the National Nuclear Security Administration Nevada Field Office (NNSA/NFO), is responsible for the Area 3 and Area 5 radioactive waste disposal facilities described in Section 10.1. NNSA/NFO is responsible for and operates all other waste disposal facilities on the NNSS (Figure 10-1).

This chapter describes several waste streams, including the following:

- ***low-level radioactive waste (LLW)***¹
- ***mixed LLW (MLLW)***
- ***classified non-radioactive (CNR) waste***
- ***classified non-radioactive hazardous (CNRH) waste***
- ***hazardous waste (HW)***
- ***transuranic (TRU) waste***
- explosive ordnance wastes
- solid/sanitary waste

In addition, details are included for the process to evaluate, design, construct, maintain, and monitor closure covers for radioactive waste disposal units at the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs); and monitoring radiation ***doses*** from the Area 3 RWMS and the ***Area 5 Radioactive Waste Management Complex (RWMC)*** to the levels specified in DOE Manual DOE M 435.1-1, “Radioactive Waste Management Manual.”

10.1 Radioactive Waste Management

The NNSS Radioactive Waste Management facilities include the Area 5 RWMC and the Area 3 RWMS. They operate as Category II non-reactor nuclear facilities. The Area 5 RWMC (Figure 10-2) is composed of the Area 5 RWMS, the Mixed Waste Storage Unit (MWSU), and the Mixed Waste Disposal Unit (MWDU). The Waste Examination Facility (WEF) comprises the TRU Pad, the Sprung Instant Structure (SIS), and the Visual Examination and Repackaging Building (VERB) depicted on Figure 10-2, as well as other operational units described in Section 10.1.2. The waste disposed at the Area 3 and Area 5 RWMSs must be generated at a DOE facility or defense-affiliated site or have a clear nexus to a DOE-sponsored program. This section describes the facilities and associated activities. Section 10.2 provides an overview of activities conducted by the Radioactive Waste Acceptance Program (RWAP)² and NNSS Disposal Operations to evaluate and verify waste generators and waste streams in order to provide for the safe receipt, storage, disposal, and monitoring of classified, radioactive, and mixed wastes at the NNSS.

¹ The definition of word(s) in ***bold italics*** may be found by referencing the Glossary, Appendix B.

² Information on the RWAP can be found at <https://nnss.gov/mission/environmental-programs/radioactive-waste-management/>.

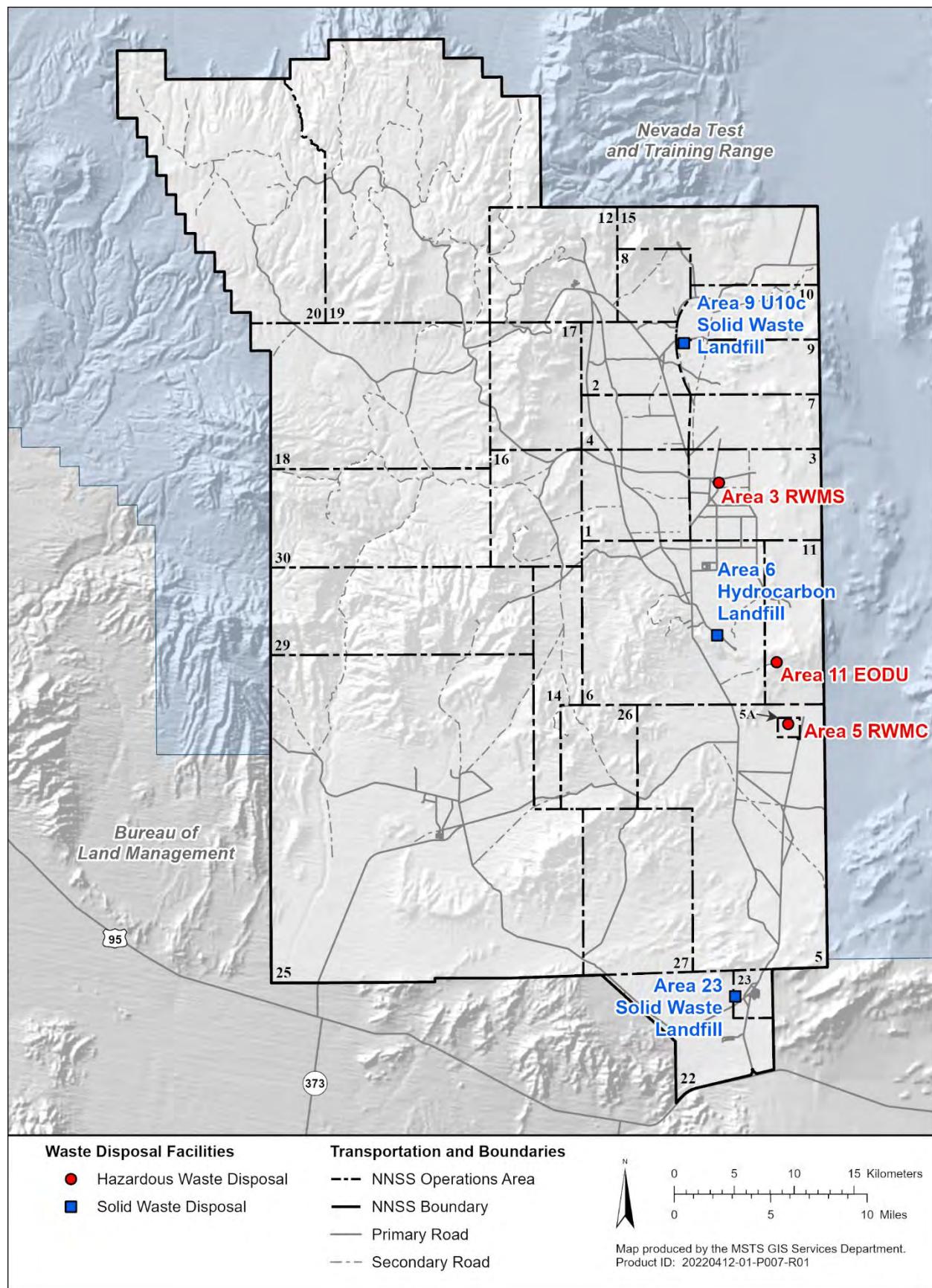
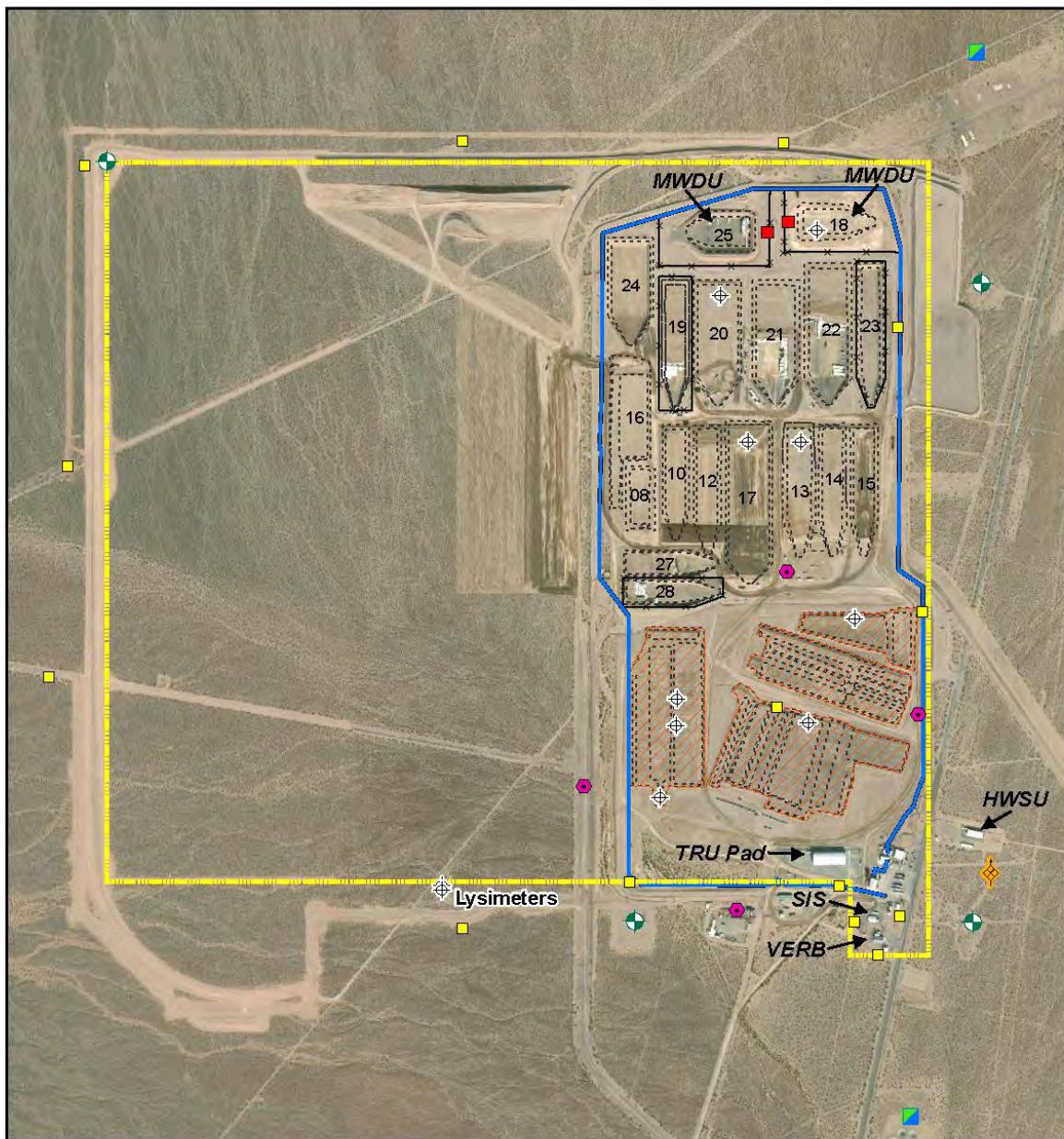



Figure 10-1. Waste disposal facilities on the NNSS

- ◆ Vadose Zone Monitoring
- Thermoluminescent Dosimeter
- Air Particulate and Tritium Station
- ◆ Meteorological Station
- Leachate Tank
- Neutron Logging Access
- ◆ Groundwater Well

- Area 5 Radioactive Waste Management Complex (RWMC)
- Approximate Pit/Cell Location
- Cell Fence
- RWMS Boundary Fence
- ▨ 92-Acre Approved Closure Area

Figure 10-2. Area 5 RWMC facilities

10.1.1 Area 5 Radioactive Waste Management Complex

The Area 5 RWMC is a DOE/NSSA-owned radioactive waste disposal facility. It encompasses approximately 740 acres (ac), including approximately 285 ac used for historical and active permanent disposal of LLW, MLLW, CNR, and CNRH. The Area 5 RWMC also includes 435 ac of land with infrastructure established for future radioactive waste disposal, and about 20 ac that support waste management and facility operations. Waste disposal at the Area 5 RWMS began in a 92-acre portion of the site starting in the early 1960s. This “92-Acre Area” consists of 31 disposal cells and 13 Greater Confinement Disposal boreholes, and was used for disposal of waste in drums, soft-sided containers, large cargo containers, and boxes. The 92-Acre Area was filled and permanently closed in 2011.

Nine cells were open during 2022. They include eight LLW cells (Cells 19, 20, 21, 22, 23, 24, 27, and 28) and one MLLW cell (Cell 25). There are an additional 9 closed cells in this area (Cells 8, 10, 12, 13, 14, 15, 16, 17, and 18). All active Area 5 RWMS cells can accept radioactive waste containing *polychlorinated biphenyls (PCBs)*, but only Cell 25 can accept PCB remediation waste (equal to or greater than 50 parts per million) as well as asbestos-contaminated MLLW. Cells 19, 20, 22, 27, and 28 can accept asbestosiform LLW. Table 10-1 lists the disposal cells that were active in 2022. Area 5 RWMS disposal services are expected to continue until the remaining needs of the DOE complex are met.

Disposal Cell 25 is managed under a Resource Conservation and Recovery Act (RCRA) Part B Permit (NEV HW0101), which authorizes the disposal of up to 37,000 cubic meters (m^3) (1,306,643 cubic feet [ft^3]). The volume and weight of waste received at Cell 25 in 2022 are shown in Table 10-1. Cell 25 waste accumulation began on July 12, 2018; a cumulative total of 4,405 m^3 (155,566 ft^3) of MLLW/CNRH has been disposed through the end of 2022. Quarterly reports are submitted to the state to document the weight of MLLW/CNRH disposed.

In 2022, the Area 5 RWMC received shipments containing a total of 16,962 m^3 (599,002 ft^3) of radioactive waste for disposal (Table 10-1), which included both CNR and CNRH waste. The majority of waste disposed was received from offsite generators. The total number of waste shipments in Fiscal Year (FY) 2022 is reported annually (Mission Support and Test Services, LLC [MSTS], 2022b) and published on the NSSS website at <https://nsss.gov/mission/environmental-programs/radioactive-waste-management/>. Offsite waste generators delivering MLLW with regulated quantities of PCBs are issued Certificates of Disposal, as required under the Toxic Substances Control Act.

Table 10-1. Total waste volumes received and disposed at the Area 5 RWMS in 2022

Waste Type	Disposal Cell(s)	2022 Volume Received and Disposed in m^3 (ft^3)
LLW and CNR	Cells 21, 22, 23, 24, and 27	14,581 (514,932)
MLLW and CNRH	Cell 25	2,381 (84,070) [1,996 tons] ^(a)
Total		16,962 (599,002)

(a) Fees paid to the state for HW generated at the NSSS and MLLW wastes received for disposal are based on weight.

10.1.2 Waste Examination Facility

Operational units of the WEF include the TRU Pad, TRU Pad Cover Building (TPCB), TRU Loading Operations Area, WEF Yard, WEF Drum Holding Pad, SIS, and the VERB. Historically, the WEF was used for the staging, characterization, repackaging, and offsite shipment of legacy TRU wastes that were disposed at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico.

Revision 6 of the RCRA permit issued by the State of Nevada Division of Environmental Protection (NDEP) in May 2018 remained effective in 2022 for the safe storage of MLLW at the Drum Holding Pad, SIS, VERB, TRU Pad, and TPCB. The TPCB is also authorized for the storage of TRU/Mixed TRU (MTRU) waste generated on site at the NSSS. The TPCB stores the TRU/MTRU waste until it is characterized for disposal at WIPP. In 2022, the TRU waste remaining in storage at the TPCB consisted of two experimental spheres from Lawrence Livermore National Laboratory and 40 standard waste boxes from the Joint Actinide Shock Physics Experimental Research facility.

10.1.3 Area 5 Hazardous Waste Storage Unit (HWSU)

The HWSU is located outside the Area 5 RWMC (Figure 10-2). It is a fenced area used for storage of NNSS-generated nonradioactive hazardous waste and PCB waste. These wastes may be stored for up to 1 year before shipment to an offsite disposal facility. The HWSU consists of a 30.3 meter (m) (100 foot [ft]) long by 9.1 m (30 ft) wide concrete pad with 6-inch curbs to contain spills and prevent run-on and/or run-off during precipitation events. A canopy roof protects waste containers from exposure to environmental conditions. A 90-day hazardous waste accumulation area, inactive during 2022, is located east of the HWSU.

10.1.4 Area 3 Radioactive Waste Management Site

Disposal operations at the Area 3 RWMS began in the late 1960s. The Area 3 RWMS consists of seven **subsidence craters** configured into five disposal cells (Figure 10-3):

- Two undeveloped cells: U-3az and U-3bg
- Two inactive cells: U-3ah/at and U-3bh
- One closed cell: U-3ax/bl (Corrective Action Unit 110)

Each subsidence crater was created by an underground nuclear explosives test. Until 2006, the site was used for disposal of bulk LLW, such as soils or debris, and waste in large cargo containers. In 2018 and 2019, the Area 3 RWMS was re-opened for disposal of bulk LLW in the U-3ah/at cell, which was generated by environmental corrective actions conducted at the Clean Slate III site on the Tonopah Test Range, located just north of the NNSS. At this time, only DOE waste generated within the State of Nevada may be disposed at the Area 3 RWMS. No waste was disposed at the Area 3 RWMS in 2022.

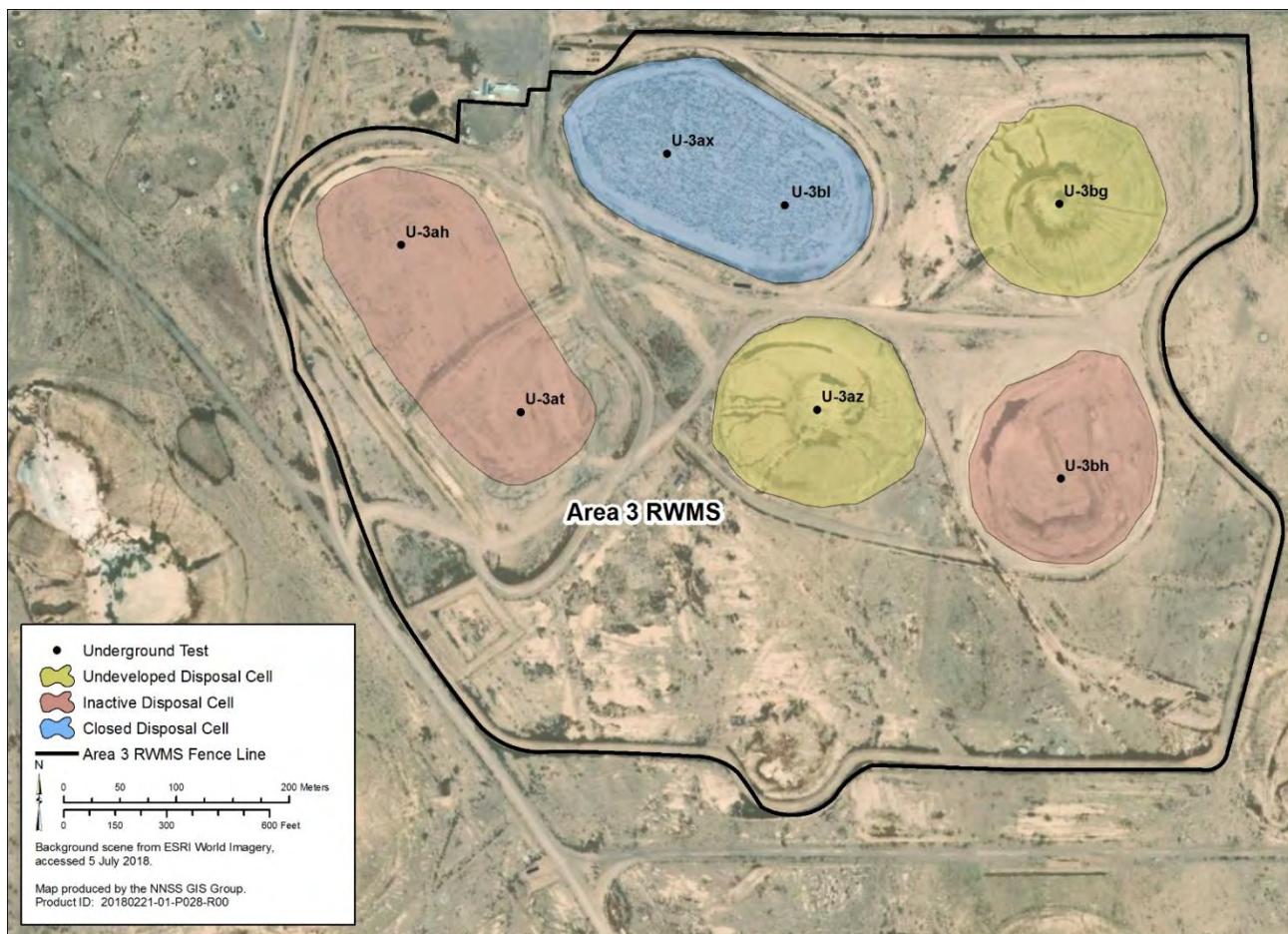


Figure 10-3. Disposal Cells of the Area 3 RWMS

10.2 Waste Characterization

Generators of CNR waste, CNRH waste, LLW, and MLLW proposed for disposal at the NNSS must demonstrate eligibility for waste to be disposed, submit detailed profiles of waste characteristics, demonstrate compliance with the NNSS Waste Acceptance Criteria (NNSSWAC), and obtain EM Nevada Program approval of their waste certification program.

Characterization of the waste is determined through sampling and analysis, non-destructive analysis, and process knowledge of how the waste was generated. Following the characterization of a waste stream, the waste generator develops a waste profile. The waste profile delineates the pedigree of the waste, including, but not limited to, a description of the waste generating process, physical and chemical characteristics, radioactive *isotope* activity and quantity, and packaging information. The waste profile is reviewed by the NNSS Waste Acceptance Review Panel and, upon resolution of all comments, is recommended for approval to the EM Nevada Program. Generally, once a waste profile is approved, the generator packages and ships the approved waste streams to the Area 5 RWMC in accordance with U.S. Department of Transportation requirements. Some waste streams may require that some actions, such as a visual verification or treatment at an offsite facility, be completed prior to shipment for disposal at the Area 5 RWMC.

Examples of waste profiles include:

- Lead Solids
- Sealed Sources
- Miscellaneous Debris/Solids
- Contaminated PCB Waste
- Compactable Trash
- Radioactive Hazardous Classified Waste
- Amalgamated Mercury
- Contaminated Demolition Debris
- Contaminated Soil
- **Depleted Uranium** Waste
- Contaminated Asbestos Waste
- Non-radioactive Classified Waste
- **High-Efficiency Particulate Air** Exhaust and Filter Media

10.2.1 RWAP Activities

Three main elements provide the foundation for safe and compliant waste disposal at the NNSS:

- Programmatic Certification: Evaluation and approval of generator programs that address quality requirements, waste traceability, waste characterization (chemical and radiological), and packaging and transportation, to provide assurance that the program meets NNSS requirements. This is accomplished through surveillances and audits performed on site and/or remotely.
- Profile Approval: Review and approval of extensive documentation to verify that described waste complies with NNSSWAC requirements prior to shipment. This is accomplished through initial and recertification of profiles submitted by generators.
- Container Certification: Each container is certified prior to shipment by the generator site certification personnel. Additional verification by RWAP may include visual and chemical LLW/MLLW verifications at generator sites to validate container certifications and real-time radiography (RTR) performed at the NNSS to validate that container contents are consistent with the approved waste profile.

Table 10-2 reflects the evaluation activities conducted by RWAP in 2022. It should be noted that RWAP's onsite evaluations at generator sites increased in 2022 from 2021, as coronavirus disease 2019 (COVID-19) restrictions were either reduced or rescinded. The volume of waste disposed at the NNSS was slightly less in Calendar Year (CY) 2022 than in CY 2021, and was about half of pre-pandemic levels. Conversely, verification of waste compliance increased in 2022 in alignment with a commitment made to enhance the rigor of waste management activities for the protection of the DOE workforce, the public, and the environment. This commitment also included preparing the FY 2022 comprehensive report of RWAP activities that was submitted to NDEP in January 2023.

Table 10-2. Calendar Year 2022 summary of RWAP evaluation activities

Period Involved (Quarter [QTR])	“Deep Dive” ^(a) Profile Verifications	LLW/ MLLW Verifications	Onsite/Hybrid Surveillance	Tabletop Surveillance	Audits ^(b)	RTR ^(c)	Split Sampling/ Chemical Screening	Profile Approvals/ Recertifications
Jan-Mar 2022 (2nd QTR FY 2022)	3	4 (MLLW)	5	---		(d)	---	5/14
Apr-Jun 2022 (3rd QTR FY 2022)	9	2 (1 LLW and 1 MLLW)	8	---	2	16 (29)	---	14/20
Jul-Sep 2022 (4th QTR FY 2022)	9	4 (1 LLW and 3 MLLW)	8	---	4	5 (6)	0/1	9/12
Oct-Dec 2022 (1st QTR FY 2023)	2	3 (MLLW)	5	---	1	9 (15)	---	13/4

(a) In-depth review generally conducted at the generator’s site to scrutinize and confirm accuracy of waste profile supporting documentation and to probe into specific wastes included in the profile.

(b) Comprehensive evaluation performed at a waste generator’s facility to verify compliance of the five foundational elements comprising the waste certification program: 1) radiological constituent characterization; 2) chemical constituent characterization; 3) quality assurance; 4) waste packaging and transportation; and 5) waste traceability.

(c) RTR numbers reflect the number of generator waste streams and (containers) verified consistent with approved profiles and free from prohibited items.

(d) RTR equipment at the NNSS was inoperable from December 2021 through March 2022.

10.2.2 Mixed Waste and Classified Non-Radioactive Hazardous Waste Verification

Waste verification is an inspection process that confirms the waste stream data supplied by approved waste generators before MLLW or CNRH is accepted for disposal at the NNSS. Verification may involve visual inspection, RTR, and/or chemical screening on a designated percentage of MLLW or CNRH. The objectives of waste verification include verifying that HW treatment objectives are met, confirming that waste containers do not contain free liquids, and validating that waste containers are at least 90% full, per RCRA and State of Nevada requirements. Offsite-generated waste is verified either upon receipt at the NNSS or while still at a generator facility or a designated treatment facility. The primary method of verification is visual inspection at the site of generation.

In 2022, offsite visual inspections were completed on 53 MLLW packages from 8 separate waste streams. One waste stream required chemical screening. No onsite RTR was conducted on MLLW or CNRH. MLLW subjected to verification was compliant upon receipt at the NNSS.

10.2.3 Waste Receipt and Disposal Operations

Upon arrival at the NNSS, waste shipment validation activities occur prior to acceptance and permanent disposal. Following disposal, monitoring of radioactive and mixed wastes is conducted to further provide for the long-term health and safety of workers, the public, and the environment. Disposal Operations staff also collect shipment transportation data for reporting to stakeholders, including the public. The key tasks performed upon receipt of a waste shipment include:

- Reviewing shipment documentation to verify consistency with the information submitted during the profile approval process.
- Obtaining transportation routing information from waste shipment drivers.
- Performing radiological surveys of all trucks, trailers, and containers entering the disposal facility.

- Verifying security seals are in place and packages are intact and appropriately labeled.
- Inspecting the contents of selected waste packages using onsite RTR x-ray technology to verify consistency with the approved waste profile.

Once a shipment has successfully been accepted under the receipt process, trucks are allowed access and directed to the appropriate disposal cell. During off-loading, radiological surveys are conducted on each waste package, container bar codes are scanned for entry into a tracking system, and the waste is placed in its permanent disposal position. Waste cells are organized in a 20-ft by 20-ft grid system, using letters and numbers to designate the location of waste packages. This tracking system helps waste personnel monitor the accumulation of radionuclide levels and maintain a record of specific waste packages once they are buried.

Reports containing waste transportation and disposal volume information are publicly available on the NNSS website at <https://nnss.gov/mission/environmental-programs/radioactive-waste-management/>.

10.3 Annual Performance Assessments and Composite Analyses

As required by DOE Order DOE O 435.1, “Radioactive Waste Management,” NNSA/NFO must conduct a **Performance Assessment (PA)** and **Composite Analysis (CA)** of each of its radioactive waste disposal facilities. A PA is a systematic analysis of the potential risks posed to the public and environment by a waste disposal facility for LLW disposed after 1988. A CA is an assessment of the risks posed by all wastes disposed in an LLW disposal facility and by all other sources of residual contamination that may interact with the disposal site. Current PAs and CAs are maintained for the Area 3 and Area 5 RWMSs (Table 10-3). DOE O 435.1 further requires an annual review of the PAs and CAs to be submitted to DOE EM each March. The annual reviews include tracking through closure all unresolved issues identified by EM’s PA/CA assessments. The unresolved issues are also tracked in a Maintenance Plan (MSTS 2019).

In 2022, the EM Nevada Program performed an annual review of the Area 3 and Area 5 RWMS PAs and CAs. Operational factors (e.g., waste forms and containers, facility design), closure plans, monitoring results, and research and development activities in or near the facilities were also reviewed. The FY 2022 summary report dated February 2023 (MSTS 2023d) presents data and conclusions that verify the adequacy of both the Area 3 and Area 5 PAs and CAs. Table 10-3 lists the necessary documents required and maintained for RWMS disposal operations.

Table 10-3. Key documents required for Area 3 RWMS and Area 5 RWMS disposal operations

Disposal Authorization Statement

Disposal Authorization Statement for Area 5 RWMS, December 2000
Disposal Authorization Statement for Area 3 RWMS, October 1999

Performance Assessment

Addendum 2 to Performance Assessment for Area 5 RWMS, June 2006
Performance Assessment/Composite Analysis for Area 3 RWMS, Revision 2.1, October 2000
Fiscal Year 2022 Annual Summary Report for the Area 3 and 5 Radioactive Waste Management Sites at the Nevada National Security Site, February 2023

Composite Analysis

Composite Analysis for Area 5 RWMS, Addendum 1, September 2001
Performance Assessment/Composite Analysis for Area 3 RWMS, Revision 2.1, October 2000

NNSS Waste Acceptance Criteria

NNSS Waste Acceptance Criteria, DOE/NV--325-22-00, Issued March 2022

Integrated Closure and Monitoring Plan

Closure Plan for the Area 3 RWMS at the NNSS, September 2007
Closure Plan for the Area 5 RWMS at the NNSS, September 2008

Documented Safety Analysis

Nevada National Security Site Area 3 and 5 Radioactive Waste Facilities (RWF) Documented Safety Analysis, DSA-2151.100, Revision 8, December 2021
Safety Evaluation Report (SER) for the Nevada National Security Site (NNSS) Areas 3 and 5 Radioactive Waste Facilities (RWF) Documented Safety Analysis (DSA), Revision 8, the Low-Level Waste (LLW) Activities Technical Safety Requirements (TSR), Revision 10, and the Transuranic (TRU) Waste Activities TSR, Revision 13, Revision 0, August 2022

Table 10-3. Key documents required for Area 3 RWMS and Area 5 RWMS disposal operations

Nevada National Security Site Area 3 and 5 Radioactive Waste Management Sites Low-Level Waste (LLW) Activities, Technical Safety Requirements, TSR-2156.03, Revision 10, December 2021
Nevada National Security Site Area 5 Radioactive Waste Management Complex (RWMC) TRU Waste Activities, Technical Safety Requirements, TSR-2156.02, Revision 13, December 2021

10.3.1 Groundwater Protection Assessment

Hazardous waste disposal in Cells 18 and 25 complies with RCRA standards and DOE O 435.1 requirements. Title 40 **Code of Federal Regulations (CFR)** Part 264, Subpart F (40 CFR 264.92), requires groundwater monitoring to verify that the design and construction of active hazardous waste cells are adequate to protect groundwater from contamination by buried waste. Specifically, groundwater monitoring at the Area 5 RWMS is conducted in accordance with 40 CFR 264.97, “General Ground-Water Monitoring Requirements,” and 40 CFR 264.98, “Detection Monitoring Program.” Groundwater samples are analyzed for indicators of contamination (pH, specific conductance, total organic carbon, total organic halides, and **tritium**) and, beginning in 2017, toxicity characteristic metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver). Limits for each parameter were established by the NDEP-issued RCRA Permit NEV HW0101. Groundwater samples are collected and analyzed semiannually at wells UE5 PW-1, UE5 PW-2, UE5 PW-3, and UE5MW-4. All samples collected semiannually from the wells in 2022 had concentration levels below their Investigation Levels (ILs) (Table 10-4), with the exception of two total organic carbon results from well UE5MW-4. Later resampling, as required by the permit, yielded results below the IL of 2.0 milligrams per liter (mg/L). Static water levels and general water chemistry parameters are also monitored. All sample analysis results are presented in the annual groundwater monitoring report (MSTS 2023f). The tritium results were all below their sample-specific **minimum detectable concentration (MDC)** of between 171 and 235 picocuries per liter (pCi/L). Table 5-5 presents the sample-specific tritium MDCs (i.e., the less than values) for each water sample collected from these wells in 2022. No groundwater contamination is indicated by the 2022 results.

Table 10-4. Area 5 groundwater monitoring results

Parameter	Investigation Level	2022 Sample Levels ^(a)
pH	< 7.6 or > 9.2 S.U. ^(b)	8.01 to 8.41 S.U.
Specific conductance	0.440 mmhos/cm ^(c)	0.352 to 0.392 mmhos/cm
Total organic carbon	2 mg/L ^(d)	ND ^(e) to 1.92 mg/L
Total organic halides	0.1 mg/L	ND
Tritium (³ H)	2,000 pCi/L ^(f)	ND
Arsenic (As)	0.05 mg/L	< 0.03 mg/L
Barium (Ba)	1 mg/L	<0.005 to 0.015 mg/L
Cadmium (Cd)	0.01 mg/L	ND to <0.005
Chromium (Cr)	0.05 mg/L	ND to 0.012 mg/L
Lead (Pb)	0.05 mg/L	ND
Mercury (Hg)	0.002 mg/L	ND
Selenium (Se)	0.01 mg/L	ND
Silver (Ag)	0.05 mg/L	ND to <0.005

(a) Levels shown are the lowest and highest values.

(b) S.U. = standard unit(s) (for measuring pH).

(c) mmhos/cm = millimhos per centimeter.

(d) mg/L = milligrams per liter.

(e) ND = not detected; levels were below the MDC or Method

(f) pCi/L = picocuries per liter.

Detection Limit.

10.3.2 Vadose Zone Assessment

Monitoring of the **vadose zone (unsaturated zone)** above the **water table**) is conducted at the Area 3 and Area 5 RWMSs to demonstrate (1) the PA assumptions are valid regarding the hydrologic conceptual models used, including soil water content, and upward and downward flux rates; and (2) there is negligible infiltration and percolation of precipitation into zones of buried waste. Vadose zone monitoring (VZM) offers many advantages over groundwater monitoring, including detecting potential problems long before groundwater resources would be impacted, allowing corrective actions to be made early, and being less expensive than groundwater monitoring. The components of the VZM program include the Drainage Lysimeter Facility northwest of U-3ax/bl within the

Area 3 RWMS, the Area 5 Weighing Lysimeter Facility on the southern border of the Area 5 RWMC, a meteorology tower at both RWMSs, and eight stations that measure water content and water potential at varying depths in the waste covers. Data from these components are used to monitor the natural water balance at the RWMSs. All VZM continued to demonstrate negligible infiltration of precipitation into zones of buried waste at the RWMSs, and the effectiveness of performance criteria to prevent contamination of groundwater and the environment. Descriptions of the VZM components and the results of monitoring in 2022 are provided in an annual report (MSTS 2023i).

10.4 Assessment of Radiological Dose to the Public

DOE M 435.1-1 states that LLW disposal facilities shall be operated, maintained, and closed so that a reasonable expectation exists that annual dose to members of the public shall not exceed 10 millirem (mrem) through the air pathway and 25 mrem through all pathways for a 1,000-year compliance period after closure of the disposal units. Because of this long compliance period, a PA and a CA (Section 10.3) are completed to estimate potential releases in the future and the subsequent related dose. Given that the RWMSs are well within the NNSS boundaries, no members of the public can currently access the areas for long periods of time. However, to document compliance with DOE M 435.1-1, the possible pathways for **radionuclide** movement from waste disposal facilities are monitored. Long-term compliance with the DOE M 435.1-1 dose limits is evaluated by performance assessment modeling. As discussed below, waste operations would contribute negligible **exposure** to a hypothetical person residing near the boundaries of the RWMSs and would contribute no dose to the offsite public (Chapter 9).

10.4.1 Dose from Air and Direct Radiation

Air samplers operate continuously to collect air particulates and atmospheric moisture near each RWMS. These samples are analyzed for radionuclides, and results are used to assess potential dose. Details of the air sampling and a summary of the analysis results are given in Chapter 4. In 2022, three environmental sampling stations operated in/near the Area 3 RWMS (U-3ax/bl S, Bilby Crater, and Kestrel Crater N), and two air monitoring stations operated near the Area 5 RWMS (DoD and RWMS 5 Lagoons). The fraction of the dose limit was measured for the air pathway based on the highest annual mean concentration for each measured radionuclide from these five stations. This results in the most conservatively high air concentration to compare with compliance limits.

The subcontract laboratory analyzing the second quarter, 2022, filters for ^{241}Am , ^{238}Pu , $^{239+240}\text{Pu}$, uranium, and gamma-emitting radionuclides (including ^{137}Cs) lost control of the sample identifiers, making it impossible to associate laboratory results with sample locations for those analytes. To ensure the annual average air concentrations were not underestimated, the maximum results for detected man-made radionuclides were divided by the smallest sample volume, giving the maximum air concentration. These values (Table 4-11) were used as the second quarter result for all sample locations, acknowledging that they are overestimated.

The highest annual mean concentration of each measured radionuclide among the five stations, and the station at which the highest concentration occurred, are shown in Table 10-5. The highest mean concentration of any radionuclide was $1,919 \times 10^{-15}$ microcuries per milliliter ($\mu\text{Ci/mL}$) for tritium at RWMS 5 Lagoons. All five of the highest mean concentrations were far below their established National Emission Standards for Hazardous Air Pollutants (NESHAP) Concentration Levels (CLs) for Environmental Compliance (Table 10-5, fourth column). The highest mean concentration of each measured radionuclide is divided by its respective CL to obtain a “fraction of CL” (Table 10-5, right-most column). The fractions are then summed, and if the sum is less than 1, it demonstrates that the NESHAP dose limit of 10 millirem/year (mrem/yr) was not exceeded at a location having all those radionuclides at those concentrations. Summing the fractions of CLs gives 0.11, which is only 11% of the limit in this conservatively high scenario.

Table 10-5. Highest annual mean concentrations of radionuclides detected at Area 3 and Area 5 RWMS

Radionuclide	RWMS Sampler	2022 Highest Annual Mean Concentration ($\times 10^{-15}$ $\mu\text{Ci}/\text{mL}$)	NESHAP CL ^(a) ($\times 10^{-15}$ $\mu\text{Ci}/\text{mL}$)	Fraction of CL
³ H	RWMS 5 Lagoons	1,919	1,500,000	0.0013
¹³⁷ Cs	U-3ax/bl S	0.30	19	0.016
²³⁸ Pu	DOD	0.0073	2.1	0.0035
²³⁹ Pu	U-3ax/bl S	0.142 (²³⁹⁺²⁴⁰ Pu)	2	0.071
²⁴¹ Am	DOD	0.027	1.9	0.014
Sum of Fractions:				0.11

(a) CL values represent an annual average concentration that would result in a *total effective dose equivalent* of 10 mrem/yr, the federal dose limit to the public from all radioactive air emissions (from Table 2, Appendix E of 40 CFR 61, "National Emission Standards for Hazardous Air Pollutants," 1999).

Thermoluminescent dosimeters (TLDs) are used to measure *ionizing radiation* exposure at nine locations in and around the Area 3 RWMS and 14 locations in and around the Area 5 RWMS. The TLDs have three calcium sulfate elements used to measure the total exposure rate from penetrating *gamma radiation*, including *background* radiation. Penetrating gamma radiation makes up the deep dose, which is compared to the 25 mrem/yr limit when background exposure is subtracted. Details of the direct radiation monitoring are provided in Chapter 6. The external radiation measured near the boundaries of the Area 3 and Area 5 RWMSs could not be distinguished from background levels during 2022 (Section 6.3.4). Area 3 and Area 5 RWMS operations would have contributed negligible external exposure to a hypothetical person residing near the boundaries of these sites, and no dose to the offsite public.

10.4.2 Dose from Groundwater

Groundwater and vadose zone monitoring at the RWMSs is conducted to verify the performance of waste disposal facilities. Such monitoring has not detected the migration of radiological wastes into groundwater (Sections 10.3.1 and 10.3.2). Also, the results of monitoring offsite public and private wells and springs indicate that man-made radionuclides have not been detected in any public or private water supplies (Table 5-4, and Sections 7.2 and 7.3). Based on these results, potential doses to members of the public from LLW disposal facilities on the NNSS from groundwater, and from all pathways combined, are negligible.

10.5 Hazardous Waste Management

HW regulated under RCRA is generated at the NNSS from a broad range of activities, including onsite laboratories, site and vehicle maintenance, communications operations, and environmental corrective actions at historically contaminated sites. The RCRA Part B Permit regulates operation of the Area 5 MWDU, consisting of a Subtitle C landfill (Cells 18 [closed] and 25) and two leachate collection tanks, the Area 5 HWSU, the Area 11 Explosives Ordnance Disposal Unit (EODU) facilities, and the MWSUs at the TRU Pad/TPCB, the SIS Building, the VERB, and the Drum Holding Pad.

All HW, whether generated off or on the NNSS, is ultimately shipped to an offsite approved disposal facility:

- HW generated off the NNSS (e.g., environmental corrective action sites on the Tonopah Test Range, or the North Las Vegas Facility) is initially stored in Satellite Accumulation Areas (SAAs) and 90-day Hazardous Waste Accumulation Areas (HWAAAs), and is then shipped directly to the approved disposal facility.
- HW generated on the NNSS is initially stored in SAAs and HWAAAs, and is then shipped to the HWSU (Figure 10-2) for temporary storage prior to shipping off site, or shipped directly to the offsite disposal facility if the HW is of a type or volume that exceeds the HWSU operational limits.

The Area 11 EODU is permitted to treat explosive ordnance wastes by open detonation of not more than 45.4 kilograms (100 pounds) of approved waste at a time, not to exceed one detonation event per hour. Conventional explosive wastes are generated at the NNSS from explosive operations at construction and experiment sites, the NNSS firing range, the resident national laboratories, and other activities.

10.5.1 Hazardous Waste Activities

The RCRA Part B Permit requires preparation of an Annual Summary/Waste Minimization Report of all HW volumes managed at the NNSS. The CY 2022 report was submitted to the State of Nevada in February 2023 (MSTS 2023e). It includes the amount of wastes received in CY 2022 at the Area 5 MWDU, MWSU, HWSU, and Area 11 EODU.

The NNSS is a large quantity generator of hazardous waste and is required to submit a biennial report. This report is submitted via an online application and prepared for odd-numbered years only. Accordingly, a biennial report was not required for CY 2022.

Table 10-6 lists the quantities of HW generated either on or off site that were managed (received, stored, shipped, or disposed) at the various NNSS waste units during CY 2022. It includes the tons of MLLW received and disposed on site in MWDU Cell 25; the tons of MLLW received at the MWSU; the tons of MLLW shipped off site from the MWSU for disposal; the tons of HW with and without PCBs received, stored, and shipped off site from the HWSU; and the tons of HW stored and then shipped off site from one or more HWAs. Quarterly 2022 HW volume reports were submitted on schedule to NDEP.

Table 10-6. Hazardous waste managed at the NNSS

Waste Unit	2022 Amount (tons)		
	Received ^(a)	Shipped	Disposed
MWDU	1,616	0	1,616
MWSU	0.0	0.0	--
HWSU	5.87	2.49	--
HWSU – PCB Waste	4.03	2.51	--
HWAA	NA ^(b)	0	--
EODU	0.0	0	0

(a) Fees paid to the state for HW generated at the NNSS and MLLW wastes received for disposal are based on weight (tons).

(b) Not applicable; amounts of HW received at HWAs are not tracked. Only the length of time they are stored and the amounts shipped off from all HWAs combined are tracked.

Each year NDEP performs a Compliance Evaluation Inspection (CEI) of the RCRA permitted HW units at the NNSS. On October 11 and 12, 2022, NDEP conducted its CEI of the waste units listed in Table 10-6, selected SAAs, Universal Waste Collection Centers, and closed historic RCRA waste management units at the NNSS (Section 11.4). The October 2022 CEI documented that NNSA/NFO was compliant with the NNSS RCRA Part B Permit.

In compliance with the June 2021 Settlement Agreement that resolved regulatory actions resulting from the July 2019 waste issue, DOE fulfilled all the CY 2022 commitments, which contribute to enhancing the rigor of waste management activities for the protection of the DOE workforce, the public, and the environment.

10.6 Solid and Sanitary Waste Management

Three Solid Waste Disposal Sites (SWDSs) for **solid waste** disposal were operated at the NNSS in 2022. The SWDSs are regulated and permitted by the State of Nevada (see Table 2-3 for list of permits). No liquids, HW, or radioactive waste are accepted in these SWDSs. These are:

- Area 6 SWDS – accepts hydrocarbon-contaminated wastes, such as soil and absorbents.
- Area 9 SWDS – designated for industrial waste such as construction and demolition debris and asbestos waste under certain circumstances.
- Area 23 SWDS – accepts municipal-type wastes such as food waste and office waste. Regulated asbestos-containing material is also permitted in a special section. The permit allows disposal of no more than an average of 20 tons/day at this site.

These SWDSs are designed, constructed, operated, maintained, and monitored in adherence to the requirements of state permits. NDEP visually inspects the SWDSs annually for compliance; NDEP inspected the SWDSs in December 2022, which resulted in no findings. The amount of waste disposed in each SWDS is shown in

Table 10-7. Biannual reports for the Area 23 SWDS were submitted in July 2022 and January 2023 to NDEP (MSTS 2022a and MSTS 2023a, respectively). Annual reports for the Area 6 and Area 9 SWDSs were submitted in January 2023 (MSTS 2023b and MSTS 2023c, respectively).

The VZM schedule for the Area 6 SWDS and the Area 9 SWDS was amended by NDEP to biennial events beginning with 2017 and 2018. VZM is performed biennially or after a 24-hour rain event in lieu of groundwater monitoring to demonstrate that contaminants from the SWDSs are not leaching into the groundwater. The monitoring reports for 2021 through 2022 were submitted to NDEP in May 2023 (MSTS 2023g and MSTS 2023h). VZM has not detected any soil moisture migration.

Table 10-7. Quantity of solid wastes disposed in NNSS SWDSs

2022 Waste Disposed in SWDSs in Metric Tons (Tons)		
Area 6	Area 9	Area 23
438.61 (483.49)	2,888.48 (3,184.01)	251.32 (277.32)

10.7 References

Mission Support and Test Services, LLC, 2019. *Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada National Security Site, Revision 3.0*. DOE/NV/03624--0423, Las Vegas, Nevada, March 2019.

—, 2022a. *Area 23 Semi-Annual Solid Waste Disposal Site (SWDS) Report for the Nevada National Security Site (NNSS) – January 1, 2022 through June 30, 2022*. Las Vegas, Nevada, July 2022.

—, 2022b. *Fourth Quarter / Annual Transportation Report Fiscal Year 2022, Waste Shipments to and from the Nevada National Security Site, Radioactive Waste Management Complex*. DOE/NV/03624--1494, Las Vegas, Nevada, October 2022.

—, 2023a. *Area 23 Semi-Annual Solid Waste Disposal Site (SWDS) Report for the Nevada National Security Site (NNSS) – July 1, 2022 through December 31, 2022*. Las Vegas, Nevada, January 2023.

—, 2023b. *Area 6 Annual Solid Waste Disposal Site (SWDS) Report for the Nevada National Security Site (NNSS), January 1, 2022 through December 31, 2022*. Las Vegas, Nevada, January 2023.

—, 2023c. *Area 9 Annual Solid Waste Disposal Site (SWDS) Report for the Nevada National Security Site (NNSS), January 1, 2022 through December 31, 2022*. Las Vegas, Nevada, January 2023.

—, 2023d. *Fiscal Year 2022 Annual Summary Report for the Area 3 and 5 Radioactive Waste Management Sites at the Nevada National Security Site, Nye County, Nevada*. DOE/NV/03624--1572, Las Vegas, Nevada, February 2023.

—, 2023e. *Annual Summary/Waste Minimization Report, Calendar Year 2022*. Las Vegas, Nevada, March 2023.

—, 2023f. *Nevada National Security Site 2022 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site*. DOE/NV/03624--1632, Las Vegas, Nevada, March 2023.

—, 2023g. *Soil Moisture Monitoring Reports for the Nevada National Security Site (NNSS) Area 6 Hydrocarbon Landfill for Reporting Period Calendar Years 2021-2022*. Las Vegas, Nevada, May 2023.

—, 2023h. *Soil Moisture Monitoring Reports for the Nevada National Security Site (NNSS) Area 9 Landfill for Reporting Period Calendar Years 2021-2022*. Las Vegas, Nevada, May 2023.

—, 2023i. *Nevada National Security Site 2022 Waste Management Monitoring Report, Area 3 and Area 5 Radioactive Waste Management Sites. (in review)*. Las Vegas, Nevada.

MSTS, see Mission Support and Test Services, LLC.

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 11: Environmental Corrective Actions

Irene M. Farnham, Patrick K. Matthews, and
Dona F. Murphy
Navarro Research and Engineering, Inc.

Reed J. Poderis and Alissa J. Silvas
Mission Support and Test Services, LLC

Environmental Corrective Action Objectives for All Sites

Characterize sites contaminated by activities related to nuclear testing. Remediate contaminated sites in accordance with Federal Facility Agreement and Consent Order (FFACO)-approved planning documents. Conduct post-closure monitoring of sites in accordance with FFACO closure documents.

The U.S. Department of Energy (DOE) Environmental Management (EM) Nevada Program is responsible for evaluating and implementing corrective actions at sites within Nevada as identified in the FFACO¹ that were impacted by historical nuclear testing, research, and development activities. These corrective action sites (CASs) are located on the Nevada National Security Site (NNSS), Nevada Test and Training Range (NTTR), and Tonopah Test Range (TTR) and are grouped into larger, geographic corrective action units (CAUs) according to location, physical and geological characteristics, and/or contaminants. Environmental corrective action strategies are developed and completed based on the nature and extent of contamination, the risks posed by contamination, and future land use. Since 1989, EM Nevada Program has overseen the compliant completion of corrective actions at 99% of the more than 2,100 surface and near-surface CASs and transitioned 91% of the 878 deep subsurface CASs into long-term monitoring.

CASs are broadly organized into four categories based on the source of contamination: Underground Test Area (UGTA), Industrial Sites, Soils, and Nevada Offsites. UGTA deep subsurface sites are directly related to groundwater impacted by past underground nuclear testing. Industrial Sites are facilities and land that may have become contaminated due to activities conducted in support of nuclear research, development, and testing. These include an extensive complex of research/development/testing facilities, disposal wells, inactive tanks, contaminated waste sites, inactive ponds, muckpiles, spill sites, drains and sumps, and ordnance sites. Industrial Sites include CASs owned by DOE and the Defense Threat Reduction Agency. Soils CASs include areas where nuclear tests have resulted in surface and/or shallow subsurface contamination from radioactive materials and potentially from oils, solvents, heavy metals, and contaminated instruments and test structures used during testing activities. Nevada Offsites is associated with historical testing activities at the Project Shoal Area and the Central Nevada Test Area, located in northern and central Nevada, respectively, and sites on the NTTR/TTR where environmental corrective actions were completed by EM Nevada Program.

In May 1996, DOE, the U.S. Department of Defense, and the State of Nevada entered into the FFACO to address the environmental remediation of CASs. The DOE Office of Legacy Management (LM) became a signatory to the FFACO in June 2006 after assuming responsibility for the Nevada Offsites. Appendix VI of the FFACO (1996, as amended), describes the strategy to plan, implement, and complete environmental corrective actions (i.e., to “close” the CASs). The State of Nevada Division of Environmental Protection (NDEP) provides regulatory oversight and approval throughout the FFACO closure process, and the public is kept informed of progress through the Nevada Site Specific Advisory Board (NSSAB)², news articles, intergovernmental stakeholder meetings, and other educational/outreach initiatives. The NSSAB is a federally chartered group of volunteer members representing Nevada stakeholders who review and provide EM Nevada Program informed recommendations and comments that are strongly considered throughout the corrective action process.

This chapter provides an update on EM Nevada Program corrective action progress and summarizes corrective action and post-closure activities at UGTA, Industrial Sites, and Soils CASs in calendar year (CY) 2022 and

¹ A fact sheet on the FFACO is available via https://nnss.gov/wp-content/uploads/2023/04/DOENV_964.pdf.

² NSSAB activities can be accessed at <http://www.nnss.gov/NSSAB/>.

summarizes the NSSAB's CY 2022 activities and recommendations. Post-closure activities at Nevada Offsites in 2022 is presented in LM's Annual Site Environmental Report.

11.1 Corrective Actions Progress

Figure 11-1 depicts the progress made since 1996 to complete environmental corrective actions at historically contaminated sites managed under the FFACO (1996, as amended). A total of 2,953 of the 3,044 CASs managed under the FFACO have been closed; this includes CASs that are currently under EM Nevada Program or DOE LM stewardship (i.e., Offsites CASs). Of the 91 CASs yet to be closed under the FFACO (all of which are the responsibility of EM Nevada Program), 82 (89%) are UGTA CASs and the remainder are Industrial Sites CASs.

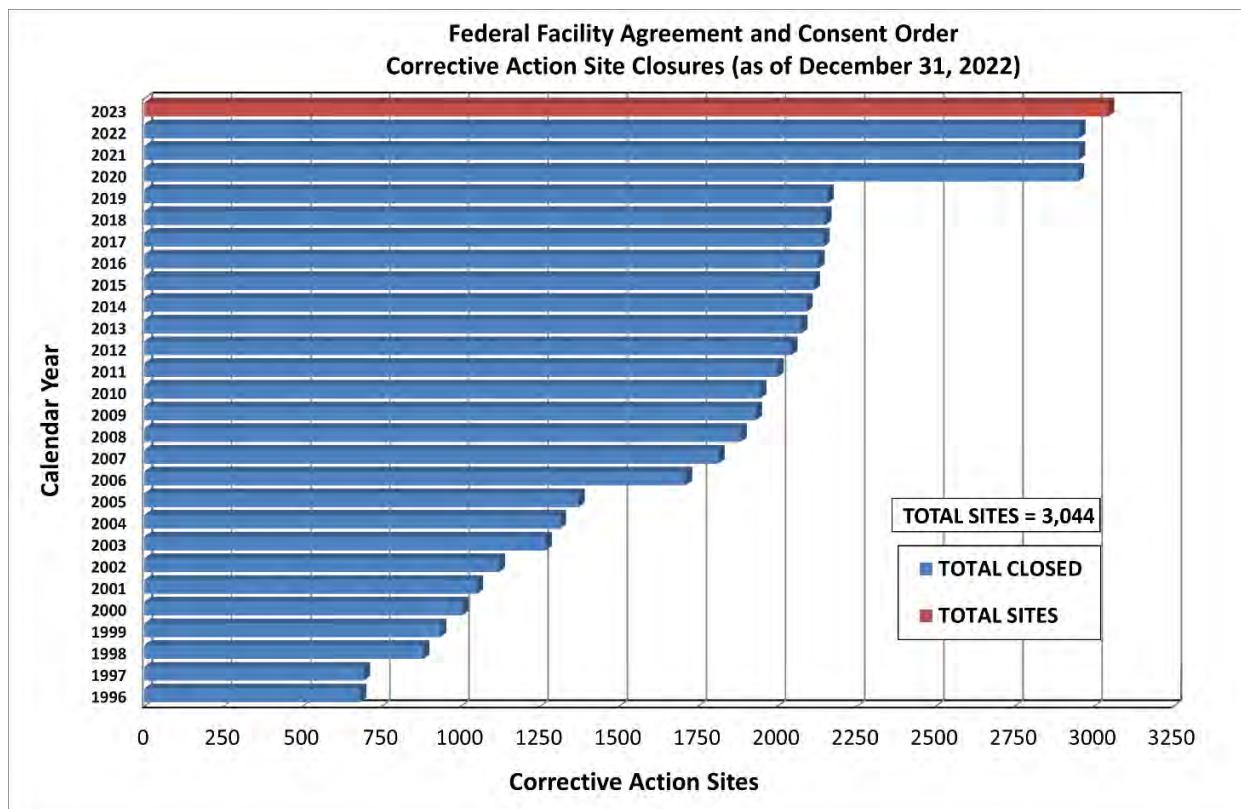


Figure 11-1. Annual cumulative totals of FFACO CAS closures

EM Nevada Program satisfied numerous regulatory commitments in 2022, including submittal of the following reports³:

- Addendum to the Closure Report for CAU 577: Area 5 Chromium Containing Waste Disposal Cells
- CY 2021 Non-Resource Conservation and Recovery Act (RCRA) CAU Post-Closure Inspection Report
- CY 2021 UGTA Annual Sampling Letter Report (CAUs 101/102)
- CY 2021 Post-Closure Monitoring Letter for Closed UGTA CAUs
- CY 2021 Post-Closure Report for Closed RCRA CAUs
- Groundwater Flow and Contaminant Transport Model of Corrective Action Units 101 and 102: Central and Western Pahute Mesa

These documents reflect significant progress for EM Nevada Program. The post-closure monitoring and inspection reports present the monitoring and inspection results used to verify compliance and corrective action effectiveness

³ Available through the DOE Office of Scientific and Technical Information at <https://www.osti.gov/>.

for the sites closed under the FFACO process. The UGTA annual sampling letter report presents sampling results for the Pahute Mesa CAUs (CAUs 101 and 102), which are the only UGTA CAUs that have not yet reached closure. Completion of the groundwater flow and transport model report for the Pahute Mesa CAUs marks a significant accomplishment for the UGTA project. The model results support establishing contaminant, use-restriction, and regulatory boundaries; and developing the monitoring strategy to ensure safe drinking water for downgradient receptors.

11.2 Corrective Action Sites – Active Investigations

The location and status (open or closed) of UGTA, Industrial Sites, and Soils CASs as of December 31, 2022, are shown in Figure 11-2. Figure 11-2 also includes the closed CASs (Industrial Sites and Soils) on the NTTR/TTR that were transferred to Nevada Offsites. Only 82 UGTA CASs in two CAUs and nine Industrial Sites CASs in three CAUs have not yet reached closure, but corrective actions were performed during 2022.

11.2.1 Underground Test Area Sites

The agreed-upon corrective action for UGTA CASs is closure in place with institutional controls and monitoring (FFACO 1996, as amended). This corrective action is based on three assumptions: (1) groundwater technologies for removal or stabilization of subsurface radiological contamination are not cost effective; (2) because of high remediation costs, closure in place with monitoring and institutional controls is the only likely corrective action; and (3) in order for workers, the public, and the environment to be exposed to the potential risks from radiological contamination in groundwater, the contaminated groundwater must first be accessed.

The corrective action is implemented in four stages: (1) *planning*; (2) *investigation* (characterization and modeling); (3) *model evaluation*; and (4) *closure*. NDEP approval of each stage is required before advancing to the next stage. Characterization and modeling studies are evaluated throughout the *investigation stage* by a committee of scientists (preemptive review committee) specializing in the fields of geology, hydrology, chemistry, and nuclear testing. CAU-specific preemptive review committees provide internal technical review of ongoing studies to ensure work is comprehensive, accurate, consistent with the state-of-the-art modeling and data analysis methods, and consistent with CAU goals (EM Nevada Program 2019). In addition, a scientific external peer review is included in the *investigation stage*.

Environmental Corrective Action Objectives for UGTA Sites

- *Collect data (e.g., new wells, groundwater samples, groundwater levels, geologic, hydrologic testing, field and laboratory studies) to characterize the hydrogeological setting and nature and extent of contamination.*
- *Develop CAU-specific models of groundwater flow and contaminant transport.*
- *Identify contaminant boundaries⁴ within which contaminants are forecasted to potentially (95th percentile) exceed the Safe Drinking Water Act limits at any time within a 1,000-year compliance period.*
- *Negotiate and implement regulatory boundary objectives and regulatory boundaries to protect the public and environment from the effects of radioactive contaminant migration.*
- *Negotiate and implement use-restriction boundaries to restrict access to contaminated groundwater.*
- *Develop and implement a long-term closure monitoring network to verify consistency with the contaminant boundaries, compliance to the regulatory boundary, and protection of human health and the environment.*

The locations of UGTA CAUs are shown in Figure 11-3.

⁴ The definition of word(s) in ***bold italics*** may be found by referencing the Glossary, Appendix B.

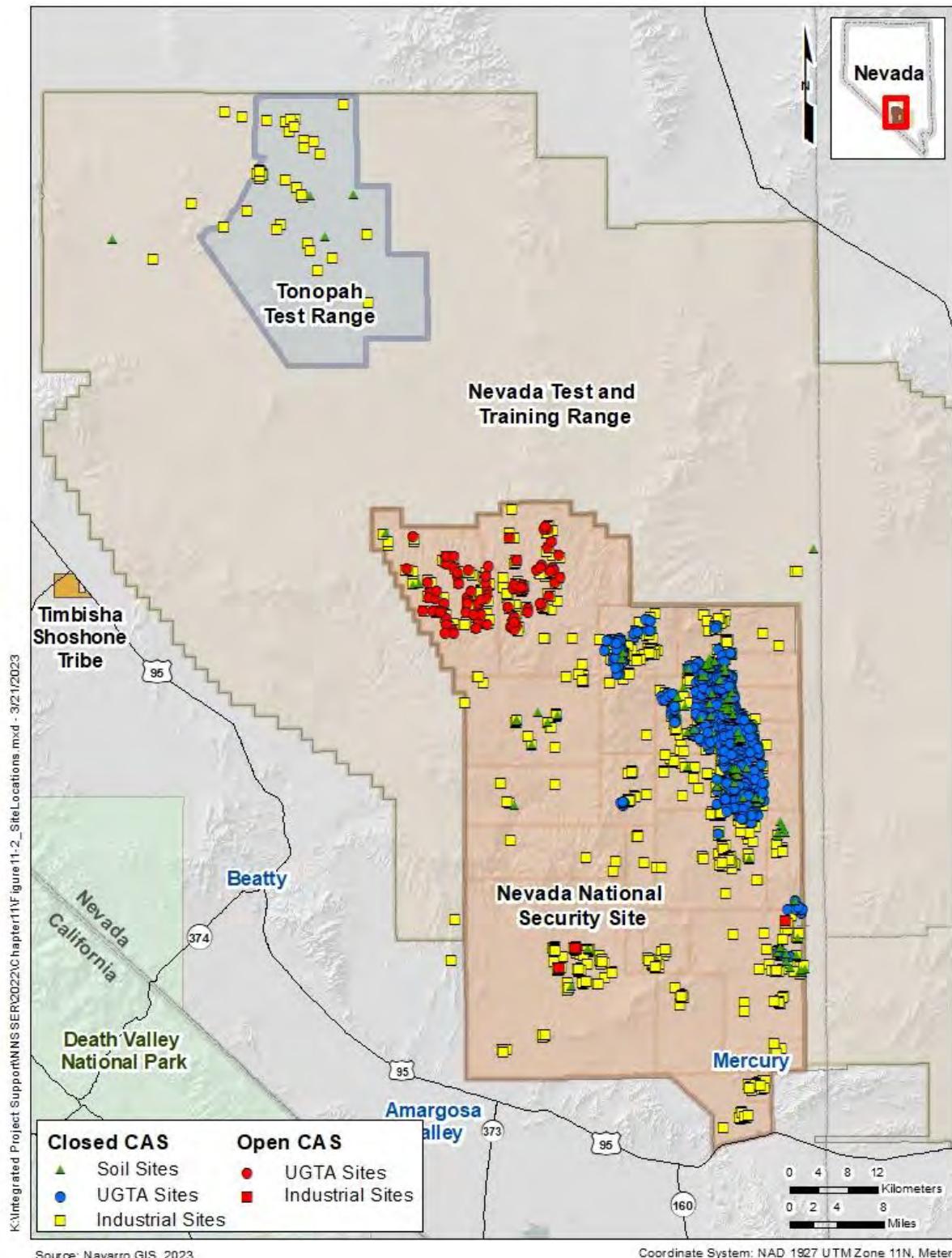


Figure 11-2. Map of FFACO closure status for UGTA, Industrial Sites, and Soils CAs

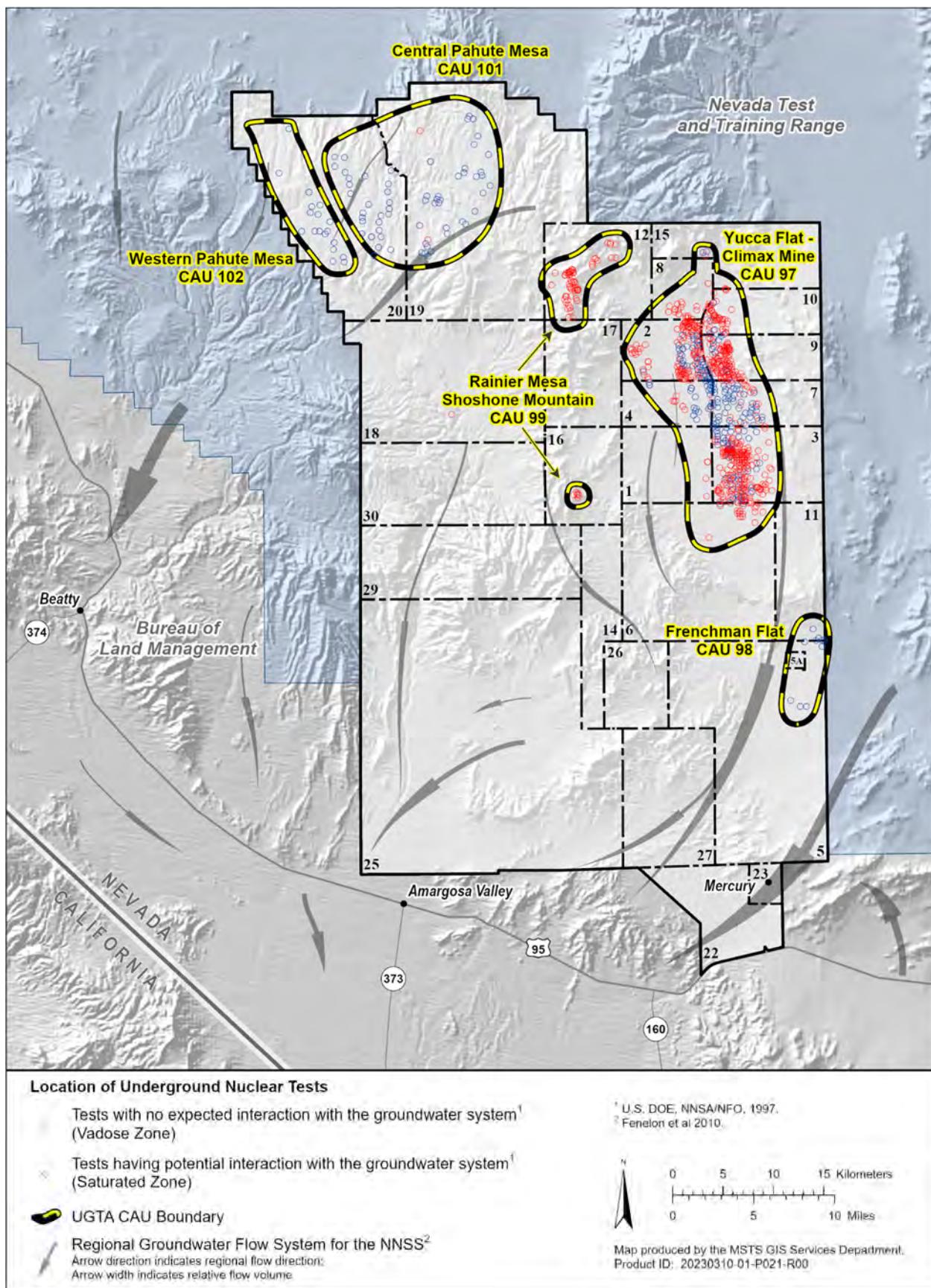


Figure 11-3. UGTA CAUs

Central and Western Pahute Mesa CAUs (101 and 102), comprising a total of 82 CAs, are the only two UGTA CAUs remaining to be closed. The CAs are composed of nuclear test cavities produced from the underground nuclear detonations. These roughly spherical cavities (now collapsed), with original diameters greater than 200 meters (m) in some cases, are in complex geologic units at depths ranging from 226 to 1,450 m below ground surface (Carle et al. 2021). Most of these detonations were within 100 m of the **water table**, or deeper, indicating potential interaction with the groundwater system (Figure 11-3).

In 2022, significant progress was made toward completion of the *investigation stage* for the Pahute Mesa CAUs. The groundwater flow and contaminant transport model was finalized, and the model and model results (EM Nevada Program 2022e) were reviewed by an external peer review panel. The results of decades of scientific investigations by Desert Research Institute (DRI), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory, U.S. Geological Survey (USGS), and DOE contractors (including Navarro Research and Engineering, Inc. [Navarro] and Mission Support and Test Services, LLC) were used as the basis for the modeling. The model uses numerical three-dimensional (3-D) flow and transport simulators to represent the complex geologic structure underlying Pahute Mesa, as well as the complex contaminant transport processes associated with radionuclide movement through the fractured rock. The 3-D model was calibrated to measured hydraulic data (e.g., basin discharge, hydraulic heads, and transmissivities) and the concentration of **tritium** measured in wells. Confidence in the model results was further established through comparison to concentrations of 14 other **radionuclides**.

Four models were constructed and calibrated, including a “base case” and three alternative models comprising one that applies all faults defined in the Pahute Mesa-Oasis Valley hydrogeologic framework model (All Faults) (EM Nevada Program 2020a) and two that use alternative recharge distributions (INFILv3 and DVRFS3). Full descriptions of these models and the corresponding results are published in *Groundwater Flow and Contaminant Transport Model of Corrective Action Units 101 and 102: Central and Western Pahute Mesa* (EM Nevada Program 2022e).

Figure 11-4 presents the 1,000-year contaminant boundaries for the base case and alternative models (i.e., contaminant boundary ensemble). The contaminant boundary ensemble indicates dispersion of radionuclides over a wide area of Pahute Mesa with more than one plume of radionuclides forecasted to move beyond the boundary of the NNSS. The extent of the contaminant boundaries is a few kilometers beyond the boundary of the NNSS but will remain more than 12 kilometers (km) upgradient of the closest public receptor in Oasis Valley (Figure 11-4). These results support the interpretation that radionuclides from underground nuclear testing on Pahute Mesa pose little to no risk to the health of groundwater users in Oasis Valley.

An external peer review of the Pahute Mesa groundwater flow and contaminant transport model was conducted in 2022 (Navarro 2023). The peer review panel consisted of four highly qualified subject matter experts in areas including hydrogeology, transport modeling, regulatory implementation, and closure of complex groundwater sites. The panel members were external to the UGTA project to obtain an independent, unbiased review. The peer reviewers assessed the scientific appropriateness of the model; whether the assumptions, methods, and conclusions of the model study are based on sound scientific principles; and whether potential users will have sufficient confidence in the model analyses and its outputs to use the model and accept its results. The peer review panel responded favorably in their review, but provided some recommendations that they thought could impact the contaminant boundary extent by up to a few kilometers (i.e., boundaries would remain on federally controlled land). The UGTA modeling team is currently responding to the peer review comments and recommendations and discussing plans for the path forward with NDEP.

In addition to the groundwater flow and transport model report for the Pahute Mesa CAUs published in 2022, several other documents relevant to the Pahute Mesa CAUs were published by Navarro, LLNL, and USGS (Table 11-1). Also, four wells were sampled in the Pahute Mesa CAUs in 2022. The sample analysis results are presented in Chapter 5. The sampling results, including samples with no radionuclides present, will continue to be used to ensure that the groundwater flow and contaminant transport model results are consistent with known levels of contamination within the Pahute Mesa CAUs.

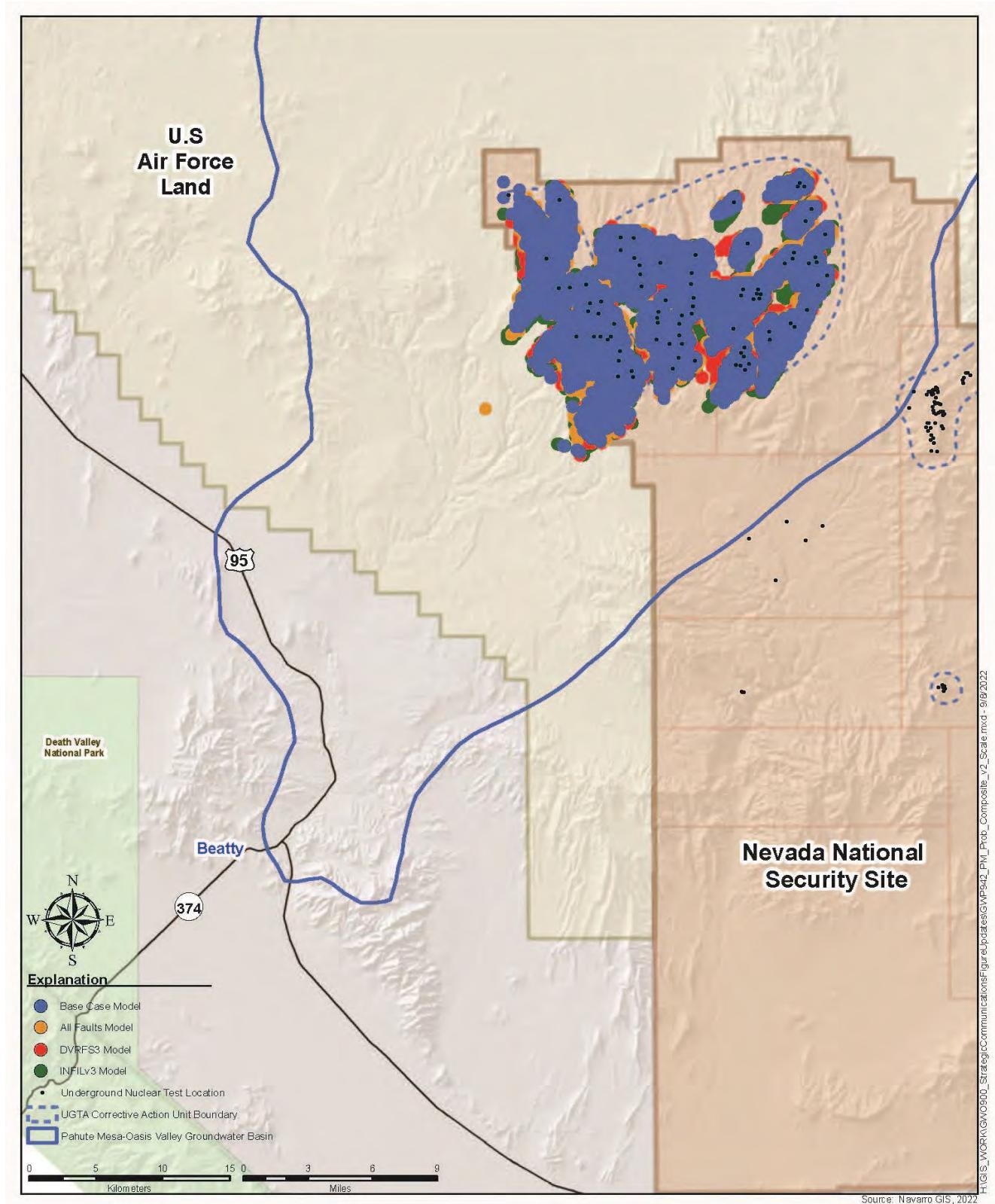


Figure 11-4. Contaminant boundary ensemble

Table 11-1. UGTA documents regarding Pahute Mesa investigations and modeling published in 2022

Report	Reference
<i>Analysis of Transient Groundwater Flow Near the Cheshire Test at Pahute Mesa, Nevada National Security Site</i>	Carle 2022a
<i>Calendar Year 2021 Underground Test Area Annual Sampling Letter Report Nevada National Security Site, Nevada</i>	EM Nevada Program 2022c
<i>Database of groundwater levels and hydrograph descriptions for the Nevada Test Site area, Nye County, Nevada (2018 Database [Version 5.0] and 2010 Report [Version 12.0])</i>	Elliott and Fenelon 2022a, b
<i>Effects of Intrusive Confining Units on Groundwater Flow at Pahute Mesa, Nevada National Security Site</i>	Carle 2022b
<i>Groundwater Flow and Contaminant Transport Model of Corrective Action Units 101 and 102: Central and Western Pahute Mesa, Nye County, Nevada</i>	EM Nevada Program 2022e
<i>Underground Test Area Activity Quality Assurance Plan Nevada National Security Site, Nevada</i>	EM Nevada Program 2022i
<i>Underground Test Area Calendar Year 2020 Quality Assurance Report Nevada National Security Site, Nevada</i>	EM Nevada Program 2022h
<i>Verification and Validation of a Modified Numerical Algorithm for Simulation of Transient Unconfined Groundwater Flow</i>	Carle et al. 2022

11.2.2 Industrial Sites

Environmental corrective actions at nine Industrial Sites CASs continued in 2022. One of these CASs is within CAU 577, Chromium Containing Waste Disposal Cells, located at the Area 5 Radioactive Waste Management Complex (Figure 11-5). CAU 577 was established in the FFACO under a 2019 Settlement Agreement with NDEP and consists of five CASs, three of which were completed in 2020 with the closure report approved by NDEP in 2021 (EM Nevada Program 2021c). Following completion of corrective actions (including construction and revegetation of RCRA-compliant closure covers over the waste disposal cells), a fourth CAS was closed and approved by NDEP in 2022 (EM Nevada Program 2022a).

The remaining eight active Industrial Site CASs are the Test Cell C Ancillary Building and Structures (CAU 572) and the Engine Maintenance, Assembly, and Disassembly (EMAD) (CAU 114) site (Figure 11-5), which are undergoing decontamination and demolition (D&D). Test Cell C Ancillary Building and Structures and EMAD were part of a larger complex of facilities constructed to support the historical Nuclear Rocket Development Station that was jointly administered by the Atomic Energy Commission (predecessor to DOE) and the National Aeronautics and Space Administration's Space Nuclear Propulsion Office between 1958 and 1971. Test Cell C Ancillary Building and Structures (CAU 572) consists of a 6,800-square-foot (ft²) single-story masonry building with multiple rooms (e.g., cryogenic bench lab, pump and electric shops, control room); a large steel-framed building containing three large electric motors; a 750-ft² single-story concrete-framed pump house; a 1,700-ft² light steel-framed building used for cryogenic experiments and storage; and 10 large ancillary structures (i.e., dewars for storing liquid hydrogen, cooling towers, storage tanks, and piping). The EMAD facility (CAU 114) encompasses a 100,000-ft², 80-foot (ft)-tall, four-story building with 6-ft-thick concrete walls and the largest “hot cell” in the world, a steel-framed building that was used for railcar maintenance and treatability tests on plutonium-contaminated soil, a 32-ft-long, 107-ton manned control car, and a 60-foot long, 70-ton engine installation vehicle.

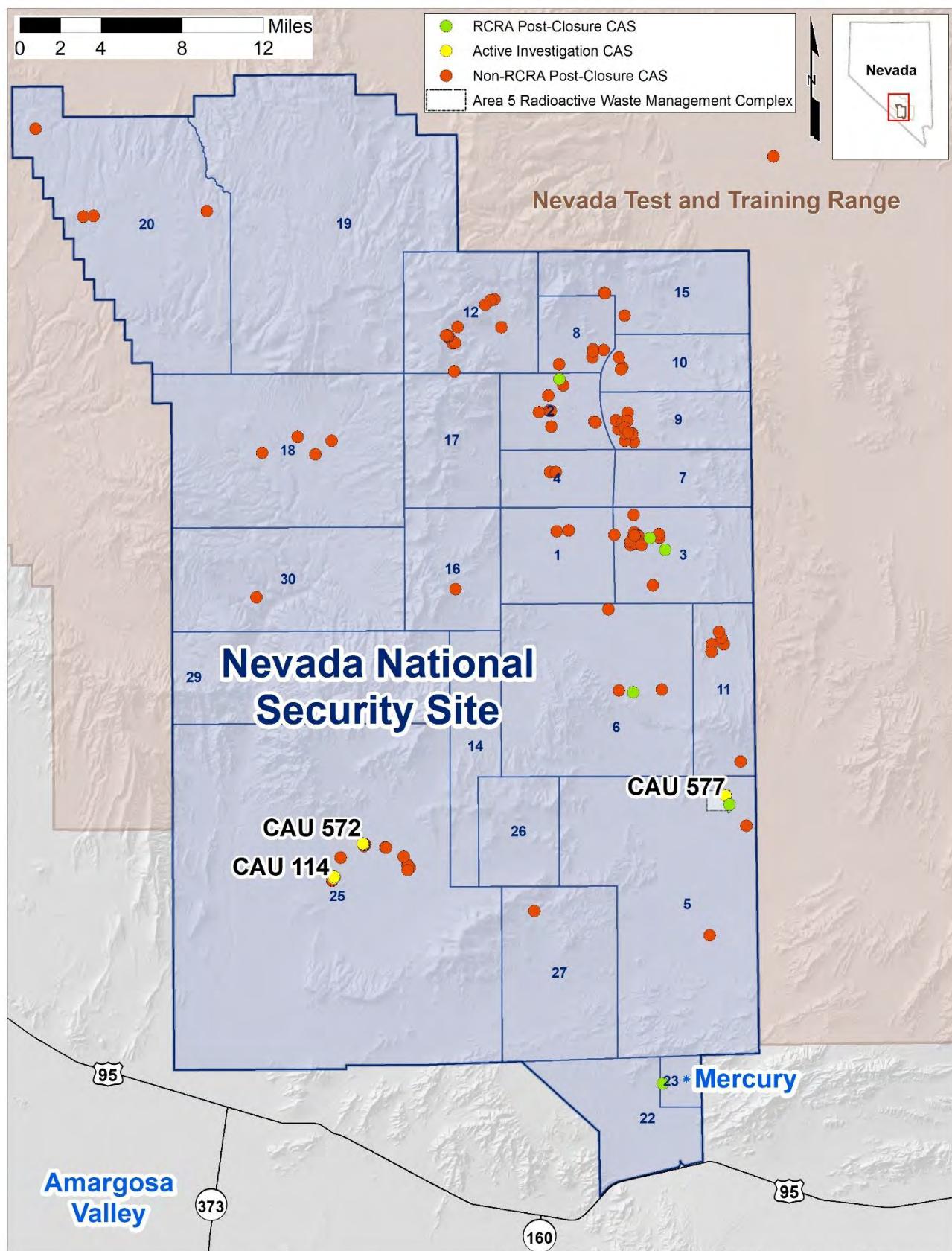


Figure 11-5. Soils and Industrial Sites active and post-closure CASs

FFACO closure of these two Industrial Sites facilities will be accomplished through the Streamlined Approach for Environmental Restoration process (EM Nevada Program 2021d, e). The goal of D&D is to reduce risks to site workers, the public, and the environment; and to limit the long-term cost of surveillance and maintenance. D&D removes the industrial site from service through demolition and proper disposal of the generated waste. Radiological surveys, sampling, decontamination, dismantlement, and other related activities are in progress to prepare for demolition of the structures and disposal of the resulting debris. Hazard reduction and site preparation activities, including the removal of perlite and asbestos from Test Cell C Ancillary Building and Structures and EMAD, began in 2022 and continues into 2023 along with the beginning of demolition.

11.3 Corrective Action Sites – Post-Closure Activities

11.3.1 Underground Test Area Sites

Three UGTA CAUs – Frenchman Flat (CAU 98), Rainier Mesa/Shoshone Mountain (CAU 99), and Yucca Flat/Climax Mine (CAU 97) – are in the *closure stage*. During the *closure stage*, contaminant, regulatory, and use-restriction boundaries are identified in agreement between DOE and NDEP. The boundaries for each CAU are presented in Figure 11-6. If radionuclides exceeding the agreed-upon level reach the regulatory boundary, EM Nevada Program is required to submit to NDEP a plan that meets the CAU's regulatory boundary objectives.

Closure reports for these CAUs were developed at the beginning of the *closure stage* to document these boundaries and describe the monitoring well network and land-use restrictions. Three types of monitoring are performed during closure: water quality, water level, and institutional control. The monitoring objective is to determine whether use-restriction boundaries remain protective of human health and the environment. Additionally, water-quality and water-level monitoring are used to evaluate consistency with the groundwater flow and contaminant transport conceptual and numerical model. Such consistency is important because the models are the primary basis for use-restriction boundaries.

In 2022, a post-closure monitoring letter report that summarized post-closure monitoring activities completed for the closed UGTA CAUs (97, 98, and 99) in 2021 was submitted to NDEP (EM Nevada Program 2022b). Institutional control monitoring confirmed that use restrictions are recorded in land management systems maintained by the DOE, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) and the U.S. Air Force (for the Frenchman Flat CAU) and that no activities are occurring that could potentially affect the contaminant boundaries of the closed UGTA CAUs. A survey of groundwater resources in basins surrounding the CAUs similarly identified no current or pending development that would indicate the need to increase monitoring activities or otherwise would cause concern for the closure decision. Use restrictions continue to prevent *exposure* to the public, workers, and the environment from contaminants of concern by preventing access to potentially contaminated groundwater.

11.3.1.1 Frenchman Flat

The closure report for the Frenchman Flat CAU (comprising 10 CASs) was approved by NDEP in 2016 (NNSA/NFO 2016) and describes the monitoring program for the first 5 years post-closure (2016 through 2020). An evaluation of the 5-year monitoring data was published in 2022 (EM Nevada Program 2022d). This evaluation showed the 5-year radionuclide concentrations in groundwater samples and water-level monitoring data to be consistent with the current understanding of the groundwater flow as well as the forecasted contaminant boundaries for this CAU (Figure 11-6). A rapid water-level drop in well ER-5-3-2, which is the only well in the Frenchman Flat basin completed in the regional lower carbonate aquifer (LCA), required further investigation by USGS. This investigation identified well-construction effects as the reason for the earlier elevated water levels and determined that samples collected from well ER-5-3-2 are representative of the carbonate system (Jackson and Frus 2023). Future monitoring requirements, based on these evaluation results, will be documented in an addendum to the closure report, which will require NDEP approval before implementation.

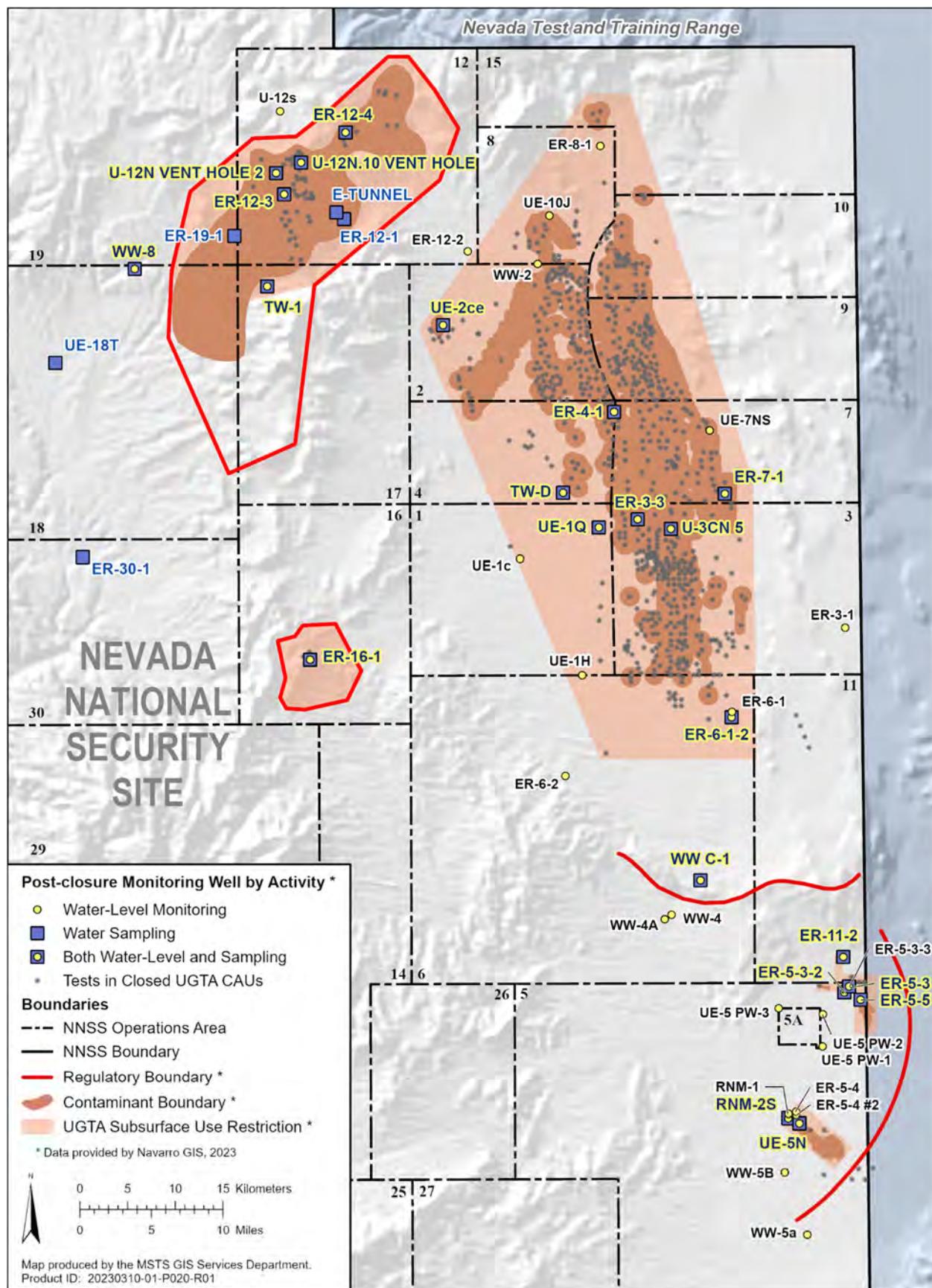


Figure 11-6. Boundaries and monitoring wells for closed UGTA CAUs

The Frenchman Flat CAU regulatory boundary objective is to protect receptors downgradient of the Rock Valley fault system from radionuclide contamination. Although contaminants resulting from underground nuclear tests are not forecasted to migrate out of the basin within the next 1,000 years, the Rock Valley fault system is the expected groundwater migration pathway. The negotiated regulatory boundary is established at the interface of the alluvial/volcanic aquifer and the Rock Valley fault (Figure 11-6). All monitoring results indicate that the regulatory boundary objective has been met (EM Nevada Program 2022d).

11.3.1.2 Rainier Mesa/Shoshone Mountain Corrective Action Unit 99

The closure report for the Rainier Mesa/Shoshone Mountain CAU (comprising 66 CASs) was approved by NDEP in 2020 (EM Nevada Program 2020c). The regulatory boundary objective for Rainier Mesa is to protect receptors of groundwater from radionuclide contamination within the three downgradient groundwater basins that receive recharge from Rainier Mesa (Pahute Mesa-Oasis Valley, Ash Meadows, and Alkali Flat-Furnace Creek). The regulatory boundary objective for Shoshone Mountain is to verify that radionuclide contamination does not reach the LCA (i.e., the regional aquifer) below Shoshone Mountain.

The monitoring network includes 16 locations, of which seven are sampled for radionuclides and measured for water levels, seven for sampling only, and two for water levels only. Sampling for tritium is required every 6 years at all locations and for additional radionuclides at three locations that access the tunnels where testing took place. Water-level measurements are required annually. Sampling results, presented in Chapter 5, are consistent with the current understanding of the groundwater flow as well as the forecasted contaminant boundaries for this CAU (Figure 11-6). All monitoring results indicate that the regulatory boundary objective has been met (EM Nevada Program 2021a).

11.3.1.3 Yucca Flat/Climax Mine Corrective Action Unit 97

The closure report for the Yucca Flat/Climax Mine CAU (comprising 720 CASs) was approved by NDEP in 2020 (EM Nevada Program 2020b). The regulatory boundary objective for the Yucca Flat/Climax Mine CAU is to verify that radionuclide contamination from this CAU is contained within the Yucca Flat basin, thus not impacting the Frenchman Flat LCA or downgradient receptors. The regulatory boundary aligns with the southern extent of the Yucca Flat hydrographic basin (Basin 159; Nevada Division of Water Resources [NDWR] 2022) and supports the regulatory boundary objective.

The post-closure monitoring network for this CAU includes 26 locations, nine of which are sampled for radionuclides (i.e., tritium) and water levels, one for sampling only, and 16 for water levels only. Eight wells in Yucca Flat and one well in Frenchman Flat are sampled every 6 years, and one well in Yucca Flat will be sampled annually for 6 years (2020 through 2025). These wells access the LCA, which is a regional aquifer and the only pathway out of Yucca Flat (Navarro 2019). Water-level measurements are made annually. Sampling results, presented in Chapter 5, are consistent with the current understanding of the groundwater flow as well as the forecasted contaminant boundaries for this CAU (Figure 11-6). All monitoring results indicate that the regulatory boundary objective has been met (EM Nevada Program 2021b).

11.3.2 Industrial Sites and Soils

Environmental corrective actions have been completed at 2,114 Industrial Sites and Soils CASs on the NNSS, NTTR, and TTR. Characterization and closure of these CASs were completed in accordance with the FFACO (1996, as amended). Closure strategies include removal of debris, excavation of soil, decontamination and decommissioning of facilities, and ***closure in place*** with subsequent monitoring. The contaminants of concern include hazardous chemicals/materials, unexploded ordnance, and low-level radiological materials. Clean closures are those where pollutants, hazardous materials, radiological materials, and ***solid wastes*** have been removed and properly disposed, and where removal of all contaminants to concentrations agreed upon between DOE and NDEP is verified in accordance with corrective action plans approved under the FFACO. Closure in place entails the stabilization or isolation of pollutants, hazardous materials, radiological materials, and solid wastes – with or without partial treatment, removal activities, and/or post-closure monitoring – in accordance with corrective

action plans approved under the FFACO. Radioactive materials removed from sites were either disposed as **low-level waste** or **mixed low-level waste** at the Area 5 Radioactive Waste Management Site (Section 10.1). Solid waste (e.g., demolition debris) containing asbestos is disposed of at the Area 9 U10c Solid Waste Landfill.

Hazardous waste removed from CASs is shipped to approved offsite treatment and disposal facilities or recycled. Post-closure monitoring requirements are established as needed to provide for the long-term protection of the public and the environment.

Post-closure inspections are required for 138 closed FFACO Soils and Industrial Sites CASs and eight CASs identified in the RCRA Part B Permit (U.S. Department of Energy, Nevada Operations Office [DOE/NV] 1999). In 2022, EM Nevada Program conducted inspections at 114 closed CASs managed under the FFACO, and a total of 18 inspections were conducted at the eight RCRA Part B Permit sites. In 2022, annual inspection reports for FFACO (EM Nevada Program 2022f) and RCRA Permit (EM Nevada Program 2022g) post-closure sites on the NNSS were prepared and submitted to NDEP.

11.3.3 Environmental Management Nevada Program Public Outreach

In 2022, EM Nevada Program conducted many public outreach activities in partnership with its Environmental Program Services contractor, Navarro. A highlight was the contribution of a new permanent exhibit at the Atomic Testing Museum. The exhibit, titled “Beyond the Manhattan Project: Cleaning up the Legacy of America’s Nuclear Defense and Research Missions,” details the facets of the nation’s nuclear weapons mission and what is now, today, the EM program’s cleanup effort. The exhibit was created through a partnership between EM and the museum and provides a visual display of EM’s extensive work to clean up sites across the country that have been impacted by nuclear weapons production and government-sponsored nuclear energy research.

Another highlight for 2022 was the awarding of Navarro Education Grants designed to promote learning related to science, technology, engineering, and math (STEM) to schools in communities near the NNSS. Awards were granted to three schools in Nevada: (1) Carlin Combined School in Carlin, (2) Lied STEM Academy in Las Vegas, and (3) Manse Elementary School in Pahrump. The awards are planned for initiating new programs or enhancing existing programs that include purchasing equipment and materials to enhance the use of robots to teach computer coding, implementing a new hydroponics program, and establishing a second STEM class.

EM Nevada Program also successfully hosted four Low-Level Waste Stakeholders Forum meetings, five Intergovernmental Liaison meetings, and five NSSAB Full Board public meetings. NSSAB public meetings continued to cover a range of topics. In 2022, NSSAB provided informed recommendations on topics that included (1) Fiscal Year 2024 budget prioritization, (2) optimization of hybrid meetings approach, (3) post-closure inspection observation and evaluation, and (4) review of the Radioactive Waste Acceptance Program Annual Report. NSSAB meeting agendas, handouts, minutes, and recommendations are posted on the NNSS website at <https://www.nNSS.gov/NSSAB/>.

In October 2022, six new members joined the NSSAB from Las Vegas, Henderson, Tonopah, and Pahrump, Nevada, after EM Nevada Program conducted a robust membership recruitment drive to ensure a representation of citizens that mirrors a full diversity of views, culture, and demographics from affected communities near the NNSS. In addition, EM Nevada Program established liaison positions to ensure intergovernmental perspectives are consistently represented on the NSSAB. Liaisons are non-voting members who participate in NSSAB deliberations and contribute their organizational views. Liaisons represent Clark County, Consolidated Group of Tribes and Organizations, Elko County Commission, Esmeralda County Commission, Lincoln County Commission, Nye County Commission, Nye County Emergency Management, Nye County Natural Resources and Federal Facilities Office, State of Nevada, U.S. National Park Service, and White Pine County Commission. A historical tour of the NNSS and a full-day orientation was provided to current members and liaisons as a refresher and to new members and liaisons as an important foundation for their tenure on the NSSAB. As part of the orientation, presentations were provided, including overviews on EM Nevada Program and the EM Complex, groundwater activities, Industrial Sites activities, long-term monitoring activities, waste and transportation, and EM Outreach.

In 2022, EM Nevada Program also hosted a Groundwater Open House event in Amargosa Valley, Nevada. The event engages members of the public in rural communities near the NNSS, providing them information about

groundwater affected by historic underground nuclear weapons testing at the NNSS. The event provided the opportunity for direct, one-on-one interactions between members of the public with EM Nevada Program scientists. The event also features displays, posters, and videos and appearances from some of EM Nevada Program partnering organizations including USGS and DRI. The successful event drew dozens of attendees from the rural community.

Throughout 2022, EM Nevada Program also facilitated multiple tours of the NNSS. EM Nevada Program scientists made multiple presentations, both virtually and in person, as part of the ongoing effort to share the details of the EM Nevada Program mission to stakeholders throughout the region.

11.4 References

Carle, S.F., 2022a. *Analysis of Transient Groundwater Flow Near the Cheshire Test at Pahute Mesa, Nevada National Security Site*, LLNL-TR-832509. Livermore, CA: Lawrence Livermore National Laboratory.

—, 2022b. *Effects of Intrusive Confining Units on Groundwater Flow at Pahute Mesa, Nevada National Security Site*, LLNL-TR-831795. Livermore, CA: Lawrence Livermore National Laboratory.

Carle, S.F., A.F.B. Tompson, and M. Zavarin, 2021. *Review of Cavity Radius and Chimney Height Information for Underground Nuclear Tests at Nevada National Security Site*, LLNL-TR-818725. Livermore, CA: Lawrence Livermore National Laboratory.

Carle, S.F., Y. Hao, and A.F.B. Tompson, 2022. *Verification and Validation of a Modified Numerical Algorithm for Simulation of Transient Unconfined Groundwater Flow*, LLNL-TR-831331. Livermore, CA: Lawrence Livermore National Laboratory.

DOE/NV, see U.S. Department of Energy, Nevada Operations Office.

EM Nevada Program, see U.S. Department of Energy, Environmental Management Nevada Program.

Elliott, P.E., and J.M. Fenelon, 2010. *Database of groundwater levels and hydrograph descriptions for the Nevada Test Site area, Nye County, Nevada* (ver. 12.0, April 2022): U.S. Geological Survey Data Series 533, 13 p., <https://doi.org/10.3133/ds533>.

Elliott, P.E., and J.M. Fenelon, 2018. *Database of groundwater levels and hydrograph descriptions for the Nevada Test Site area, Nye County, Nevada* (ver. 5.0, February 2022): U.S. Geological Survey data release, <https://doi.org/10.5066/F75H7FGN>.

Federal Facility Agreement and Consent Order, 1996 (as amended March 2010). Agreed to by the State of Nevada; U.S. Department of Energy, Environmental Management; U.S. Department of Defense; and U.S. Department of Energy, Legacy Management. Appendix VI, which contains the Underground Test Area Strategy, was last modified June 2014, Revision No. 5.

Fenelon, J.M., D.S. Sweetkind, and R.J. Lacznak, 2010. *Groundwater Flow Systems at the Nevada Test Site, Nevada: A Synthesis of Potentiometric Contours, Hydrostratigraphy, and Geologic Structures*, Professional Paper 1771. Reston, VA: U.S. Geological Survey.

FFACO, see *Federal Facility Agreement and Consent Order*.

Jackson, T.R., and R.J. Frus, 2023. *Evaluation of potential stresses and hydrologic conditions driving water-level fluctuations in well ER-5-3-2, Frenchman Flat, southern Nevada*: U.S. Geological Survey Scientific Investigations Report 2022-5132, 35 p., <https://doi.org/10.3133/sir20225132>.

Navarro GIS, see Navarro Geographic Information Systems.

Navarro, 2019. *Model Evaluation Report for Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada National Security Site, Nye County, Nevada*, Rev. 1, N/0002653--063. Las Vegas, NV.

Navarro, 2023. *Report of the Peer Review Panel for the Pahute Mesa Groundwater Flow and Transport Model, Nevada National Security Site, Nevada*, Rev. 0, N/0002653--103. Las Vegas, NV.

Navarro Geographic Information Systems, 2022–2023. ESRI ArcGIS Software.

NDWR, see Nevada Division of Water Resources.

Nevada Division of Water Resources, 2022. “Hydrographic Regions and Basins” As accessed at <http://water.nv.gov/hydrographicregions.aspx>

NNSA/NFO, see U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office.

U.S. Department of Energy, Environmental Management Nevada Program, 2019. *Underground Test Area Activity Preemptive Review Guidance Nevada National Security Site, Nevada*, Rev. 0, DOE/EMNV--0003; Revision to DOE/NV--1552. Las Vegas, NV.

—, 2020a. *Pahute Mesa-Oasis Valley Hydrostratigraphic Framework Model for Corrective Action Units 101 and 102: Central and Western Pahute Mesa, Nye County, Nevada*, Rev. 0, DOE/EMNV--0014. Las Vegas, NV.

—, 2020b. *Underground Test Area (UGTA) Closure Report for Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada National Security Site, Nevada*, Rev. 0, DOE/EMNV--0021. Las Vegas, NV.

—, 2020c. *Underground Test Area (UGTA) Closure Report for Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada National Security Site, Nevada*, Rev. 1, DOE/EMNV-0012, March 2020. Las Vegas, NV.

—, 2021a. *Calendar Year 2020 Post-Closure Monitoring Report for Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Underground Test Area, Nevada National Security Site, Nevada*, Rev. 1, DOE/EMNV--0028. Las Vegas, NV.

—, 2021b. *Closure Monitoring Report for Corrective Action Unit 97: Yucca Flat/Climax Mine, Underground Test Area, Nevada National Security Site, Nevada*, Rev. 1, DOE/EMNV--0024. Las Vegas, NV.

—, 2021c. *Final Closure Report (CR) for Corrective Action Unit (CAU) 577: Area 5 Chromium Containing Waste Disposal Cells, Nevada National Security Site, Nevada*, Revision 0, DOE/EMNV--0030. Las Vegas, NV.

—, 2021d. *Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 114: EMAD Facility, Nevada National Security Site, Nevada*, Rev. 0, DOE/EMNV--0029. Las Vegas, NV.

—, 2021e. *Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 572: Test Cell C Ancillary Building and Structures, Nevada National Security Site, Nevada*, Rev. 0, DOE/EMNV--0026. Las Vegas, NV.

—, 2022a. *Addendum to the Closure Report for Corrective Action Unit 577: Area 5 Chromium Containing Waste Disposal Cells, Nevada National Security Site, Nevada*, Rev. 0, DOE/EMNV--0030-ADD. Las Vegas, NV.

—, 2022b. *Calendar Year 2021 Post-Closure Monitoring (PCM) Letter*, 22 March. Las Vegas, NV.

—, 2022c. *Calendar Year 2021 Underground Test Area Annual Sampling Letter Report, Nevada National Security Site, Nevada*, Rev. 1, DOE/EMNV--0040. Las Vegas, NV.

—, 2022d. *Corrective Action Unit 98: Frenchman Flat Five-Year Evaluation Nevada National Security Site, Nevada*, Rev. 1, DOE/EMNV--0035. Las Vegas, NV.

—, 2022e. *Groundwater Flow and Contaminant Transport Model of Corrective Action Units 101 and 102: Central and Western Pahute Mesa, Nye County, Nevada*, Rev. 1, DOE/EMNV--0039. Las Vegas, NV.

—, 2022f. *Non-Resource Conservation and Recovery Act Corrective Action Unit (CAU) Post-Closure Inspection Report, Nevada National Security Site, Nevada For Calendar Year 2021*, Rev. 0, DOE/EMNV--0038. Las Vegas, NV.

_____, 2022g. *Post-Closure Report for Closed Resource Conservation and Recovery Act Corrective Action Units, Nevada National Security Site, Nevada For Calendar Year 2021*, Rev. 1, DOE/EMNV--0036. Las Vegas, NV.

_____, 2022h. *Underground Test Area Calendar Year 2020 Quality Assurance Report, Nevada National Security Site, Nevada*, Rev. 0, DOE/EMNV--0034. Las Vegas, NV.

_____, 2022i. *Underground Test Area Activity Quality Assurance Plan, Nevada National Security Site, Nevada*, Rev. 0, DOE/EMNV--0037. Las Vegas, NV.

U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office, 2016. *Underground Test Area (UGTA) Closure Report for Corrective Action Unit 98: Frenchman Flat, Nevada National Security Site, Nevada*, Rev. 1, DOE/NV--1538-Rev. 1. Las Vegas, NV.

U.S. Department of Energy, Nevada Operations Office, 1997. *Shaft and Tunnel Nuclear Detonations at the Nevada Test Site: Development of a Primary Database for the Estimation of Potential Interactions with the Regional Groundwater System*, DOE/NV-464, UC-700. Las Vegas, NV.

U.S. Department of Energy, Nevada Operations Office, 1999. *RCRA Part B Permit (NEV HW0021) Application for Waste Management Activities at the Nevada Test Site*. Las Vegas, NV.

Chapter 12: Historic Preservation and Cultural Resources Management

Laura O'Neill, Gregory M. Haynes, Tatianna Menocal, and Richard Arnold
Desert Research Institute

Cultural Resources Management Program Goals

Ensure compliance with all regulations pertaining to cultural resources. Identify, evaluate, and manage cultural resources. Evaluate the potential effects of proposed projects on cultural resources and, when necessary, mitigate adverse effects. Curate archaeological collections in accordance with Title 36 Code of Federal Regulations (CFR) Part 79, "Curation of Federally Owned and Administered Archeological Collections." Consult with American Indians regarding places and items of importance to 16 Tribal nations and organizations culturally affiliated with Nevada National Security Site (NNSS) lands.

The NNSS contains a wide range of cultural resources, including prehistoric and historic archaeological sites, buildings, districts, and structures, that are part of the historic built environment, and places of religious and cultural importance to American Indians. Attachment A, Section A.5, summarizes the known human occupation and uses of the NNSS from the earliest known prehistoric societies in North America, circa 13,000 years ago, through the millennia to the Cold War era and nuclear testing from 1951 to 1992.

U.S. Department of Energy (DOE) Order DOE O 436.1, "Departmental Sustainability," requires the DOE National Nuclear Security Administration Nevada Field Office (NNSA/NFO) to develop policies and directives for the conservation and preservation of cultural resources. To that end, NNSA/NFO established the Cultural Resources Management Program (CRMP) at the NNSS. Desert Research Institute (DRI) implements the mandates of this program to aid in conserving and preserving cultural resources that may be affected by proposed NNSA/NFO activities. NNSA/NFO must also comply with applicable federal and state regulations to protect and manage cultural resources eligible for listing in the National Register of Historic Places (NRHP). These NRHP-eligible resources are technically known as *historic properties*.

To meet federal and state requirements and achieve CRMP goals, the NNSA/NFO program contains the following major components: (1) NNSS project reviews for cultural resource compliance; (2) archival research, field inventories, built-environment surveys, and evaluations of NRHP eligibility; (3) the curation of archaeological collections and program records; and (4) the American Indian Consultation Program (AICP). Guidance for CRMP work is provided in the NNSS Cultural Resources Management Plan (Rhode et al. in draft). DRI historic preservation personnel, architectural historians, and archaeologists, who meet the professional qualification standards set by the Secretary of the Interior (SOI), carry out these activities.

The methods used to identify cultural resources vary according to the type of resource under consideration. Archaeological sites are typically identified through an intensive pedestrian surface inventory, which is sometimes supplemented by small-scale subsurface testing to assess the presence of intact subsurface cultural deposits at potentially significant archaeological sites. Historic architectural properties, structures, and objects are identified during architectural surveys using maps and aerial imagery, historical archives, and information from individuals who may have direct knowledge of the functions and historical events associated with particular buildings or structures. Direct communication and consultation are also necessary to identify and characterize resources important to American Indians, such as sacred sites or traditional-use areas.

12.1 Cultural Resources Inventories and NRHP Eligibility Evaluations

Cultural resource inventories and surveys are conducted to meet the requirements of the National Historic Preservation Act (NHPA). The two sections of the NHPA that pertain to cultural resource inventories and surveys are Section 106 and 110. To comply with Section 106, surveys and inventories are completed before proposed undertakings that have the potential to affect historic properties. The information resulting from Section 106 studies includes the following:

- Identification of the numbers and types of cultural resources within a defined Area of Potential Effect (APE) for an undertaking
- Evaluations and eligibility recommendations for listing in the NRHP
- Findings of effect of proposed undertakings
- Reports detailing the results of the identification efforts, evaluations, and findings of effect
- Recommendations for mitigating adverse effects on cultural resources, when required

To comply with Section 110 of the NHPA, surveys and inventories are conducted as part of NNSA/NFO's historic properties monitoring and stewardship responsibilities. The information resulting from Section 110 studies includes the following:

- Evaluations and eligibility recommendations for listing in the NRHP
- Conditions assessments and updates
- Recommendations for future monitoring, maintenance, and stewardship, when necessary

In 2022, outside the town of Mercury, Nevada, DRI completed cultural resource inventories and surveys for nine projects in seven areas of the NNSS. Seven of the nine were Section 106 identification, evaluation, and finding of effect reports, and two were Section 110 evaluation reports (Table 12-1). Projects in Mercury are subject to a Section 106 Programmatic Agreement (PA) and are summarized separately in Section 12.2. Among the nine projects throughout the rest of the NNSS, a total of 819.3 acres were inventoried, and 87 cultural resources were identified and recorded. Of these resources, 33 were determined eligible for the NRHP. Documented cultural resources consist of prehistoric and historic-period archaeological sites, and Cold War-era buildings, structures, and districts. In accordance with the NHPA, NNSA/NFO consults with the Nevada State Historic Preservation Office (SHPO) regarding the adequacy of the identification efforts, eligibility determinations, and findings of effect. Project summaries follow Table 12-1.

Table 12-1. 2022 cultural resources inventories, eligibility evaluations, and finding of effect reports

Project	NNSS Area(s)	Project Size / APE (acres)	Cultural Resources	NRHP Eligible	Reference
Section 106					
Rock Valley Direct Comparison	27	104.3	16	0	Lancaster and Stueve 2022
Rock Valley Direct Comparison Modification	27	112.5	25	0	Stueve 2022
UGTA Drill Hole ER-20-1	20	23.5	0	0	Haynes 2022a
UGTA Drill Hole ER-20-13	20	550	14	2	Haynes and Menocal 2022
Signals Exploration Testbed	26	29	2	2	Brannan and O'Neill 2022
EMAD Facility Rolling Stock	22	NA	11	11	O'Neill and Wedding 2022
Area 12 Camp Building Removal	12	NA	3	3	Edwards and O'Neill 2022
Section 110*					
Apple-2 10,500 ft Blast Line	1	NA	15	14	Menocal 2022a
Huron King Test Chamber	3	NA	1	1	Haynes and Wedding 2022
Total	---	819.3	87	33	

*Consultation with the SHPO on Section 110 projects completed in 2022 will continue into 2023.

Rock Valley Direct Comparison. DRI completed two identification, evaluation, and finding of effect reports for the Rock Valley Direct Comparison Experiment in Area 27 (Lancaster and Stueve 2022; Stueve 2022). The second report was completed due to a significant change in the APE for the project after completion of the first report. The purpose of the undertaking is to identify the location of a fault in Rock Valley for shallow earthquake monitoring. The proposed scope of work consists of drilling two exploratory boreholes; the construction of associated access roads, drill pads, and sumps at each of the boreholes; and construction of an access road to connect the new drill pads with the 27-01 Road. Drill pad and access road construction activities will include the removal of vegetation, cut and fill, leveling and compacting, and construction of drainage features (culverts), as necessary, to maintain natural drainage patterns. DRI conducted two archival reviews and pedestrian inventories, resulting in the identification of 41 resources consisting of 12 archaeological sites and 29 isolated finds. Of the 12 sites, none were determined eligible for the NRHP under any criteria. The SHPO agreed with NNSA/NFO's findings that no historic properties would be affected by the undertaking.

**Figure 12-1. Huron King Test Chamber
(DRI 2022)**

UGTA Drill Holes ER-20-1 and ER-20-13. DRI completed two identification, evaluation, and finding of effect reports for the Underground Test Area (UGTA) program (Haynes 2022a; Haynes and Menocal 2022). Both projects would support groundwater quality sampling on Pahute Mesa in Area 20. The first project proposes to deepen the existing ER-20-1 groundwater monitoring well. This would require reconditioning an already existing road, reconfiguring the current pad to accommodate two wastewater sumps, and drilling into the current well to increase its depth. DRI conducted an archival review and pedestrian inventory, and no cultural resources were discovered. Accordingly, SHPO agreed with NNSA/NFO's findings that no historic properties would be affected by this undertaking. The second project would drill a new groundwater monitoring well, ER-20-13. This project would require construction of a short access road and a drill pad that would be large enough to accommodate the drilling activity and associated equipment, monitoring instrumentation, and a wastewater sump. DRI conducted an archival review and a pedestrian inventory, and found 14 cultural resources, 6 archaeological sites and 8 isolated finds. Two of the archaeological sites are historic properties that would have been adversely affected by the undertaking. To avoid adverse effects, the UGTA program modified the location of the project to avoid historic properties. With the modification, the SHPO agreed with NNSA/NFO's findings that no historic properties would be affected by the undertaking.

**Figure 12-2. Pluto Compressor Building after construction, December 28, 1959
(751-2_PR, REECo Photo on file at DRI)**

Signals Exploration Testbed. As part of the Signals Exploration Testbed (SET) project, DRI completed one identification, evaluation, and finding of effect report. The SET project proposes to detect foundry-type operations with remote sensing and, as part of this study, required the reactivation of Building 26-2205 (Figures 12-2, 23-3) in Area 26. DRI conducted an archival review and architectural survey (Brannan and O'Neill 2022) during which two resources were identified: one building (Building 26-2205), previously determined eligible for listing in the NRHP, and one potential historic district that remains unevaluated for the NRHP. For the purposes of the project, the unevaluated historic district was treated as if it were eligible for the NRHP. The SHPO agreed with NNSA/NFO's findings that historic properties would be adversely affected by the undertaking. At the end of 2022, consultation between NNSA/NFO and the SHPO to mitigate the adverse effects of the undertaking was in progress.

**Figure 12-3. Pluto Compressor Building in 2022
(DRI 2022)**

EMAD Facility Rolling Stock (Figure 12-4). NNSA/NFO, in conjunction with Environmental Management Nevada (EM NV) Program, proposes to remove all railroad rolling stock from the Engine Maintenance Assembly and Disassembly (EMAD) facility in Area 25. The rolling stock includes the Engine Installation Vehicle, the Manned Control Car, two locomotives, and three flatcars. In support of this project, DRI completed a cultural resource identification, evaluation, and finding of effect report for the proposed rolling stock removal (O'Neill and Wedding 2022). In all, 11 resources were identified, and all were either determined to be historic properties eligible for the NRHP, or assumed to be eligible for the purposes of the project. The SHPO agreed with NNSA/NFO's findings that historic properties would be adversely affected by the undertaking. At the end of 2022, consultation between NNSA/NFO and the SHPO to mitigate the adverse effects of the undertaking was on hold to provide the EM NV Program with adequate time to explore feasible mitigation options for the unique resources.

Figure 12-4. EMAD Rolling Stock NERVA engine on the RTS
(NNSA/NFO digital library, 6711, undated)

Area 12 Camp Building Removal. DRI completed a finding of effect report for the removal of two buildings in the Area 12 Camp Historic District (Edwards and O'Neill 2022). NNSA/NFO proposes to demolish both buildings to reduce the footprint of unused, unsafe, or non-operational facilities on the NNSS. Both buildings were found to be historic properties that contribute to the Area 12 Camp Historic District. Therefore, the project would have an adverse effect on both the buildings and the historic district. A Memorandum of Agreement (MOA) was executed by NNSA/NFO, in consultation with the SHPO, to mitigate the adverse effects of the undertaking on all three historic properties.

Section 110 Reports. During 2022, two Section 110 reports were completed; both focused on historic nuclear testing resources. The first was an evaluation of cultural resources that may contribute to the Apple-2 Historic District in Area 1 (Menocal 2022a). These resources were originally placed 10,500 feet away from the Apple-2 ground zero, and their purpose was to test the effects of an atmospheric nuclear blast on various structures. Following an archival review, survey, and evaluation, 15 resources were recorded. Of these, 14 were recommended eligible for listing in the NRHP.

The second Section 110 report was an evaluation of the Huron King Test Chamber (Figure 12-1) in Area 3 (Haynes and Wedding 2022). This aboveground test chamber was associated with the Huron King nuclear test conducted on June 24, 1980. The test chamber was specially designed to hold a defense communications satellite and was connected to a nuclear device placed 1,050 feet below the ground. Upon detonation, the satellite was exposed to an electromagnetic pulse and nuclear radiation, and then evaluated for effects. Following an archival review, survey, and evaluation, the Huron King Test Chamber was recommended eligible for the NRHP. Consultation with the SHPO on both Section 110 reports is expected to be completed in 2023.

12.2 Mercury Modernization

NNSA/NFO determined that the Mercury Modernization undertaking in Area 23 would have adverse effects on historic properties eligible for the NRHP and executed a PA with the SHPO in 2018 (Mercury PA). The Mercury PA streamlines the Section 106 compliance process for modernization activities in Mercury (PA 2018). As part of the stipulations in the Mercury PA, the town of Mercury was evaluated for the NRHP and determined to be eligible as historic district (Mercury Historic District, MHD) (Reno et al. 2018). The Mercury PA stipulates the type of mitigation required for the proposed modernization activities. Reports and mitigation documents governed by the Mercury PA are archived in the Nuclear Testing Archive (NTA). Pursuant to the Mercury PA, in 2022, DRI completed NRHP evaluations for two buildings; findings of effect and mitigation for two others; and NRHP evaluations, findings of effect and mitigation for two more buildings (Table 12-2). Project summaries follow Table 12-2.

Table 12-2. 2022 buildings evaluated for individual NRHP eligibility and mitigated pursuant to the Mercury programmatic agreement

Building Number	NNSS Area(s)	Cultural Resources	NRHP Eligible	Reference
23-109	23	1	1	
Evaluation	---	---	---	Brannan 2022a
Finding of Effect	---	---	---	Brannan 2022b
Mitigation	---	---	---	Brannan 2022c
23-113	23	1	1	
Evaluation	---	---	---	Menocal 2022b
Finding of Effect	---	---	---	Menocal 2022c
Mitigation	---	---	---	Menocal 2022d
23-117	23	1	1	
Evaluation	---	---	---	Brannan 2022d
23-153	23	1	1	
Finding of Effect	---	---	---	Brannan 2022e
Mitigation	---	---	---	Brannan 2022f
23-620	23	1	1	
Evaluation	---	---	---	Brannan 2022g
23-W10	23	1	1	
Finding of Effect	---	---	---	Brannan 2022h
Mitigation	---	---	---	Brannan 2022i
Total	---	6	6	

NNSA/NFO plans to demolish Buildings 23-109 (Figure 12-5) and 23-113 in the MHD. Building 23-109 was originally constructed in 1951 as the Mercury Fire Station and a vehicle service station, but in the 1960s and 1970s, it was modified to serve as the housing office and the revenue office. Building 23-113 was originally constructed in 1962 as a recreation hall, but by 1992 had been repurposed into an office and training facility. Pursuant to the Mercury PA, both buildings are Category I elements in the MHD and required individual evaluation for the NRHP prior to completing mitigation. To support these efforts, DRI completed three reports associated with Building 23-109, an evaluation report (Brannan 2022a), a finding of effect report (Brannan 2022b), and a mitigation report (Brannan 2022d). Likewise, DRI completed three similar reports associated with Building 23-113 (Menocal 2022b-d). The SHPO agreed with NNSA/NFO's findings that neither building is individually eligible for the NRHP; however, both remain contributing elements to the MHD, the undertakings would have adverse effects, and the mitigation provided for each was adequate.

NNSA/NFO plans to update the façade of Building 23-117 in the MHD. This building was constructed in 1982 and served as the architect-engineer Administration Building during the nuclear testing era. The project would add stone veneer to the areas on the façade that are recessed. Pursuant to the Mercury PA, this building is a Category I element in the MHD, and therefore requires individual evaluation for the NRHP prior to completing mitigation. DRI completed an evaluation report for Building 23-117 and found that it is not individually eligible for listing in the NRHP (Brannan 2022d). At the end of 2022, NNSA/NFO was consulting with the SHPO about the findings in the evaluation report. Finding of effect and mitigation reports for this building are expected to be completed in 2023.

NNSA/NFO also plans to demolish Building 23-153 in the MHD. Constructed in 1982 as the Mechanical Calibration Laboratory, it served as a support facility for nuclear testing through the last decade of the Cold War. Pursuant to the Mercury PA, this building is a Category II element in the MHD and follows a standard mitigation procedure. As such, DRI completed a finding of effect report for the historic property and NNSA/NFO found that it would be adversely affected by the undertaking (Brannan 2022e). DRI completed a mitigation for the building (Brannan 2022f), and the SHPO concurred with both the adverse effect finding for the undertaking and the adequacy of the mitigation.

Another building planned for demolition by NNSA/NFO in the MHD is 23-620. It was originally constructed in 1968 to support Los Alamos Scientific Laboratory (now known as Los Alamos National Laboratory) administrative activities and would serve in this capacity until the end of the nuclear testing era in 1992. Pursuant to the Mercury PA, this building is a Category I element in the MHD and requires individual evaluation for the NRHP prior to mitigation. DRI completed an evaluation report for Building 23-620 and found that it is not individually eligible for listing in the NRHP (Brannan 2022g). At the end of 2022, NNSA/NFO was consulting with the SHPO about the findings in the evaluation report. Finding of effect and mitigation reports for this building are expected to be completed in 2023.

The last building scheduled for demolition in Mercury in 2022 was 23-W10. This building is a T-rib Quonset hut; the first type designed by the U.S. military during World War II. It was installed in 1962 and served as a support facility for nuclear testing throughout much of the Cold War. Pursuant to the Mercury PA, this building is a Category II element and follows a standard mitigation procedure. As such, DRI completed a finding of effect report for the historic property and found that it would be adversely affected by the undertaking (Brannan 2022h). DRI completed mitigation for the building (Brannan 2022i), and the SHPO concurred with both the adverse effect finding for the undertaking and the adequacy of the mitigation.

Figure 12-5. Building 23-109, Mercury, when it was used as a maintenance building, facing northeast, August 8, 1962 (REECo 1397-6)

12.3 Mitigation Projects

This section summarizes mitigation projects aimed at resolving adverse effects at locations outside of Mercury. Mitigation in Mercury is completed under the Mercury PA and summarized in Section 12-2. In general, the implementing regulations of the NHPA (36 CFR Part 800) direct the federal agency to apply the criteria of adverse effect to determine when a proposed undertaking may alter—directly or indirectly—any of the characteristics of an historic property that qualify that property for inclusion in the NRHP in a manner that would diminish the integrity of the property’s location, design, setting, materials, workmanship, feeling, or association. Examples of adverse effects are outlined in 36 CFR 800.5(a).

If the agency finds an adverse effect, they continue to consult with the SHPO, Tribes, and other stakeholders to develop and evaluate alternatives or modifications to the undertaking that could avoid, minimize, or mitigate the adverse effect on the historic property. Once the agency and the SHPO agree on how the adverse effect will be resolved, an MOA is executed. When the agency implements an MOA in accordance with its stipulations, then the adverse effect of the agency’s undertaking on the historic property is resolved, and the agency’s Section 106 responsibilities have been completed.

Figure 12-6. Area 6 Control Point entrance, facing west toward the fenced compound with CP-1 at right (DRI 2021)

In 2021, NNSA/NFO and the SHPO executed an MOA to resolve adverse effects resulting from the demolition of Buildings 1-101 and 1-102 at the Area 1 Subdock. While neither building was determined individually eligible for listing in the NRHP, they both contribute to the Area 1 Subdock Historic District. In 2022, per the stipulations in the MOA, NNSA/NFO completed an architectural survey of the Area 1 Subdock (Collins et al. 2022), and the SHPO acknowledged the adequacy of the report in fulfillment of the MOA.

Also in 2021, NNSA/NFO and the SHPO executed an MOA to resolve adverse effects resulting from the proposed demolition of 14 buildings and structures in Area 6. Following the stipulations in this MOA, DRI completed an architectural survey of the Area 6 Control Point (Figure 12-6) (O'Neill et al. 2021). As a result, NNSA/NFO determined that the Area 6 Control Point is an NRHP-eligible historic district consisting of 28 contributing resources. The SHPO reviewed the documentation in 2022 and acknowledged the adequacy of the report in fulfillment of the MOA.

**Figure 12-7. Historic 138-kilovolt high tension suspension structure on hill crest
at Checkpoint Pass, facing north-northwest
(DRI 2022)**

In 2022, NNSA/NFO and the SHPO executed two new MOAs. The first was “Memorandum of Agreement DE-GM58-22NA25553 between the U.S. Department of Energy and the Nevada State Historic Preservation Officer Regarding Installation of a 138-Kilovolt Transmission Line from the Mercury Switching Station to the U1a Facility and the Removal of the Historic 138-Kilovolt Transmission Line from the Mercury Switching Station to the U1a Facility in Areas 1, 3, 5, 6, and 23 of the Nevada National Security Site, Nye County.”

Following the stipulations in this MOA, DRI completed three reports that mitigate adverse effects to historic properties. Because a 26-mile-long segment of the historic 138-kilovolt transmission line (Figure 12-7) will be dismantled, a report was completed with an historical narrative about the transmission line and its character-defining features, photographic documentation, and relevant plan maps and engineering drawings (Haynes and Person 2022a). DRI also completed an architectural survey report on the Reynolds Electrical and Engineering Company, Inc. (REECo) Maintenance Compound in Area 6, which supported nuclear testing activities from 1962 until the end of the Cold War (Haynes and Person 2022b). The SHPO reviewed both reports and acknowledged their adequacy in fulfillment of the MOA.

In addition to these documents, an avoidance and protection plan was developed by DRI for historic properties along the route of the construction project (Haynes 2022b). This last report is only for internal use during the construction and removal of the transmission lines. Accordingly, Mission Support and Test Services, LLC (MSTS) acknowledged receipt of the report and will ensure that the avoidance and protection plan is implemented to prevent disturbances to historic properties during construction activities. A Fact Sheet that describes electrical power supply on the NNSS and a poster series about the history of Mercury are being developed to fulfill the final stipulations in the MOA.

The second MOA executed in 2022 was “Memorandum of Agreement DE-GM58-22NA25555 Between the U.S. Department of Energy and the Nevada State Historic Preservation Officer Regarding the Removal of Buildings 12-7 and 12-30 in the Area 12 Camp of the Nevada National Security Site, Nye County, Nevada.” Per the stipulations of the MOA, DRI provided supplemental documentation for Building 12-7 (Wedding and O’Neill 2022a) and for Building 12-30 (Wedding and O’Neill 2022b). This supplemental documentation included updating each of the Architectural Resource Assessment forms; evaluating each building individually for the NRHP; and incorporating relevant historic plans, drawings, and photographs. The SHPO reviewed the documentation and acknowledged their adequacy in fulfillment of the MOA.

12.4 Other Cultural Resources Projects

In addition to the cultural resource projects identified in Sections 12.1 through 12.3, NNSA/NFO engages DRI to complete a variety of other types of projects and reports throughout the year. This section provides a summary of other projects completed or in progress as of the end of 2022.

As part of Section 106 compliance and prior to initiating proposed projects, DRI completes preliminary project reviews to identify potential cultural resource concerns. The reviews include researching cultural resource records held at DRI and within the Nevada Cultural Resource Information System database to identify previous cultural resource studies, and NRHP eligible historic properties near or within the project area. Under some circumstances, the review also includes a pre-activity inventory of a project area. The research and inventory help determine whether further evaluation is required and the potential of a proposed project to affect historic properties. In some cases, the preliminary project review results in preparing full technical studies and consulting with the SHPO. Examples include the projects in Tables 12-1 and 12-2. In other cases, the preliminary project review finds that full technical studies and SHPO consultation are not necessary. In 2022, subject matter experts who meet the professional qualification standards set by the SOI reviewed 90 proposed projects. Of these projects, 27 required more in-depth studies or pedestrian inventories to comply with Section 106.

DRI also prepared the following annual reports related to cultural resource activities in 2022 for NNSA/NFO’s CRMP (Table 12-3).

Table 12-3. FY2022 annual cultural resource reports

Project	Description of Contents	Reference
Mercury Annual Progress Report	Annual report regarding the progress of the implementation of the MHD PA during fiscal year (FY) 2022	Wedding, Swallow, and O’Neill 2022
Curation Compliance Annual Report	Annual report for curation tasks completed in support of the NNSS artifact collection and records in the NNSA/NFO records facility managed by DRI during FY 2022.	Menocal and Stueve 2022
NNSS Cultural Resources Monitoring Annual Report	Annual report for cultural resources monitoring, which entailed revisiting five historic properties, documenting current site conditions, and determining if the sites retain enough integrity to be eligible for the NRHP during FY 2022.	Menocal 2022e
Geographic Information System (GIS) Database Annual Report	Annual report for the updates and revisions to the CRMP GIS Database during FY 2022.	Lancaster 2022

Lastly, NNSA/NFO made significant progress on developing a sitewide programmatic agreement (NNSS Sitewide PA) with the SHPO in 2022. The NNSS Sitewide PA, once fully executed, will streamline Section 106 compliance activities for all undertakings on the NNSS outside of Mercury, which will remain subject to the existing PA for Mercury modernization. DRI assisted NNSA/NFO with revising the NNSS Sitewide PA, negotiating with the SHPO, and updating the associated Cultural Resources Management Plan. The plan will be finalized following execution of the PA to be sure the contents of the two documents align.

12.5 Curation

The NHPA requires maintaining archaeological collections and associated records at professional standards. The specific requirements are provided in 36 CFR 79. The NNSS Archaeological Collection currently contains approximately 467,000 artifacts and is curated by DRI on NNSA/NFO's behalf in accordance with 36 CFR 79.

Curation requirements include:

- Maintaining an inventory catalog of the items in the NNSS collection
- Packaging the NNSS collection in materials that meet archival standards (e.g., acid-free boxes)
- Maintaining the NNSS collection and records in a secure facility with environmental controls
- Following established procedures for the NNSS collection and curation facility
- Complying with the Native American Graves Protection and Repatriation Act

As part of routine curatorial maintenance, DRI staff conducts random spot-check inventories to assess the condition of the artifacts in the collections room. During a spot-check inventory in 2021, two boxes containing prehistoric site collections were found to be packaged to curatorial standards but were unaccounted for in the digital accession and catalog databases. In 2022, DRI finalized cataloging the artifacts in the boxes. The digital catalog database was updated, and the boxes have been returned to the collections room.

In February 2022, DRI finalized the process of accessioning and cataloging the Forrest Poole Collection. This collection was acquired in FY 2021 and consists of prehistoric and historic artifacts recovered from the NNSS by Forrest Poole, a geologist who worked on the site in the 1960s. In addition, to keep the 16 Tribes with cultural and historical affiliations informed about material remains added to the curation facility, DRI provided information about the collection during the NNSA/NFO's annual Tribal Update Meeting held April 12–14, 2022. Tribal representatives were given time to view the artifact collection and offer tribal perspectives.

DRI completed a collection-level inventory for the McKinnis artifact collection. This collection consists of prehistoric and historic artifacts recovered from multiple locations on the NNSS. This inventory began in 2018 after DRI noted discrepancies between the artifacts and digital catalog entries. This effort included sorting the artifacts in storage boxes by general artifact class (e.g., stone or ceramic) and verifying the digital catalog database.

In the curation facility, all security and environmental controls functioned satisfactorily throughout the year. DRI maintained regular housekeeping practices. A custodian, supervised by curatorial staff, entered the facility regularly to sweep, dust, and repair lights. In the collections room, temperature and humidity levels remained within normal parameters with temperatures not rising above 68 degrees Fahrenheit and humidity levels never exceeding 38 percent.

NNSA/NFO renewed one loan agreement in 2022 with the National Atomic Testing Museum (NATM). The loan renewal was for the McGuffin Collection. This collection consists of 39 lithic artifacts from a prehistoric site in Fortymile Canyon arranged in a glass picture frame. The artifact collection has been on exhibit in the NATM since 2005, and NNSA/NFO and the NATM renew this loan agreement annually. DRI archived the renewed loan agreement in the curation facility records room.

DRI also archived all project files associated with the NNSA/NFO CRMP from FY 2020 and FY 2021 as well as hard copies of cultural resources reports completed in FY 2022. Curatorial staff also continued to expand a photograph archive related to CRMP projects. Currently, the archive contains over 55,000 photographic files. DRI has produced these files from both digital and film photographs. The files are accompanied by the original

photograph/image log when possible and are organized by the CRMP project numbering system utilized by DRI staff to track projects.

12.6 American Indian Consultation Program

NNSA/NFO established the AICP in 1991 to formalize its consultations with 16 Southern Paiute, Western Shoshone, and Owens Valley Paiute and Shoshone tribal nations and organizations with cultural and historical ties to the NNSS. The history of this program, and a list of the 16 culturally affiliated tribes, can be found in “American Indians and the Nevada Test Site: A Model of Research and Consultation” (Stoffle et al. 2001). The program operates in accordance with DOE O 144.1, “Department of Energy American Indian Tribal Government Interactions and Policy,” which provides a foundation for engaging tribal leadership and their designated representatives in activities that occur on the NNSS.

The goals of the AICP are to:

- Provide a government-to-government forum for tribal members to interface directly with NNSA/NFO management on activities associated with NNSA/NFO undertakings.
- Provide tribal members with opportunities to actively participate in and help guide decisions that involve culturally significant places, resources, and locations on the NNSS.
- Involve tribal members in the management, curation, display, and protection of American Indian artifacts originating from the NNSS.
- Enable tribal representatives to engage in religious and traditional activities within the boundaries of the NNSS.
- Provide opportunities for AICP subgroups to participate in the review of program documents on an interim basis between regularly scheduled meetings.
- Include tribal members’ views in the development of tribal text in the agency’s National Environmental Policy Act documents.
- Work with the DRI AICP Coordinator to develop approaches for expanding tribal involvement in NNSA/NFO activities on the NNSS.

In 2022, NNSA/NFO management interacted with the DRI AICP Coordinator to identify topics of interest and explore options for enhancing communications with tribal representatives. Interactions included sharing project updates and information related to NNSS activities that serve as the foundation for sustaining the AICP.

One key element of the AICP is supporting the NNSA/NFO Annual Tribal Update Meeting (TUM), which brings together culturally affiliated tribes and managers from NNSA/NFO and its contractors to discuss NNSS activities. NNSA/NFO held the 2022 Annual TUM on April 12–14, 2022. The NNSA/NFO meeting was held in Las Vegas with support from DRI and Portland State University (PSU). The first day of the meeting was devoted to project updates presented by NNSA/NFO, the EM NV Program, MSTS, DRI, PSU, the Remote Sensing Laboratory-Nellis, and tribal representatives. The second day consisted of a field visit to the NNSS during which tribal representatives viewed Cold War-era resources. On the third day, the meeting concluded with a Tribal Executive Session to deliberate on the information presented and formulate tribal recommendations to present to NNSA/NFO before adjourning the meeting. A summary report with presentation information and tribal recommendations was produced and distributed to tribal representatives who attended the meeting (Menocal and Arnold 2022a).

During the annual NNSA/NFO TUM, tribal representatives along with representatives from EM NV Program, PSU, and DRI provided an overview of the Tribal Revegetation Project at the 92-Acre Area located at the Radioactive Waste Management Complex in Area 5. This 5-year project concluded in 2021 and integrated traditional ecological knowledge with scientific methods. This blended approach allowed for the use of traditional prayers and methods that focused on sustaining the natural balance of the land. During the project, the Tribal Revegetation Committee identified traditional planting seasons and compatible soil amendments. The Tribal

Revegetation Committee emphasized the importance of using native seed mixtures and replicating natural precipitation in the area. The presentation given at the TUM provided project results, accomplishments, and lessons learned.

In addition to the 2022 TUM, NNSA/NFO held quarterly meetings with the Tribal Planning Committee (TPC), which consists of six individuals representing the Southern Paiute, Western Shoshone, and Owens Valley Paiute-Shoshone ethnic groups. The TPC interacts with NNSA/NFO throughout the year, receives project briefings, and discusses tribal topics of mutual interest. Quarterly meetings were held on March 15, June 21, September 20, and December 20, 2022.

In 2022, the TPC also participated in two NNSS site visits. In the spring, the TPC visited the Basket and Cane, and Prehistoric Ladder Sites, both located in Area 29. In the fall, the TPC visited the Big George Cave and Petroglyph Site in Area 18 (Figure 12-8). This site includes an historical residence known as Big George Cave, numerous petroglyphs on boulders, rock features, and associated artifacts. After both field visits, the TPC met with the DRI AICP Coordinator for a debriefing session to share and document tribal perspectives (Arnold and Menocal 2022a, in draft).

Figure 12-8. TPC representatives at a boulder with rock writing at the Big George Cave and Petroglyph Site (DRI 2022)

One of the DRI AICP Coordinator's responsibilities is to develop summary reports that document program activities over the course of the year. During 2022, the DRI AICP Coordinator developed four reports: one AICP annual report and three TPC quarterly meeting reports (Table 12-4).

Table 12-4. AICP reports

Project	Reference
AICP FY 2022 Tribal Update Meeting Summary	Menocal and Arnold 2022
TPC Site Visit (Basket and Cane and Ladder Sites)	Arnold and Menocal 2022a
TPC Site Visit (Big George Cave and Petroglyphs Site)	Arnold and Menocal in draft
AICP Annual Report FY 2022	Arnold and Menocal 2022b
TPC FY 2022 Second Quarterly Meeting Report	Arnold and Menocal 2022c
TPC FY 2022 Third Quarterly Meeting Report	Arnold and Menocal 2022d
TPC FY 2022 Fourth Quarterly Meeting Report	Arnold and Menocal 2022e

12.7 References

Arnold, Richard, and Tatianna Menocal, 2022a. American Indian Consultation Program FY 2022 Tribal Planning Committee Field Assessment at the Basket and Cane Site and the Ladder Site, Nevada National Security Site, Nye County, Nevada. Desert Research Institute American Indian Consultation Program Report LR051822-1. Desert Research Institute, Las Vegas.

—, 2022b. American Indian Consultation Program Annual Report Fiscal Year 2022. Desert Research Institute American Indian Consultation Program Report LR080822-1. Desert Research Institute, Las Vegas.

—, 2022c. American Indian Consultation Program FY 2022 Tribal Planning Committee Second Quarterly Meeting Report. Desert Research Institute American Indian Consultation Program Report LRO315221. Desert Research Institute, Las Vegas.

—, 2022d. American Indian Consultation Program FY 2022 Tribal Planning Committee Third Quarterly Meeting Report. Desert Research Institute American Indian Consultation Program Report LR062122-1. Desert Research Institute, Las Vegas.

—, 2022e. American Indian Consultation Program FY 2022 Tribal Planning Committee Fourth Quarterly Meeting Report. Desert Research Institute American Indian Consultation Program Report LR092022-1. Desert Research Institute, Las Vegas.

—, (in draft.) American Indian Consultation Program FY 2023 Tribal Planning Committee Field Assessment at Big George Cave and Petroglyph Site, Nevada National Security Site, Nye County, Nevada. Desert Research Institute American Indian Consultation Program Report LR122022-2. Desert Research Institute, Las Vegas, Nevada.

Brannan, Nicole, 2022a. Evaluation of Building 23-109, the Mercury Fire Station/Maintenance/Housing Office, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Report SR022822-1. Desert Research Institute, Las Vegas.

—, 2022b. Finding of Adverse Effect and Proposed Mitigation for the Demolition of Building 23-109, Mercury, Area 23, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Finding of Effect Report LR022822-1-FOE. Desert Research Institute, Las Vegas.

—, 2022c. Submission of Mitigation Documentation Related to the Demolition of Building 23-109, Mercury, Area 23, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Mitigation Submission Letter Report LR022822-1-MIT. Desert Research Institute, Las Vegas.

—, 2022d. Evaluation of Building 23-117, Administration Building, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Report SR101822-1. Desert Research Institute, Las Vegas.

—, 2022e. Finding of Adverse Effect and Proposed Mitigation for the Demolition of Building 23-153, Mercury, Area 23, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Finding of Effect Report LR052422-2-FOE. Desert Research Institute, Las Vegas.

—, 2022f. Mitigation for Demolition of Building 23-153, Mercury, Area 23, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Mitigation Submission Report LR052422-2-MIT. Desert Research Institute, Las Vegas.

—, 2022g. Evaluation of Building 23-620, Los Alamos Scientific Laboratory J-3 Office, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Report SR052422-3. Desert Research Institute, Las Vegas.

—, 2022h. Finding of Adverse Effect and Proposed Mitigation for the Demolition of Building 23-W10, Mercury, Area 23, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Finding of Effect Report LR052422-1-FOE. Desert Research Institute, Las Vegas.

—, 2022i. Mitigation for Demolition of Building 23-W10, Mercury, Area 23, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Report LR052422-1-MIT. Desert Research Institute, Las Vegas.

Brannan, Nicole, and Laura O'Neill, 2022. Identification, Evaluation, and Finding of Effect for the SET Project, Area 26, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Report SR021422-1. Desert Research Institute, Las Vegas.

Collins, Cheryl, Ron Reno, JD Lancaster, Jeffrey Wedding, and Susan Edwards, 2022. Big Hole Drilling Support for Nuclear Testing, 1985-1992: An Architectural Survey of the Area 1 Subdock, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Report TR120. Desert Research Institute, Las Vegas.

Edwards, Susan, and Laura O'Neill, 2022. Finding of Adverse Effect for the Removal of Buildings 12-7 and 12-30, Area 12, Nevada National Security Site, Nye County, Nevada. Desert Research Cultural Resources Report LR111021-1-FOE. Desert Research Institute, Las Vegas.

Haynes, Gregory M., 2022a. Identification, Evaluation, and Finding of Effect for a Drilling Activity at the ER-20-1 Well, Area 20, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Report LR112921-1. Desert Research Institute, Las Vegas.

—, 2022b. Avoidance and Protection Plan for Historic Properties along the 138-Kilovolt Transmission Line, Areas 5,6, and 23, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Report LR051322-1. Desert Research Institute, Las Vegas.

Haynes, Gregory M., and Tatianna Menocal, 2022. Identification, Evaluation, and Finding of Effect for Drill Hole ER-20-13, Area 20, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Report SR020122-1. Desert Research Institute, Las Vegas.

Haynes, Gregory M., and Dylan Person, 2022a. Historic Context, Character-Defining Elements, and Photographic Record for a 26.45-Mile Segment of the 138-Kilovolt Power Transmission System, Areas 3, 5, 6, and 23, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Report TR124. Desert Research Institute, Las Vegas.

—, 2022b. An Architectural Survey of the REECO Maintenance Compound, Area 6, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Report SR092921-1-MIT. Desert Research Institute, Las Vegas.

Haynes, Gregory, and Jeffrey Wedding, 2022. A Section 110 Evaluation of the Huron King Test Chamber, Area 3, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Report SR092922-1. Desert Research Institute, Las Vegas.

Lancaster, JD L., 2022. Cultural Resources Management Program Geographic Information System Database Annual Report Fiscal Year 2022. Desert Research Institute GIS Database Report LR070122-1. Desert Research Institute, Las Vegas.

Lancaster, JD L., and Megan Stueve, 2022. Identification, Evaluation, and Finding of Effect for the Rock Valley Direct Comparison Project, Area 27, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Report SR011022-1. Desert Research Institute, Las Vegas.

Memorandum of Agreement, 2022. Memorandum of Agreement DE-GM58-22NA25553 between the U.S. Department of Energy and the Nevada State Historic Preservation Officer Regarding Installation of a 138-Kilovolt Transmission Line from the Mercury Switching Station to the U1a Facility and the Removal of the Historic 138-Kilovolt Transmission Line from the Mercury Switching Station to the U1a Facility in Areas 1, 3, 5, 6, and 23 of the Nevada National Security Site, Nye County.

Memorandum of Agreement, 2022. Memorandum of Agreement DE-GM58-22NA25555 between the U.S. Department of Energy and the Nevada State Historic Preservation Officer Regarding the Removal of Buildings 12-7 and 12-30 in the Area 12 Camp of the Nevada National Security Site, Nye County, Nevada.

Menocal, Tatianna, 2022a. A Section 110 Evaluation of the 10,500 Ft. Blast Line Civil Effects Structures and Military Trenches Associated with the Apple-2 Test, Area 1, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Report TR123. Desert Research Institute, Las Vegas.

_____, 2022b. Evaluation of Building 23-113, Mercury, Area 23, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Report SR010322-1. Desert Research Institute, Las Vegas.

_____, 2022c. Finding of Adverse Effect and Proposed Mitigation for the Demolition of Building 23-113, Mercury, Area 23, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Finding of Effect Report LR010322-1-FOE. Desert Research Institute, Las Vegas.

_____, 2022d. Submission of Mitigation Documentation Related to the Demolition of Building 23-113, Mercury, Area 23, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Mitigation Submission Letter Report LR010322-1-MIT. Desert Research Institute, Las Vegas.

_____, 2022e. Fiscal Year 2022 Annual Historic Properties Monitoring Summary, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Report LR112321-1. Desert Research Institute, Las Vegas.

Menocal, Tatianna, and Megan Stueve, 2022. Cultural Resource Management Program Curation Compliance Annual Report Fiscal Year 2022. Desert Research Institute Curation Report LR080122-1. Desert Research Institute, Las Vegas.

Menocal, Tatianna, and Richard Arnold. 2022. U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office American Indian Consultation Program Annual Tribal Update Meeting Summary. Prepared by the Desert Research Institute, Las Vegas.

NTA, see Nuclear Testing Archive.

Nuclear Testing Archive, 1965. Gate 100 facing northeast. Nuclear Testing Archive 64-074.

O'Neill, Laura, and Jeffrey Wedding, 2022. Identification, Evaluation, and Finding of Effect for the Removal of the Rolling Stock at the Engine Maintenance Assembly and Disassembly (E-MAD) Facility, Area 25, National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Report SR112221-1. Desert Research Institute, Las Vegas.

O'Neill, Laura, Tatianna Menocal, Jeffrey Wedding, and Cheryl Collins, 2021. Area 6 Control Point: An Architectural Survey of the Area 6 Control Point, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Report TR121. Desert Research Institute, Las Vegas.

PA, see Programmatic Agreement.

Programmatic Agreement, 2018. Programmatic Agreement Between the National Nuclear Security Administration Nevada Field Office and the Nevada State Historic Preservation Officer regarding Modernization and Operational Maintenance of the Nevada National Security Site, at Mercury in Nye County, Nevada. Available at:

<https://shpo.nv.gov/uploads/documents/DOE Modernization and Operational Maintenance of the Nevada National Security Site at Mercury PA.pdf>, as accessed on April 4, 2023

Reno, Ron, Cheryl Collins, and Maureen King, 2018. The Architecture of Mercury – Nevada’s Boom Town: An Architectural Survey of Mercury, Area 23, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Technical Report TR 115. DOE/NV/0003590-09. Desert Research Institute, Las Vegas, Nevada.

Rhode, David E., Maureen L. King, Susanne J. Rowe, and Laura O’Neill, in progress. Programmatic Agreement among the U.S. Department of Energy, Nevada State Historic Preservation Office, and Advisory Council on Historic Preservation concerning the Nevada National Security Site, Nye County. Desert Research Institute, Las Vegas, Nevada.

Rhode, David E., Maureen King, Susanne J. Rowe, Susan Edwards, and Harold Drollinger, in draft. Cultural Resource Management Plan for the Nevada National Security Site, Nye County, Nevada. Desert Research Institute, Las Vegas.

Stoffle, R. W., M. N. Zedeno, and D. B. Halmo, 2001. American Indians and the Nevada Test Site, a Model of Research and Consultation. U.S. Government Printing Office, Washington, D.C.

Stueve, Megan, 2022. Supplemental Identification, Evaluation, and Finding of Effect for a Modification to the Rock Valley Direct Comparison Project, Area 27, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Report LR011022-1. Desert Research Institute, Las Vegas.

Wedding, Jeffrey, Ali Swallow, and Laura O’Neill, 2022. Annual Report on Progress in the Implementation of the Mercury Programmatic Agreement Covering FY 2022 Activities. Desert Research Institute Cultural Resources Report LR112222-1. Desert Research Institute, Las Vegas.

Wedding, Jeffrey, and Laura O’Neill, 2022a. Submission of Documentation Related to the Demolition of Building 12-7, Area 12 Camp, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Mitigation Submission Letter Report LR101022-1-MIT. Desert Research Institute, Las Vegas.

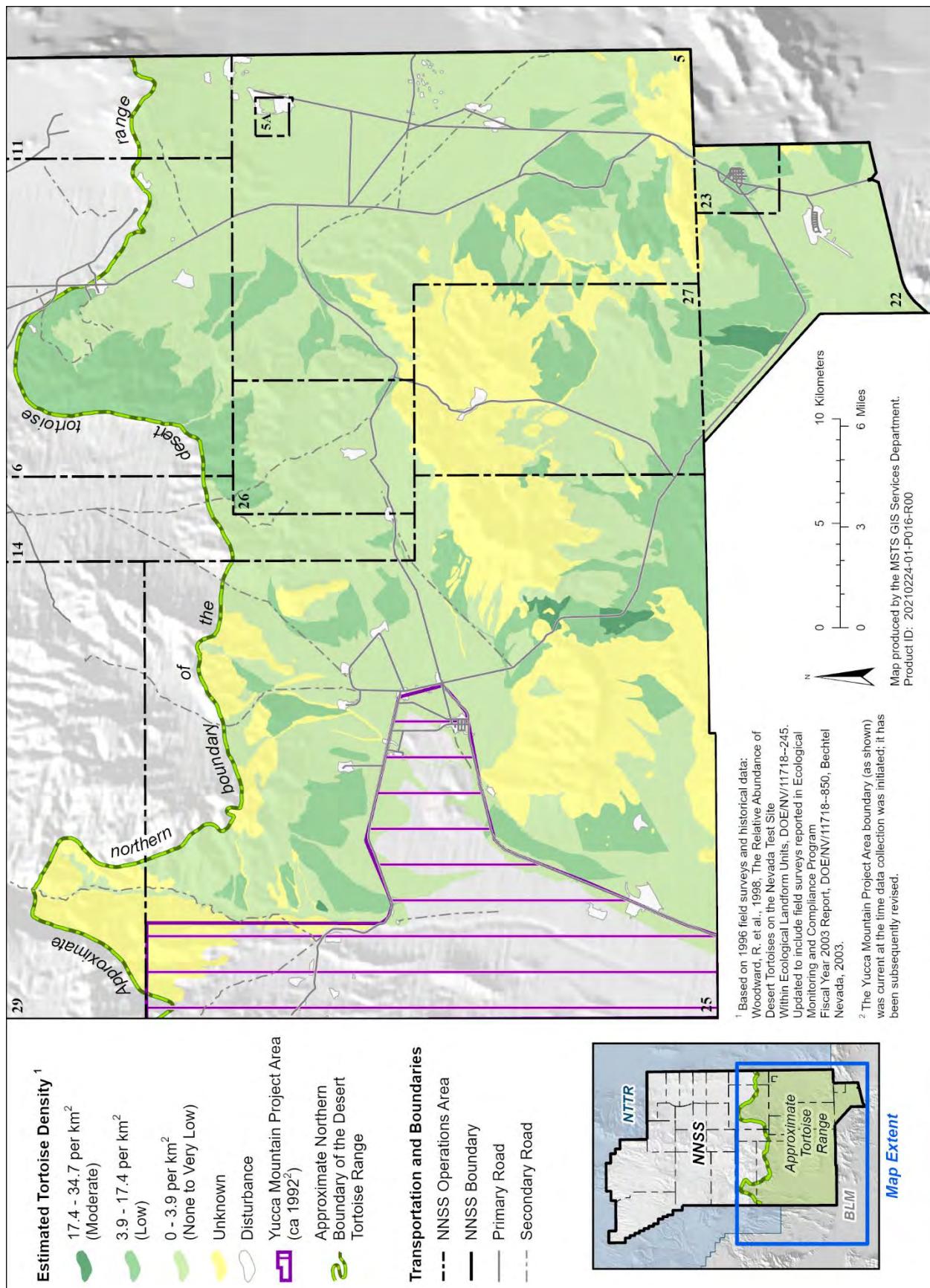
———, 2022b. Submission of Mitigation Documentation Related to the Demolition of Building 12-30, Area 12 Camp, Nevada National Security Site, Nye County, Nevada. Desert Research Institute Cultural Resources Mitigation Submission Letter Report LR101022-2-MIT. Desert Research Institute, Las Vegas.

Chapter 13: Ecological Monitoring

Derek B. Hall and Jeanette A. Perry
Mission Support and Test Services, LLC

Ecological Monitoring and Compliance Program Goals

Ensure compliance with all state and federal regulations and stakeholder commitments pertaining to Nevada National Security Site (NNSS) flora, fauna, wetlands, and sensitive vegetation and wildlife habitats. Ecosystem monitoring to identify impacts of climate and other environmental changes on the NNSS. Provide ecological information that can be used to evaluate the potential impacts of proposed projects and programs on NNSS ecosystems and important plant and animal species. Provide fuels assessments to examine fire risk, implement a revegetation program to revegetate disturbed lands, and monitor program success.


The Ecological Monitoring and Compliance (EMAC) Program provides ecological monitoring and biological compliance support for activities and programs conducted at the NNSS. Major program activities include (a) biological surveys at proposed activity sites, (b) desert tortoise permit compliance, (c) ecosystem monitoring, (d) sensitive and protected/regulated plant species monitoring, (e) sensitive and protected/regulated animal species monitoring, and (f) habitat restoration monitoring. Brief descriptions of these programs and their 2022 accomplishments are provided in this chapter. Detailed information may be found in the most recent annual EMAC report (Hall and Perry 2023). EMAC annual reports are available at <https://nnss.gov/publication-library/environmental-publications/>. The reader is also directed to *Attachment A: Site Description*, also available at <https://nnss.gov/publication-library/environmental-publications/>, where the ecology of the NNSS is described.

13.1 Desert Tortoise Compliance Program

The Mojave Desert tortoise (*Gopherus agassizii*), hereinafter *tortoise*, which inhabits the southern one-third (544 square miles) of the NNSS (Figure 13-1), is listed as threatened under the federal Endangered Species Act (ESA). Activities conducted in tortoise habitat on the NNSS must comply with the terms and conditions of a Programmatic Biological Opinion, hereinafter Opinion, issued to the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) by the U.S. Fish and Wildlife Service (FWS). On February 27, 2019, NNSA/NFO provided FWS with a Biological Assessment of anticipated activities on the NNSS from 2019 through 2029 and entered into a formal consultation with FWS to obtain an updated Opinion. NNSA/NFO received the new Opinion on August 27, 2019 (FWS 2019). The Opinion is effectively a permit to conduct activities in tortoise habitat in a specific manner. It authorizes the *incidental take*¹ of tortoises that may occur during the activities, which, without the Opinion, would be illegal and subject to civil or criminal penalties.

The Opinion states that proposed NNSS activities are not likely to jeopardize the continued existence of the Mojave population. It sets limits for the acres of tortoise habitat that can be disturbed; the number of accidentally injured and killed tortoises; and the number of captured, displaced, and relocated tortoises (Table 13-1). It also establishes mitigation requirements for habitat loss. The focus of the Desert Tortoise Compliance Program is to implement the Opinion's terms and conditions, document compliance actions, and assist NNSA/NFO in continued FWS consultations.

¹ The definition of word(s) in ***bold italics*** may be found by referencing the Glossary, Appendix B.

13.1.1 Desert Tortoise Surveys and Compliance

Forty-eight projects occurring within the range of the tortoise were reviewed by biologists in 2022 and 6 projects in progress were carried over from previous years. Of the projects reviewed, 2 required formal consultation with FWS, 15 required biological surveys, and 31 were determined to have no effects to the tortoise. These determinations were based on the amount of anticipated habitat disturbance, habitat quality, and location of projects (e.g., within developed versus undisturbed areas). Fifteen biological surveys were conducted to protect tortoises. One tortoise was observed crossing a paved road during a project. It was moved safely off the road and project activities were halted for the remainder of the week due to the increased tortoise activity from rain storms. Another tortoise was found hibernating in a project area. The tortoise's burrow was penned during the winter months, in accordance with the Opinion's terms and condition, to prevent the tortoise from being injured by project activities (Figure 13-2). No tortoises were reported injured or killed due to project activities. A total of 28.2 acres of tortoise habitat was disturbed in 2022.

Limits for the acres of tortoise habitat that can be disturbed; the number of accidentally injured and killed tortoises; and the number of captured, displaced, and relocated tortoises were initiated on August 27, 2019, with the new Opinion (Table 13-1). The threshold level for moving tortoises safely off of NNSS roads was set at 350 for the term of the Opinion and includes only large tortoises (>180 millimeters [mm] in length). Small tortoises (≤ 180 mm in length) that are encountered will be reported to FWS but are not counted toward the threshold due to their low detectability.

There were an unprecedented 115 reported tortoise roadside observations on the NNSS during 2022. The NNSS, being impacted by two years of below-average precipitation, had little to no annual forb germination in the spring. Tortoise habitat on the NNSS received desperately needed monsoon rain in August and September (average of 0.75 inches). The combination of forage availability being restricted to road edges and the rainfall in August and September drew tortoises to the road at an uncommon rate.

Of the 115 roadside sightings, 5 were roadkill (3 small and 2 large), 3 were observations of small tortoises that were not handled, 12 were observations of large tortoises that were not handled, 23 were of small tortoises that were moved off roads, 71 were of large tortoises that were moved off roads, and 1 was documented under a project. The small tortoises did not count towards incidental take but were detected and reported to FWS. The 71 large tortoises moved off roads were determined to be incidental take. This number does not reflect unique tortoises because many of the sightings were the same tortoise observed multiple times. The 2 large tortoises hit and killed by vehicles were determined to be incidental take.

In January 2023, NNSA/NFO submitted an annual report to the FWS Southern Nevada Field Office; the report summarizes tortoise compliance activities on the NNSS from January 1 through December 31, 2022.

Table 13-1. Cumulative totals and permit limits for tortoise habitat disturbance and take of large tortoises (>180 mm)

Program	Actual Number of Acres Impacted (Limit Allowed)	No. of Tortoises Incidentally Taken (Maximum Allowed)	
		Non-injury or Non-mortality ^(a)	Detected Injury or Mortality ^(b)
Continued Use of Existing Roads	NA	126 (350) ^(c)	2 (15) ^(d)
Defense	0.7 (500)	0 (10)	0 (2)
Waste Management	52.6 (250)	0 (10)	0 (2)
Environmental Restoration	0.0 (250)	0 (10)	0 (2)
Nondefense Research and Development	15.1 (1,000)	0 (20)	0 (4)
Work-for-Others	0.0 (500)	0 (20)	0 (2)
Infrastructure	38.8 (500)	1 (20)	0 (4) ^(e)

Table 13-1. Cumulative totals and permit limits for tortoise habitat disturbance and take of large tortoises (>180 mm)

Program	Actual Number of Acres Impacted (Limit Allowed)	No. of Tortoises Incidentally Taken (Maximum Allowed)	
		Non-injury or Non-mortality ^(a)	Detected Injury or Mortality ^(b)
Totals by Permit Term	107.2 (3,000)	127 (440)	2 (31)
Totals for 2022	28.2	71	2

(a) All tortoises observed in harm's way may be moved to a safe location as outlined in the Opinion.

(b) The numbers in parentheses in this column represent triggers that if exceeded require reinitiation of the Opinion.

(c) No more than 35 non-injury/non-mortality tortoises in a given year and no more than 350 during the term of the Opinion.

Going over this limit would require concurrence with FWS.

(d) No more than 4 tortoises killed in a given year and no more than 15 killed during the term of the Opinion.

(e) No more than 2 tortoises killed in a given year and no more than 4 killed during the term of the Opinion.

Figure 13-2. Constructed pen kept in-place during winter months to protect a hibernating tortoise from project activities.
(Photo by J.A. Perry, December 14, 2022)

13.1.2 Desert Tortoise Conservation Projects

Biologists continue to increase tortoise awareness by updating and increasing tortoise signage throughout the NNSS. Biologists continued placing temporary warning signs on either side of the road at recent tortoise roadkill locations. Signs are left out for 2 weeks following a tortoise mortality to increase driver awareness.

NNSS biologists are conducting a study that involves monitoring the survival of 60 juvenile tortoises translocated to the NNSS in September 2012. Prior to their release, the tortoises were in the care of the San Diego Zoo Institute for Conservation Research at the Desert Tortoise Conservation Center located near Las Vegas, Nevada. NNSS biologists use radiotelemetry to track the location of study tortoises, record habitat characteristics and use, and collect other ecological data.

Of the 60 juvenile tortoises released in 2012, 12 tortoises remain alive and continue to be monitored. No tortoises were found dead during 2022, but 2 went missing (1 female, 1 male), likely due to transmitter failure. Monitoring of the remaining animals includes location tracking and annual health assessments. Due to drought conditions, a pattern of reduced foraging and activity was evident with tortoises only growing an average of 1.0 mm in length (range = 0–4 mm) between spring and fall. This study will continue for the next several years and will provide valuable data for future juvenile desert tortoise translocations.

13.2 Biological Surveys at Proposed Project Sites

Biological surveys are performed at proposed project sites where project activities may have impacts to plants, animals, associated habitat, and other biological resources (e.g., the demolition of structures that may contain bird nests). The goal is to minimize the adverse effects to important biological resources (Section 13.3). Important biological resources include such things as cover sites, nest/burrow sites, roost sites, wetlands, or water sources that are vital to important species.

In 2022, biologists surveyed a total of 659.3 acres (ac) for 26 proposed projects on the NNSS. Although projects target previously disturbed areas (e.g., road shoulders, utility corridors), a total of 28.9 ac, including 14.3 ac of sensitive habitat, were disturbed in 2022. The total area of disturbed important habitats has been tracked since 1999; totals to date are 27.2 ac (Pristine), 55.1 ac (Unique), 997.3 ac (Sensitive), and 215.1 ac (Diverse).

Some of the sensitive and protected/regulated species and important biological resources found during the surveys included western burrowing owl sites (*Athene cunicularia hypugaea*); two live tortoises; tortoise burrows; bat sign; active bird nests; desert cottontail (*Sylvilagus audubonii*); predator burrows (coyote [*Canis latrans*] and kit fox [*Vulpes macrotis*]); ungulate sign (pronghorn antelope [*Antilocapra americana*], feral burro [*Equus asinus*], and mule deer [*Odocoileus hemionus*]); yucca plants (Joshua tree [*Yucca brevifolia*] and Mojave yucca [*Yucca schidigera*]); singleleaf pinyon (*Pinus monophylla*); multiple cactus species; and one sensitive plant (Darin buckwheat [*Eriogonum concinnum*]). Biologists communicated to ground crews and provided written reports of survey findings and mitigation recommendations. Important biological resources within project sites were flagged, avoided, or removed.

13.3 Sensitive and Protected/Regulated Species and Ecosystem Monitoring

NNSA/NFO strives to protect and conserve sensitive and protected/regulated plant and animal species found on the NNSS, and to minimize cumulative impacts to those species as a result of NNSA/NFO activities. Important species known to occur on the NNSS include one mollusk, two reptiles, 242 birds, 30 mammals, 20 sensitive plants, and 23 plants protected from unauthorized collection. They are identified in Table A-10 of *Attachment A: Site Description*. They are classified as important due to their sensitive, protected, and/or regulatory status with state or federal agencies, and they are evaluated for inclusion in long-term monitoring activities on the NNSS. NNSA/NFO has produced numerous documents reporting the occurrence, distribution, and susceptibility to threats for predominately sensitive species on the NNSS (Wills and Ostler 2001).

Field monitoring activities in 2022 related to important NNSS plants and animals and to ecosystem monitoring are listed in Table 13-2. A description of the methods and a more detailed presentation of the results of these activities are reported in Hall and Perry (2023).

Important Habitat Categories

Pristine Habitat: having few human-made disturbances

Unique Habitat: containing uncommon biological resources such as a natural wetland

Sensitive Habitat: containing vegetation associations that recover very slowly from direct disturbance or are susceptible to erosion

Diverse Habitat: having high plant species richness

Table 13-2. Activities conducted in 2022 for important species and ecosystem monitoring on the NNSS**Sensitive Plants (Table A-10 of Attachment A: Site Description)**

The list of sensitive and protected/regulated plants on the NNSS is reviewed annually to ensure the appropriate species are included in the NNSS sensitive plant monitoring program. No updates to the NNSS sensitive plant monitoring program were needed. Currently there are 19 vascular plants and one non-vascular plant considered sensitive that warrant inclusion in the NNSS sensitive plant monitoring program.

Surveys in 2022 focused on one plant under evaluation, long-term monitoring of three plants, and opportunistic surveys for three plants. Many Lahontan beardtongue plants were found along the 19-01 road, confirming that the plant does grow on the NNSS. More surveys are needed for this plant's evaluation to determine its distribution and threats.

Long-term monitoring surveys were conducted for three plants: Black woollypod, Clokey eggvetch, and Darin buckwheat. Five locations of Black woollypod were visited on Shoshone Mountain with only six plants found across a large area surveyed. Being located in a very remote area, there were no threats to the plants, besides drought, which was likely the reason only six plants were found. Clokey eggvetch was also surveyed on Shoshone Mountain with many plants found fruiting or flowering. The location was on the old Shoshone Trail; however, it has been reclaimed by nature and no threats were identified to the habitat or plants. The Timber Mountain Clokey eggvetch populations continue to be monitored, showing much resilience to the 2021 Cherrywood Fire that burned through much of its habitat on Timber Mountain. Darin buckwheat has received little monitoring attention since 2010. Six out of the 14 known locations were surveyed with plants only being found at two of the locations.

An opportunistic survey for Pahute green gentian revealed that an existing population in Gold Meadows was not correctly mapped in the current database and was updated. One location of Pahute Mesa beardtongue was opportunistically documented with a population expansion. The plant is more widely distributed than what is currently mapped in the database. Sanicle biscuitroot was observed during fuel surveys in Yucca Flat at a location adjacent to Rainier Mesa Road.

More detailed information can be found in Hall and Perry 2023.

Reptiles

No trapping or roadkill surveys were conducted in 2022. Opportunistic observations were documented.

Migratory Birds (protected under the Migratory Bird Treaty Act)

A total of 39 dead birds were documented on the NNSS in 2022. This is the second highest number of mortalities recorded in a single year. Sixteen dead bird carcasses in varying stages of decay were found inside a fill pipe connected to a large water tank at the Area 5 Radioactive Waste Management Complex (RWMC). This tank had been brought on the site a few years ago from an unknown location to support revegetation efforts, so it is likely many of these birds were killed before it was moved. The cause of death was entrapment. The pipe was modified so no more birds could be trapped. Additionally, all similar tanks at Area 5 RWMC and elsewhere on the NNSS were checked to make sure the tanks were avian safe. An unknown passerine was rescued from a glue trap, but later died of its injuries. Six bird carcasses were found inside the tower at the Ice Cap event site in Yucca Flat, which included five barn owls (three chicks, two adults), and an adult great-horned owl (*Bubo virginianus*). The cause of death is unknown and not likely due to entrapment because there are numerous openings to the outside, unless the birds could not find them. Five birds (four common ravens [*Corvus corax*] and one great-horned owl) were electrocuted. Four birds were hit by vehicles, including two red-tailed hawks (*Buteo jamaicensis*), one western burrowing owl (*Athene cunicularia hypugaea*), and one common poorwill (*Phalaenoptilus nuttallii*). One red-tailed hawk chick died following a nest relocation. One mourning dove (*Zenaida macroura*) was found with a broken wing and had to be euthanized. It was collected and analyzed as part of the program to monitor for man-made radiation in wildlife. A total of 11 birds were found dead due to unknown causes. This included the six dead birds found at the Ice Cap tower (mentioned above), three common ravens, one common goldeneye (*Bucephala clangula*), and one western tanager (*Piranga ludoviciana*).

Currently, there are two federal permits and one state permit pertaining to birds on the NNSS. Federal permit MB008695-2 allows for the taking of up to 10 mourning doves each year for radiological analysis and the salvage of dead migratory birds (except species listed under the ESA). All permit conditions were met and an annual report summarizing 2022 activities was submitted to FWS. Two mourning doves were taken and no bird specimens were salvaged for educational purposes. Federal permit MB60930C-1 (issued November 6, 2018) is a "Special Purpose Utility Permit – Electric." This permit enables NNSS biologists, in emergency situations, to remove active nests at project sites and possess and transport carcasses of golden eagles and other bird species. A red-tailed hawk nest and two older chicks were moved from an energized switch pole in Jackass Flats to the rooftop of an abandoned building on June 3. Within an hour, one adult was perched near the nest. The nest was checked on June 6, and both chicks were on the ground. They were captured and taken to a licensed raptor rehabilitator in Las Vegas. The smaller male chick died that night, but the bigger female survived. On July 14, she was released at Captain Jack Spring on the NNSS. Also on July 14, another rehabilitated immature red-tailed hawk found near Las Vegas was released at Camp 17 Pond. All permit conditions were met and an annual report summarizing 2022 activities was submitted to FWS. This included entering all bird injuries and mortalities into an FWS electronic database: the Injury and Mortality Reporting system. Nevada Department of Wildlife (NDOW) Scientific Collection Permit 261454 allows for the salvage and possession of migratory birds, and the sacrificing of mourning doves, chukar, and Gambel's quail. All permit conditions were met and an annual report summarizing 2022 activities was submitted to NDOW.

Table 13-2. Activities conducted in 2022 for important species and ecosystem monitoring on the NNSS

Several mortality reduction measures were taken. These included retrofitting 197 power poles between U1a facility and Valley substation to make them avian-friendly; rescuing a grounded common loon (*Gavia immer*), and releasing it at a large pond; removing a juvenile brown-headed cowbird (*Molothrus ater*) from a glue trap and releasing it; removing a nest and two red-tailed hawk chicks from a potentially unsafe location; surveying 267 hectare (ha) at 26 project sites for active bird nests before disturbance; and, removing several dead rabbits and snakes from roads to reduce the potential for vehicle mortalities of scavenging birds.

Two long-term winter raptor survey routes were sampled in January and February; 16 raptor sightings (14 red-tailed hawks, 2 prairie falcons [*Falco mexicanus*]) were recorded. Surprisingly, no golden eagles were documented. Data were shared with the NDOW for their statewide monitoring effort.

Feral Horses (*Equus caballus*) (protected under the Wild and Free-Roaming Horses and Burros Act)

Horse monitoring during 2022 entailed opportunistic observations rather than focused surveys. An exact number of horses was not calculated. Gold Meadows Spring and Camp 17 Pond continue to be valuable resources for these animals, especially during the hot, dry summer. A total of 133 and 907 photos of horses were recorded using a motion-activated camera at Gold Meadows Spring and Camp 17 Pond, respectively.

Mule Deer (*Odocoileus hemionus*) (managed as a game mammal by NDOW)

Mule deer surveys were conducted on Pahute and Rainier mesas. The average number of deer counted was 4.3 deer/night, which was quite a bit lower than 11.8 deer/night documented in 2021. The observed buck/doe ratio was 850 bucks/100 does, the highest ratio observed since 2006. The observed fawn/doe ratio was 0 fawns/100 does, which has only occurred twice before (since 2006) in 2007 and 2021, which were dry years like 2022.

Desert Bighorn Sheep (*Ovis canadensis nelsoni*) (managed as a game mammal by NDOW)

2022 monitoring of the NNSS sheep population was done by documenting sheep presence at several water sources using motion-activated cameras. A total of 4 marked sheep (3 ewes, 1 ram) and at least 12 unmarked sheep (6 ewes, 4 rams, 2 lambs) were documented on the NNSS in 2022. A collaborative effort with NDOW also resulted in the capture of three adult ewes on November 11, 2022, as part of a disease surveillance project.

Sensitive Bats (see Table A-11 of Attachment A: Site Description)

Bat monitoring in 2022 included documenting roost sites or locations of bats found around buildings or in other areas and continued acoustic sampling at North American Bat Monitoring Program (NABat) priority grid cells. NNSS biologists responded to nine reports of bats at NNSS facilities. NABat is a multi-national, multi-agency coordinated bat monitoring program across North America made up of an extensive community of partners who use standardized protocols to gather data that allows for assessing population status and trends, informing responses to stressors, and sustaining viable populations. Four priority grid cells are located on the NNSS, all of which were sampled during 2022, including sites at North Chukar Canyon Tanks and Twin Spring that were inaccessible in 2021 due to the Cherrywood wildfire. Acoustic bat detectors were set up at two locations within each grid cell and collected ultrasonic echolocation calls from bats for multiple consecutive nights. Results from 2021 sampling detected California myotis (*Myotis californicus*), western small-footed myotis (*Myotis ciliolabrum*), and canyon bats (*Parastrellus hesperus*) at the Mojave Desert and transition zone sites with no bats detected at the Great Basin Desert sites. The 2022 data are still being analyzed, so results are pending. The intent is to sample the same locations each year for the next several years. Results will be used to better understand bat distribution and population trends on the NNSS and will be shared with the NABat program to look at regional and continental distribution and population trends.

Mountain Lions (*Puma concolor*) (managed as a game mammal by NDOW)

A collaborative effort with United States Geological Survey (USGS) scientist Dr. Kathy Longshore continued in 2022 to investigate mountain lion distribution and abundance on the NNSS using remote, motion-activated cameras. Cameras collected a total of 142 photographs/video clips of mountain lions from 11 of 25 camera sites. A minimum of three mountain lions (one adult male, one adult female, and one subadult) inhabited the NNSS in 2022 based on photographic data.

Natural and Man-made Water Sources

Ten natural water sources, one well pond, five wildlife water troughs, and two well sumps that periodically retain tritium-contaminated groundwater discharged from monitoring wells (Chapter 5, Section 5.1.3) were monitored with motion-activated cameras to document wildlife use. Tritium-contaminated well sumps are monitored to identify which species are being exposed and which may provide an exposure pathway to offsite hunters who may consume them. At least three species of birds, including a turkey vulture (*Cathartes aura*), were photographed at the monitored well sumps.

13.3.1 Mule Deer and Pronghorn Antelope Distribution

Mule deer and pronghorn antelope are mobile game animals that inhabit the NNSS. Both are generally considered to be migratory with distinct winter and summer ranges. Mule deer typically prefer the forested, mountainous habitats in the northern and western portions of the NNSS, while pronghorn typically prefer the open valleys in the southern and eastern portions of the NNSS. Mule deer are much more abundant than pronghorn on the NNSS. Mule deer movements on the NNSS were studied more than 30 years ago (Giles and Cooper 1985) using radio-collars that lacked the accuracy of current Global Positioning System (GPS) technology. They identified summer and winter ranges and a couple of long-distance movements of mule deer into areas where hunting is allowed on public land. Mule deer in their study were not necessarily those known to be using radioactively contaminated locations. Pronghorn are relatively new residents to the NNSS (first observed in 1991) and their use of the NNSS has never been studied. Tsukamoto et al. (2003) report the distribution of pronghorn in Nevada as of 2002 with the nearest population to the NNSS being just north in Emigrant Valley. The NNSS represents an expansion of pronghorn range in Nevada.

A research study funded by NNSA/NFO and the Environmental Management Nevada Program (EM Nevada) was initiated on the NNSS in November 2019 to better understand the potential radiological dose to the offsite public via the hunter pathway. This was a collaborative effort involving USGS, NDOW, the Nevada Test and Training Range, NNSS Management and Operating Contractor biologists, and several volunteers. Native Range Capture Services captured the animals. Study objectives include: 1) determine the distribution, abundance, and range of movements of mule deer and pronghorn, 2) estimate the potential for hunters to harvest animals that use the NNSS, 3) evaluate the animals' use of contaminated areas, 4) obtain information on the potential radiological dose to someone consuming animals from the NNSS, 5) determine the potential radiological dose to animals on the NNSS, 6) document survival and causes of mortality, 7) refine habitat use patterns for both mule deer and pronghorn using resource selection functions and correlate that with phenological changes in the vegetation, and 8) assess the overall health, disease status, and genetics of NNSS mule deer and pronghorn.

In November 2019, a total of 23 mule deer (16 does, 7 bucks) and 20 pronghorn (14 does, 6 bucks) were captured. All 23 mule deer were radio-collared and ear-tagged. Eighteen pronghorn (12 does, 6 bucks) were radio-collared and ear-tagged, while one doe was ear-tagged only. Two pronghorn does died within a few days of capture and were scavenged by coyotes.

At the beginning of 2022, 8 mule deer (7 does, 1 buck) and 8 pronghorn (5 does, 3 bucks), excluding the ear-tagged only doe, were still alive. Pronghorn spent a majority of time in Frenchman Flat and Yucca Flat with no large seasonal migrations, although they remained close to water sources and shade during the hot, dry summer. Mule deer made seasonal migrations, migrating primarily off the high elevation portions of Rainier and Pahute Mesas to lower-elevation areas in the CP Hills, Eleana Range, Pahute Mesa, and eastern slopes of Rainier Mesa. For a third year in a row, a doe migrated nearly 80 kilometers (km) from its wintering area on the NNSS to the Kawich Peak area on public land open to hunting. Three pronghorn does and one buck were found dead during 2022, compared to the two pronghorn does and no bucks found dead during 2021. All were found dead in Yucca Flat due to unknown causes. Only one mule deer, a buck, was found dead during 2022 compared to a total of 10 mule deer (4 bucks, 6 does) found dead during 2021. The buck was killed by a mountain lion.

Radio-collars were programmed to drop off the tracked animals in November 2022, which they did successfully. At the end of the radio-tracking period, four pronghorn (two does, two bucks) were still alive, excluding the ear-tagged only doe. It is unclear whether this animal was still alive or not. Seven mule deer, all does, were still alive. Detailed analyses of the data will be completed in the next few years to address the study objectives described above.

For more detailed information on capture method, health assessments, and distribution, refer to the annual EMAC reports (Hall and Perry 2020, 2021, 2022, 2023).

13.4 Habitat Restoration Program

NNSS biologists conduct revegetation activities at disturbances on and off the NNSS in support of NNSA/NFO and EM Nevada activities and continue to evaluate those efforts. The objectives of revegetation include:

1) establish a perennial vegetation community on waste cover caps to prevent water from infiltrating into buried waste through evapotranspiration, 2) establish a perennial vegetation community in disturbed areas (e.g., burned areas) to outcompete invasive annual grasses, reduce the risk of wildland fires, restore ecosystem function, and create wildlife habitat, 3) support the intent of United States Executive Order 13112, “Invasive Species,” to prevent the introduction and spread of non-native species and restore native species to disturbed sites, and 4) demonstrate that revegetation may qualify as mitigation for the loss of desert tortoise habitat under the current Opinion.

Activities conducted in 2022 included: 1) visually assessing the vegetation at the U-3ax/bl closure cover (Corrective Action Unit [CAU] 110) (Area 3 Radioactive Waste Management Site) and the “92-Acre Area” (CAU 111) (Area 5 RWMC), 2) revegetating and monitoring seeding success at CAU 577 Cells 19/20, 3) assessing revegetation success at CAU 577 East and West Cover Caps (Area 5 RWMC), 4) transplanting creosote bush and white bursage and evaluating revegetation success on Cell 18 (Area 5 RWMC), and 5) monitoring results from a research study to evaluate the effectiveness of different herbicide and seeding treatments to control cheatgrass after the Cherrywood Fire.

For more detailed information about these activities refer to the annual EMAC report (Hall and Perry 2023).

13.4.1 CAU 110, U-3ax/bl, Closure Cover

A qualitative vegetation assessment was conducted on July 20, 2022. Shadscale (*Atriplex confertifolia*) continues to be the most abundant shrub species on the closure cover (Figure 13-3). Most of the plants observed showed signs of stress due to the drought conditions and some dead shadscale plants were noted. Nevada jointfir (*Ephedra nevadensis*), the second most common perennial species, was doing better than shadscale, but also showed some signs of stress. Some Nevada jointfir plants set seed this year, but it is not known if the seed was viable or not. No perennial plant seedlings were seen. No perennial grasses have been found on the closure cover for several years and none were found again in 2022. No annual plants were documented, not even cheatgrass (*Bromus tectorum*), due to the poor growing conditions caused by the drought. Some residual dead cheatgrass from 2 years ago was found amongst the shadscale and Nevada jointfir plants.

During the vegetation surveys, small mammal activity was evaluated. Some burrow complexes were noted with most of these apparently inactive. The number of burrows on the cover cap is substantially less than in the native undisturbed areas in Yucca Flat. Trapping for small mammal removal is not recommended at this time. No rabbits were observed or evidence of herbivory on the vegetation.

Figure 13-3. Plant community established on the U3ax/bl cover cap consisting primarily of shadscale and Nevada jointfir
(Photo by D.B. Hall, July 20, 2022)

13.4.2 CAU 111, 92-Acre Area, Closure Covers

The CAU 111 consists of four closure cover caps: South Cover, North South Cover, North North Cover, and West Cover. A qualitative assessment of vegetation at the four cover caps was conducted on July 20, 2022. Precipitation received at the 92-Acre Area for the period December 2021 to April 2022 was less than half the normal amount, resulting in poor growing conditions.

South Cover. Several perennial shrubs (47 fourwing saltbush [*Atriplex canescens*], 35 shadscale, 1 white bursage [*Ambrosia dumosa*]), and 1 desert pepperweed (*Lepidium fremontii*) were found widely scattered on the cover cap. The desert pepperweed had been browsed by pronghorn antelope. Some saltlover (*Halopeplis glomeratus*) and a few prickly Russian thistle (*Salsola tragus*) plants that had germinated this year were found on the cover; however, most of the plant biomass was from remnant saltlover plants from previous years (Figure 13-4). A few active rodent burrows and four ant mounds were found on the cap. A zebra-tailed (*Callisaurus draconoides*) lizard was also observed on the cap and several piles of antelope scat.

Figure 13-4. South Cover on the “92-Acre Area” with an abundance of old saltlover plants from previous years and some new plants from this year
(Photo by D.B. Hall, July 20, 2022)

North South Cover. This site was used for a revegetation trial over the last few years and has several plants remaining from the seeding and transplants, mostly fourwing saltbush. There are also some large fourwing saltbush and numerous shadscale plants alive from revegetation efforts completed several years ago. Shadscale seed is known to remain viable for several years after being seeded and will germinate when conditions are right. It is estimated that about 25% of this cover has sufficient perennial plant density and cover. It is recommended that the remaining 75% be revegetated. Some saltlover and a few prickly Russian thistle plants that had germinated this year were found on the cover but most of the plant biomass was from remnant saltlover plants from previous years. There is also abundant old Arabian schismus plants in the recent revegetated areas that were irrigated. There were a few active rodent burrows on the cap, an ant mound, and a few piles of antelope scat.

North North Cover. No perennial plants were observed but there were some saltlover and prickly Russian thistle plants that had germinated this year. However, most of the plants were old saltlover plants from previous years. Several rodent burrows and four ant mounds were documented. Two zebra-tailed lizards and a couple of piles of antelope scat were also observed. This site is scheduled to be revegetated in February 2023, which will entail adding an additional 9–12 inches of topsoil on top of the existing cover, seeding, and hydromulching the site.

West Cover. This site had a lot of recent construction activity to fix subsidence issues, so much of the cover cap was void of vegetation. Active subsidence was noted near the northernmost monitoring station. The undisturbed areas were dominated by old saltlover plants from previous years. There were some saltlover and prickly Russian thistle plants that had germinated this year, and a few rodent burrows and one ant mound were found. A flock of 10–15 horned larks (*Eremophila alpestris*) and 10 piles of antelope scat were also observed.

Overall, the integrity of the cover caps was very good. Due to the drought conditions, germination of new weeds this year was limited. No rabbits or fresh rabbit sign were observed. Some rodent burrowing and ant activity were detected but did not appear to be impacting the integrity of the covers. A relatively new discovery of several piles of antelope scat and reported antelope sightings in the compound indicate that antelope are utilizing many of the cover caps within Area 5 RWMC; however, they currently pose no harm to any of the covers.

13.4.3 CAU 577 Cells 19/20 Revegetation and Monitoring

Revegetation of CAU 577 Cells 19/20 (4.8 ha) was accomplished during the spring of 2022, and included site preparation, seeding, hydromulching, and supplemental irrigation. A native seedmix comprising seven shrub, two grass, and three perennial forb species was broadcast seeded with a drillseeder at a rate of 33.6 kilograms (kg) of pure live seed (PLS) per hectare and then covered with a chain harrow that was dragged behind the seeder (Figure 13-5). A straw mulch plus soil binder was then applied at a rate of 2,240 kg/ha for soil moisture retention, organic matter additive, and erosion control. A wheel line irrigation system was installed and used to apply irrigation at a rate of 6.4 mm per hour (Figure 13-6).

Figure 13-5. Broadcast seeding CAU 577 Cells 19/20 with drill seeder and chain harrow
(Photo by D.B. Hall, March 3, 2022)

Seedling density was monitored during early June 2022 to evaluate seeding success. Results revealed 6.17 seeded seedlings per square meter (m^2) compared to 0.94 perennial plants/ m^2 in a nearby reference area. Eight of the 12 seeded species were found with squirreltail (*Elymus elymoides*), Indian ricegrass (*Achnatherum hymenoides*), and Nevada jointfir performing the best. Opportunistic wildlife observations were also recorded to assess wildlife use of the revegetated areas. Flocks of horned larks were observed on multiple occasions. Approximately 100 yellow-headed blackbirds (*Xanthocephalus xanthocephalus*) were observed on the cap in late April during irrigation. A few rabbit pellets were observed, and some plants had been browsed. A couple of ant hills were also observed on the cover cap.

Figure 13-6. Irrigation system in operation at CAU 577 19/20
(Photo by D.B. Hall, March 17, 2022)

13.4.4 CAU 577 East and West Cover Cap Revegetation and Monitoring

Revegetation of CAU 577 East (5.2 ha) and West (7.0 ha) Cover Caps was accomplished during the spring of 2021 (Figure 13-7). During the spring of 2022, plant density (number of plants/m²) by species and percent cover were measured. Seeded plant density and percent cover exceeded perennial plant density and percent cover on the reference area, suggesting a successful revegetation of the cover caps. Cattle saltbush (*Atriplex polycarpa*) and Nevada jointfir were the dominant species. It is too early to tell if the plants will persist over the long term, but monitoring will continue annually for the next several years to evaluate long-term success.

Figure 13-7. CAU 577 East Cover, June 2022
(Photo by D.B. Hall, June 9, 2022)

13.4.5 Area 5 RWMC Cell Revegetation and Monitoring

The strategy for establishing a perennial plant community on top of waste cover caps is to use a combination of seeding a diverse, native seedmix and transplanting creosote bush (*Larrea tridentata*) and white bursage, two species that are difficult to establish from seed. Cell 18 was seeded in fall 2020. Plant density and percent cover were measured in March 2022. Perennial plant density, including from seed and transplants planted in 2021, on the cap dropped significantly, especially Indian ricegrass and Palmer penstemon. Even with the declines, perennial plant density on the cap was 93% of perennial plant density recorded in the reference area (0.87 versus 0.94 plants/m²). Reasons for the decline are likely due to competition from saltlover, found in high density, and natural attrition of perennial seedlings. No perennials were recorded during plant cover sampling compared to 8.9% perennial plant cover on the reference area. Project participants are hoping that perennial plant cover will increase as seedlings and transplants grow and become established.

Creosote bush and white bursage seed was collected within 5 km of Area 5 RWMC by NNSS biologists and given to the Nevada Division of Forestry to grow transplants for planting at Cell 18. During the first few weeks in April 2021 and 2022, approximately 3,850 and 4,500 plants were planted, respectively. First year survival of creosote bush and white bursage transplants planted in April 2021 was 34.9% and 28.4%, respectively. Similar to seeding results, low transplant survival is thought to be largely impacted by high densities of saltlover that outcompeted the transplants for soil moisture. Seeding and transplant success will continue to be evaluated.

13.4.6 Cheatgrass Control Research Trial

The Cherrywood wildland fire burned more than 20,000 acres in the western portion of the NNSS in May 2021. This was the third wildland fire in this area since 2011. One of the major contributing factors to this increased fire frequency is the abundance of cheatgrass, an invasive annual grass. Cheatgrass is problematic for many reasons. It is able to germinate and grow at colder soil temperatures than many native species; as such, by the time the native species germinate and start growing, the cheatgrass has used up most of the available soil moisture, which results in native seedlings struggling to survive. Cheatgrass also has a high germination rate even with little precipitation, grows quickly, and is able to produce a lot of biomass in a short amount of time. Because it is an annual, it dries out early in the season when the soil moisture dries out, resulting in an abundant, highly flammable fine fuel that is easily ignited and carries fire readily. It thrives in areas of disturbance, especially previously burned areas. The cheatgrass biomass is problematic not just for the year in which it germinates but also because the residual biomass can persist for multiple years. The best way to control cheatgrass in the long term is to establish a perennial vegetative community that will outcompete cheatgrass. For short-term control, herbicides such as imazapic (e.g., Panoramic) (1-year control) or indaziflam (e.g., Rejuvra) (2–3 year control) work best. The optimal strategy is to use a combination of herbicide treatments followed by seeding.

NNSS biologists conducted a research trial to evaluate the effectiveness of different herbicide and seeding treatments to control cheatgrass and establish a perennial vegetative community within the Cherrywood Fire burned area. It is anticipated that results will be used to guide future fire rehabilitation efforts and/or proactively protect important areas from burning. The study location is near the East Cat Canyon Road/North Timber Peak spur road.

Five treatments were implemented and a control, with three replicates of each in a completely randomized design for a total of 18 plots (Figure 13-8). Treatments included: 1) Rejuvra (liquid Indaziflam) applied by hand at 5.0 ounces (oz)/ac plus 8 oz/ac Efficax (surfactant) plus 25 gallons water/acre, 2) Panoramic (liquid imazapic) applied by hand at 8 oz/ac plus 8 oz/ac Efficax (surfactant) plus 10 gallons water/acre, 3) Open Range G (granular imazapic) applied with hand spreader at 10 pounds per acre, 4) seeding a wildland seed mix by hand at a rate of 20 pounds PLS/ac and covering the seed with hand rakes, and 5) seeding the same wildland seed mix as previous by hand at a rate of 20 pounds PLS/ac and not covering the seed. Control plots had no treatment. An additional fire-resistant vegetation treatment (i.e., greenstrip) was implemented in a different but nearby area and entailed seeding a mix of Immigrant forage kochia (*Kochia prostrata*) at a rate of 0.5 pounds PLS/ac and Siberian wheatgrass (*Agropyron fragile*) at a rate of 10 pounds PLS/ac. Plot size was 20 m by 20 m (400 m² or ~0.1 ac). Plots were staked on November 10, 2021, seeded on November 15, 2021, and herbicide was applied on November 16, 2021.

A follow-up seeding treatment was applied to the herbicide treated and control plots on October 31, 2022, to evaluate if there were residual herbicide effects on seedling germination. The first eight meters of each herbicide-treated and control plot were hand seeded with the same seedmix used before at a rate of 14.3 pounds PLS/ac. Seed was then covered using hand rakes.

Plots were monitored in late May 2022 for plant density and percent cover by species. Photographs of each plot were taken during sampling, and on June 16, 2022, a drone was used to take aerial photographs of the plot area (Figure 13-9). Note the patchwork pattern of white (herbicide treated, little to no cheatgrass germination) versus yellowish (high cheatgrass densities) plots in the figure. Monitoring results also showed significantly lower cheatgrass densities and percent cover in all three herbicide treated plots, indicating these herbicides are effective at controlling cheatgrass germination and growth at least in the first year. No seedlings of seeded species were detected in the seeded plots during monitoring, which highlights the risk of seeding failure, especially in drought years. Of interest is the fact that even in a very dry year, there was enough moisture to activate the chemicals in the herbicide to make them effective, but not enough moisture for the seeded species to germinate. Perennial and annual forbs and grasses responded well in the herbicide plots. Many were lush, green, and flowering whereas in the control plots they were dry and non-reproductive. This can be attributed to the lack of competition for soil moisture. With no cheatgrass to usurp all the soil moisture, the perennial and annual forbs were able to thrive. Plots will be monitored over the next few years to evaluate multi-year cheatgrass control and impacts to other annual and perennial plants. For more detailed analyses refer to Hall and Perry (2023).

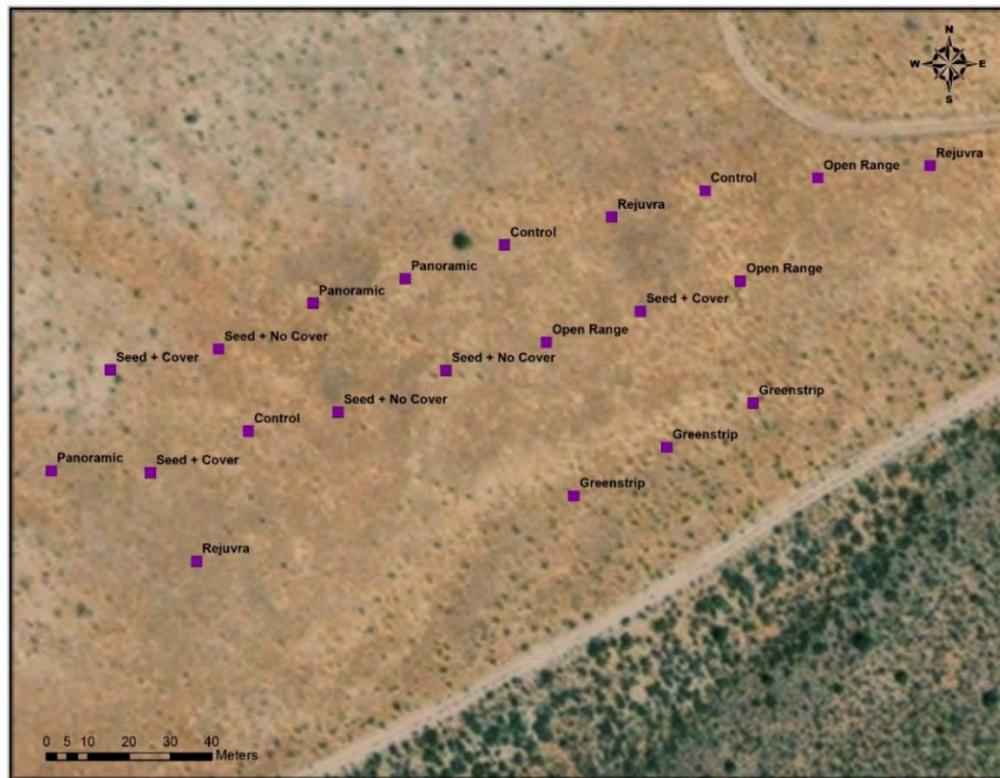


Figure 13-8. Final plot layout for cheatgrass control research trial

Figure 13-9. Aerial view of cheatgrass control research trial study plots taken with a drone
(Note the bare areas showing the lack of cheatgrass in the herbicide treated plots and the cheatgrass
in the control plots)
(Photo taken June 16, 2022)

13.5 Wildland Fire Hazard Assessment

An NNSS Wildland Fire Management Plan requires the protection of site resources from wildland and operational fires. An annual vegetation survey to determine wildland fire hazards is conducted on the NNSS each spring. Survey findings are submitted to the NNSS Fire Marshal and summarized in the annual EMAC report (Hall and Perry 2023). Between April 13 and June 1, 2022, NNSS biologists visited sampling stations to assess a fuel index that can range from 0 to 10 (lowest to highest risk of wildfires). The mean combined fuels index (which includes both fine [non-woody] and woody fuels) for all sampling stations was 4.35, which represented average fuel loads. Due to the well below-average precipitation received during winter/spring 2021–22, production of annual forbs and grasses was virtually non-existent at the lower elevations, low at the middle elevations, and moderate at the upper elevations. Production of perennial herbaceous grasses and forbs was near zero at the lower elevations and low to moderate at the middle and upper elevations. Additionally, residual fine fuels, primarily *Bromus* species, from the past 2 years persisted in some areas.

Six wildland fires were documented on the NNSS in 2022. Four of these were human-caused or project related, one was caused by lightning, and one was by an unknown cause. Each fire was <1.0 ha, and all fires when combined burned <1.0 ha.

13.6 References

Giles, K., and J. Cooper, 1985. *Characteristics and Migration Patterns of Mule Deer on the Nevada Test Site*. EPA 600/4-85-030. Environmental Protection Agency, Las Vegas, NV.

Hall, D. B. and J. A. Perry, 2020. *Ecological Monitoring and Compliance Program 2019 Report*. DOE/NV/03624-0854. Mission Support and Test Services, LLC, Las Vegas, NV.

_____, 2021. *Ecological Monitoring and Compliance Program 2020 Report*. DOE/NV/03624--1156. Mission Support and Test Services, LLC, Las Vegas, NV.

_____, 2022. *Ecological Monitoring and Compliance Program 2021 Report*. DOE/NV/03624--1420. Mission Support and Test Services, LLC, Las Vegas, NV.

_____, 2023. *Ecological Monitoring and Compliance Program 2022 Report* (in process). Mission Support and Test Services, LLC, Las Vegas, NV.

Tsukamoto, G.K., G. Tanner, K. Beckstrand, L. Gilbertson, C. Mortimore, and J. Himes, 2003. *Nevada's Pronghorn Antelope, Ecology, Management, and Conservation (first revision of 1983 original document)*. Biological Bulletin No. 13. Nevada Division of Wildlife, Reno, NV.

U.S. Fish and Wildlife Service, 2019. *Programmatic Biological Opinion*. File No. 8ENVS00-2019-F-0073, August 27, 2019, Las Vegas, NV.

Wills, C. A., and W. K. Ostler, 2001. *Ecology of the Nevada Test Site: An Annotated Bibliography, with Narrative Summary, Keyword Index, and Species List*. DOE/NV/11718--594, Bechtel Nevada, Ecological Services, Las Vegas, NV. OSTI ID: 901998

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 14: Quality Assurance Program

Elizabeth Burns, Xianan Liu, and Theodore J. Redding
Mission Support and Test Services, LLC

Milinka Watson-Garrett and Irene Farnham
Navarro Research and Engineering, Inc.

Charles B. Davis
EnviroStat

The environmental monitoring work conducted for the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) and the Environmental Management (EM) Nevada Program is performed in accordance with the Quality Assurance Program (QAP) established by the current Management and Operating (M&O) Contractor, Mission Support and Test Services, LLC (MSTS), or with the Underground Test Area (UGTA) QAP implemented by Navarro Research and Engineering, Inc.

(Navarro). The QAPs describe the methods used to ensure quality is integrated into monitoring work, and to comply with Title 10 ***Code of Federal Regulations***¹ Part 830, Subpart A, “Quality Assurance Requirements,” and with U.S. Department of Energy (DOE) Order DOE O 414.1D, “Quality Assurance.” The 10 criteria of a quality program specified by these regulations are shown in the box above. The QAPs require a graded approach to quality for determining the level of rigor that effectively provides assurance of performance and conformance to requirements.

A Data Quality Objective (DQO) process is cited by most organizations as the planning approach used to ensure that environmental data collection activities produce the appropriate data needed for decision-making. Sampling and Analysis Plans are developed prior to performing an activity to ensure complete understanding of the data-use objectives. Personnel are trained and qualified in accordance with company- and task-specific requirements.

Access to sampling locations is coordinated with organizations conducting work at or having authority over those locations in order to avoid conflicts in activities and to communicate hazards to better ensure successful execution of the work and protection of the safety and health of sampling personnel. Sample collection activities adhere to organization instructions and/or procedures designed to ensure that samples are representative and data are reliable and defensible. Sample shipments on site and to offsite laboratories are conducted in accordance with U.S. Department of Transportation and International Air Transport Association regulations, as applicable.

Quality control (QC) in the analytical laboratories is maintained through adherence to standard operating procedures based on methodologies developed by nationally recognized organizations such as DOE, the Environmental Protection Agency (EPA), and ASTM International. Key quality-affecting procedural areas cover sample collection, preparation, instrument calibration, instrument performance checking, testing for precision and accuracy, obtaining a measurement, and laboratory data review. Data users perform reviews as required by the project-specific objectives before the data are used to support decision-making.

The key elements of the environmental monitoring process workflow are listed below. Each element is designed to ensure that applicable ***quality assurance (QA)*** requirements are implemented. A discussion of these elements follows.

- A **Sampling and Analysis Plan (SAP)** is developed consistent with a DQO process to ensure clear goals and objectives are established for the environmental activity. The SAP is implemented in accordance with EPA, DOE, and other requirements addressing environmental, safety, and health objectives.

Required Criteria of a Quality Program
<ul style="list-style-type: none"> • Quality assurance program • Personnel training and qualification • Quality improvement process • Documents and records • Established work processes • Established standards for design and verification • Established procurement requirements • Inspection and acceptance testing • Management assessment • Independent assessment

¹ The definition of word(s) in ***bold italics*** may be found by referencing the Glossary, Appendix B.

- **Environmental Sampling** is performed in accordance with the SAP, procedures, and site work controls to ensure defensibility of the resulting data products as well as protection of the worker and the environment.
- **Laboratory Analyses** are performed to ensure the resultant data meet DOE, MSTS (the current M&O Contractor), and UGTA regulation-defined requirements.
- **Data Review** ensures the SAP DQOs have been met, and determines whether the data are suitable for their intended purpose.
- **Assessments** ensure monitoring operations are conducted according to procedure and analytical data quality requirements are met in order to identify nonconforming items, investigate causal factors, implement corrective actions, and monitor for corrective action effectiveness.

14.1 Sampling and Analysis Plan

Sampling is specifically mandated to demonstrate compliance with a variety of requirements, including federal and state regulations and DOE orders and standards. Developing the SAP using the DQO approach ensures those requirements are considered in the planning stage. The following statistical concepts and controls are vital in designing and evaluating the system design and implementation.

14.1.1 Precision

Precision is the degree to which a set of observations or measurements of the same property, obtained under similar conditions, conform to themselves. Precision is a data quality indicator and is usually expressed as standard deviation, variance, or range, in either absolute or relative terms (EPA 2021).

In practice, precision is determined by comparing the results obtained from performing analyses on split or duplicate samples taken at the same time from the same location or locations very close to one another, maintaining sampling and analytical conditions as nearly identical as possible.

14.1.2 Accuracy

Accuracy refers to the degree of agreement between an observed value and an accepted reference value. Accuracy includes a combination of random error (precision) and systematic error (bias) components that are due to sampling and analytical operations. Accuracy is a data quality indicator (EPA 2021) and is monitored by performing measurements and evaluating results of control samples containing known quantities of the *analytes* of interest.

14.1.3 Representativeness

Representativeness is the degree to which measured analytical concentrations represent concentrations in the medium being sampled (Stanley and Verner 1985).

At each point in the sampling and analysis process, samples of the medium of interest are obtained. The challenge is to ensure each sample maintains the character of the larger population being sampled. From a field sample collection standpoint, representativeness is managed through sampling plan design and execution. Sampling locations are/have been determined historically by consensus and/or agreement with authorities, in many cases, or are determined based on the properties of the operation being monitored (such as environmental remediation).

Representativeness related to laboratory operations addresses the ability to appropriately subsample and characterize for analytes of interest. For example, to ensure representative characterization of a heterogeneous matrix (soil, sludge, solids, etc.), the sampling and/or analysis process should evaluate whether homogenization or segregation should be employed prior to sampling or analysis. Water samples are generally considered homogeneous unless observation suggests otherwise. Each air monitoring station's continuous operation at a fixed location results in representatively sampling the ambient atmosphere. Field sample duplicate analyses are additional controls allowing evaluation of representativeness and heterogeneity; these are employed for air monitoring and direct radiation monitoring measurements. Generally, monitoring measurements are compared with historical measurements at the same location.

14.1.4 Comparability

Comparability refers to “the confidence with which one data set can be compared to another” (Stanley and Verner 1985). Comparability from an overall monitoring perspective is ensured by consistent execution of the sampling design for sample collection and handling, laboratory analyses, and data review and through adherence to established procedures and standardized methodologies. Ongoing data evaluation compares data collected at the same locations from sampling events conducted over multiple years and produced by numerous laboratories to detect any anomalies that might occur.

14.1.5 Completeness

Completeness refers to “the amount of valid data obtained compared to the planned amount” (EPA 2016). Field operations completeness is a measure of the number of samples collected that are valid for further processing (e.g., field measurements, laboratory analyses) versus the number of samples planned. Field measurements completeness compares the number of valid measurements obtained compared to those planned. Laboratory analyses completeness is a measure of the number of valid measurements compared to the total number of measurements planned. Data use completeness is a measure of the number of results determined to be valid for their intended use compared to the number of results planned.

14.2 Environmental Sampling

Environmental samples are collected in support of various environmental programs. Each program executes field-sampling activities in accordance with the SAP to ensure usability and defensibility of the resulting data. The key elements supporting the quality and defensibility of the sampling process and products include the following:

- Training and qualification
- Procedures and methods
- Field documentation
- Inspection and acceptance testing

14.2.1 Training and Qualification

The environmental programs ensure that personnel are properly trained and qualified prior to doing the work. In addition to procedure-specific and task-specific qualifications for performing work, training addresses environment, safety, and health aspects for protection of workers, the public, and the environment. Recurrent training is also conducted as appropriate to maintain proficiency.

14.2.2 Procedures and Methods

Sampling is conducted in accordance with established procedures to ensure consistent execution and continuous comparability of the environmental data. Descriptions of the analytical methods to be used are also consulted to ensure that, as methods are revised, sample collection is performed appropriately and viable samples are obtained.

14.2.3 Field Documentation

Field documentation is generated for each sample collection activity. This may include chain of custody documentation, sampling procedures, analytical methods, equipment and data logs, maps, Safety Data Sheets, and other materials needed to support the safe and successful execution and defense of the sampling effort. Chain-of-custody practices are employed from point of generation through disposal (cradle-to-grave); these are critical to the defensibility of the decisions made as a result of the sampling and analysis. Sampling data and documentation are stored and archived so they are readily retrievable for use later. In many cases, the data are managed in electronic data management systems. Routine assessments or surveillances are performed to ensure that sampling activities are performed in accordance with applicable requirements. If deficiencies are noted, then causal factors

are determined, corrective actions are implemented, and follow-up assessments are performed to ensure effective resolution. Field data log notes are reviewed as a first step in data evaluation. This data management approach ensures the quality and defensibility of the decisions made using analytical environmental data.

14.2.4 Inspection and Acceptance Testing

Sample collection data are reviewed for appropriateness, accuracy, and fit with historical measurements. In the case of groundwater sampling, water quality parameters are monitored during purging. Stabilization of these parameters generally indicates that the water is representative of the *aquifer*, at which time sample collection may begin. After a sampling activity is complete, data are reviewed to ensure the samples were collected in accordance with the SAP. Samples are further inspected to ensure that their integrity has not been compromised, either physically (leaks, tears, breakage, custody seals) or administratively (labeled incorrectly), and that they are valid for supporting the intended analyses. If concerns are raised at any point during collection, the data user, in consideration of data usability, is consulted for direction on proceeding with or canceling the subsequent analyses.

14.3 Laboratory Analyses

Samples are transported to a laboratory for analysis. Several DOE contractor organizations maintain measurement capabilities that may be used to support planning or decision-making activities. However, unless specifically authorized by NNSA/NFO, the EM Nevada Program, or the regulator, data used for demonstrating regulatory compliance are generated by a DOE- and contractor-qualified laboratory whose services have been obtained through subcontracts. Ensuring the quality of procured laboratory services is accomplished through focus on three specific areas: (1) procurement, (2) initial and continuing assessment, and (3) data evaluation.

14.3.1 Procurement

Laboratory services are procured through subcontracts in accordance with the Competition in Contracting Act, the Federal Acquisition Regulations, the DOE Acquisition Regulations, contractor terms and conditions for subcontracting, and other relevant policies and procedures. The analytical services technical basis is codified in the Department of Defense (DoD) Department of Energy (DOE) Consolidated Quality Systems Manual (QSM) for Environmental Laboratories (DOE 2019). The QSM is based on Volume 1 of The NELAC [National Environmental Laboratory Accreditation Conference] Institute Standards (September 2009), which incorporates International Organization for Standards (ISO)/International Electrotechnical Commission (IEC) 17025:2005, “General requirements for the competence of testing and calibration laboratories,” and ISO/IEC 17025:2017. Subcontracted laboratories are assessed for compliance with the QSM and are audited by the DoD Environmental Laboratory Accreditation Program Accreditation Bodies and the DOE Consolidated Audit Program - Accreditation Program (DOECAP-AP) Accreditation Bodies. A QSM revision was completed in October 2021, and went into effect for DOECAP-AP audits beginning October 28, 2021.

A request for proposal (RFP) is posted to the government website, laboratory responses are evaluated, and subcontracts awarded. The RFP cites the QSM as the base technical requirement, requires or advises participation in the DOECAP-AP, and addresses site-specific conditions. Multiple laboratories may receive a subcontract through one RFP.

The laboratories are primarily those providing a wide range of analytical services to DOE. Other services can be subcontracted by the laboratory (i.e., lower-tier subcontractor) or contracted directly from a vendor. In either case, requirements are established for the specific services provided.

The subcontract places numerous requirements on the laboratory, including the following:

- Maintaining the following documents:
 - A Quality Assurance Plan and/or Manual describing the laboratory’s policies and approach to the implementation of QA requirements
 - An Environment, Safety, and Health Plan

- A Waste Management Plan
- Procedures pertinent to subcontract scope
- The ability to generate data deliverables, both hard copy reports and electronic files
- Responding to all data quality questions in a timely manner
- Mandatory participation in proficiency testing programs
- Maintaining specific licenses, accreditations, and certifications
- Conducting internal audits of laboratory operations as well as audits of vendors
- Allowing external audits by DOECAP-AP, EM Nevada Program, and NNSA/NFO contractors and providing copies of other audits considered to be comparable and applicable

14.3.2 Initial and Continuing Assessment

An initial assessment is made during the RFP process, including a pre-award audit. If an acceptable audit has not been performed within the past year, MSTS or Navarro will consider performing an audit (or participating in a DOECAP-AP audit) of those laboratories awarded the contract. Neither contractor will initiate work with a laboratory without authorized approval from those personnel responsible for ensuring vendor acceptability.

A continuing assessment consists of the ongoing monitoring of a laboratory's performance against contract terms and conditions, of which the technical specifications are a part. Tasks supporting continuing assessment are listed below:

- Conducting regular audits or participating in evaluation of DOECAP-AP audit products
- Monitoring for continued successful participation in proficiency testing programs such as:
 - National Institute of Standards and Technology Radiochemistry Intercomparison Program
 - Studies that support certification by the State of Nevada or appropriate regulatory authority for analyses performed in support of routine monitoring
- Routine ongoing monitoring of the laboratory's adherence to the quality requirements

14.3.3 Data Evaluation

Data products are routinely evaluated for compliance with contract terms and specifications. This primarily involves review of the laboratory data against the specified analytical method to determine the laboratory's ability to adhere to the QA/QC requirements, as well as an evaluation of the data against the DQOs. This activity is discussed in further detail in Section 14.4. Any discrepancies are documented and resolved with the laboratory, and ongoing assessment tracks the recurrence and efficacy of corrective actions.

14.4 Data Review

A systematic approach to thoroughly evaluating the data products generated from an environmental monitoring effort is essential for understanding and sustaining the quality of data collected under the program. This allows the programs to determine whether the DQOs established in the planning phase were achieved and whether the monitoring design performed as intended or requires review.

Because decisions are based on environmental data, and the effectiveness of operations is measured at least in part by environmental data, reliable, accurate, and defensible records are essential. Detailed records that must be kept include temporal, spatial, numerical, geotechnical, chemical, and radiological data as well as all sampling, analytical, and data review procedures used. Failure to maintain these records in a secure but accessible form may result in exposure to legal challenges and the inability to respond to demands or requests from regulators and other interested organizations.

An electronic data management system is a key tool used by many programs for achieving standardization and integrity in managing environmental data. The primary objective is to store and manage in an easily and efficiently retrievable form unclassified environmental data that are directly or indirectly tied to monitoring events. This may include information on monitoring system construction (groundwater wells, ambient air

monitoring), and analytical, geotechnical, and field parameters at the Nevada National Security Site. Database integrity and security are enforced through the assignment of varying database access privileges commensurate with an employee's database responsibilities.

14.4.1 Data Verification

Data verification generally involves a subcontract compliance and completeness review to ensure that all laboratory data and sample documentation are present and complete. Additional critical sampling and analysis process information is also reviewed at this stage, which may include, but is not limited to, sample preservation and temperature, defensible chain-of-custody documentation and integrity, and analytical hold-time compliance. Data verification also ensures that electronic data products correctly represent the sampling and/or analyses performed, and includes evaluation of QC sample results.

14.4.2 Data Validation

Data validation supplements verification and is a more thorough process of analytical data review to better determine if the data meet the analytical and project requirements. Data validation ensures that the reported results correctly represent the sampling and analyses performed, determines the validity of the reported results, and assigns data qualifiers (or "flags"), if required.

14.4.3 Data Quality Assessment (DQA)

DQA is a scientific and statistical evaluation to determine if the data obtained from environmental operations are of the right type, quality, and quantity to support their intended use. The DQA includes reviewing data for accuracy, representativeness, and fit with historical measurements to ensure that the data will support their intended uses.

14.5 Assessments

The overall effectiveness of the environmental program is determined through routine surveillance and assessments of work execution as well as review of program requirements. Deficiencies are identified, causal factors are investigated, corrective actions are developed and implemented, and follow-on monitoring is performed to ensure effective resolution. The assessments discussed below are broken down into general programmatic and focused measurement data areas.

14.5.1 Programmatic

Assessments and audits under this category include evaluations of work planning, execution, and performance activities. Personnel independent of the work activity perform the assessments to evaluate compliance with established requirements and report on deficiencies identified. Organizations responsible for the activity are required to develop and implement corrective actions, with the concurrence of the deficiency originator or recognized subject matter expert. NNSA/NFO and DOE EM Nevada Program contractors maintain companywide issues tracking systems to manage assessments, findings, and corrective actions.

14.5.2 Measurement Data

This type of assessment includes routine evaluation of data generated from analyses of QC and other samples. QC sample data are used to monitor the analytical control on a given batch of samples and are indicators over time of potential biases in laboratory performance. Discussions of the 2022 results for field duplicates, laboratory control samples, blank analyses, matrix spikes, and proficiency testing programs are provided, and summary tables are included below.

14.5.2.1 Field Duplicates

Samples obtained at nearly the same locations and times as initial samples are termed field duplicates. These are used to evaluate the overall precision of the measurement process, including small-scale heterogeneity in the matrix

(air, water, or direct radiation) being sampled as well as analytical and sample preparation variation. The absolute relative percent difference (RPD) compares the absolute difference of initial and field duplicate measurements with the average of the two measurements (Table 14-1, footnote c); it is computed only from pairs for which both values are above their respective **minimum detectable concentrations (MDCs)** (or $MDC + 2\sigma$ uncertainty for UGTA water samples). The relative error ratio (RER) compares the absolute difference of initial and field duplicate measurements to the laboratory's reported analytical uncertainty (Table 14-1, footnote d).

The average absolute RPD and average RER values for all 2022 radiological air and water duplicate pairs are shown in Table 14-1. They are similar to those seen in prior years. The higher average absolute RPDs (those greater than ~30) are typically associated with two types of phenomena. RPDs for **actinides** in air, in particular, and consequently for **gross alpha** in air, can be elevated when one sampler of a pair intercepts a particle with high americium (Am) or plutonium (Pu), while the other sampler in the pair had a typical **background** value. Also, higher average absolute RPDs can be associated with relatively few pairs having both values above their MDCs, as low-level measurements are typically relatively “noisier” than higher-level measurements. In 2022, the former applies particularly to $^{239+240}\text{Pu}$ measurements.

Table 14-1. Summary of field duplicate samples for 2022

Analyte	Matrix	Number of Duplicate Pairs ^(a)	Number of Pairs > MDC ^(b)	Average Absolute RPD ^(c)	Average Absolute RER ^(d)
Environmental Monitoring Samples					
Gross Alpha	Air	52	36	18.4	0.67
Gross Beta	Air	52	52	4.6	0.91
Tritium	Air	51	10	14.9	0.85
^{241}Am	Air	8	0	—	1.31
^{238}Pu	Air	6	0	—	0.44
$^{239+240}\text{Pu}$	Air	6	4	94.8	3.02
$^{233+234}\text{U}$	Air	4	4	19.5	1.13
$^{235+236}\text{U}$	Air	4	0	—	0.32
^{238}U	Air	4	4	13.3	0.82
$^7\text{Be}^{(e)}$	Air	6	6	9.4	1.11
^{137}Cs	Air	6	0	—	0.62
$^{40}\text{K}^{(e)}$	Air	6	5	36.7	1.59
Gross Alpha	Water	8	6	24.8	1.09
Gross Beta	Water	8	8	26.2	1.51
Tritium (standard)	Water	22	1	0.4	0.54
TLD	Ambient Radiation	443	NA	3.3	0.30
UGTA Samples					
Tritium (standard)	Water	3	0	—	0.88
Tritium (low-level)	Water	2	1	7.0	3.2

(a) Represents the number of field duplicates reported for evaluating precision.

(b) Represents the number of field duplicate–field sample pairs with both values above their MDCs or $MDC + 2\sigma$ (UGTA). If either the field sample or duplicate was below the MDC ($+ 2\sigma$), the RPD was not determined. This does not apply to **thermoluminescent dosimeter (TLD)** measurements; because TLDs virtually always detect ambient background radiation, MDCs are not computed.

(c) Represents the average absolute RPD calculated as follows:

$$\text{Absolute RPD} = \frac{|S - D|}{(D + S)/2} \times 100$$

Where: S = Sample result
D = Duplicate result

(d) Represents the absolute RER, determined by the following equation, which is used to determine whether a sample result and the associated field duplicate result differ significantly when compared to their respective 1 sigma uncertainties (i.e., measurement standard deviation). The RER is calculated for all sample and field duplicate pairs reported, without regard to the MDC.

$$Absolute\ RER = \frac{|S - D|}{\sqrt{(\ SD_S)^2 + (SD_D)^2}}$$

Where: S = Sample result

D = Duplicate result

SD_S Standard deviation of the sample result as reported

SD_D = Standard deviation of the duplicate result as reported

(e) ⁷Be and ⁴⁰K are naturally occurring analytes included for quality assessment of the gamma *spectrometry* analyses.

14.5.2.2 Laboratory Control Samples (LCSs)

An LCS is prepared from a sample matrix verified to be free from the analytes of interest, and then spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes. The LCS is generally used to establish intra-laboratory or analyst-specific precision and bias or to assess the performance of all or a portion of the measurement system (DOE 2019).

The results are calculated as a percentage of the true value (i.e., percent recovery), and must fall within established control limits to be considered acceptable. If the LCS recovery falls outside control limits, evaluation for potential sample data bias is necessary. The numbers of the 2022 LCSs analyzed and within control limits are summarized in Table 14-2. There were no systemic issues identified in 2022 by the LCS recovery data, and no failures that invalidated the associated sample data. The LCS recovery exceeded the control limits for two UGTA low-level tritium analyses (Table 14-2). The results associated with the LCS recovery exceedances are reported as estimates (see Chapter 5, Table 5-4).

Table 14-2. Summary of laboratory control samples for 2022

Analyte	Matrix	Number of LCS Results Reported	Number Within Control Limits	Control Limits (%)
Environmental Monitoring Samples				
Tritium	Air	89	87	75–125
⁶⁰ Co	Air	5	5	75–125
¹³⁷ Cs	Air	5	5	75–125
²³⁹⁺²⁴⁰ Pu	Air	14	14	75–125
²⁴¹ Am	Air	25	25	75–125
Gross alpha	Water	10	10	75–125
Gross beta	Water	10	10	75–125
Tritium (standard)	Water	12	12	75–125
⁶⁰ Co	Water	1	1	75–125
⁹⁰ Sr	Water	0	0	75–125
¹³⁷ Cs	Water	1	1	75–125
²³⁹⁺²⁴⁰ Pu	Water	0	0	75–125
²⁴¹ Am	Water	1	1	75–125
Tritium	Soil	0	0	75–125
⁶⁰ Co	Soil	7	7	75–125
⁹⁰ Sr	Soil	8	8	75–125
¹³⁷ Cs	Soil	7	7	75–125
²³⁹⁺²⁴⁰ Pu	Soil	9	9	75–125
²⁴¹ Am	Soil	16	16	75–125
⁶⁰ Co	Vegetation	1	1	75–125
⁹⁰ Sr	Vegetation	1	1	75–125
¹³⁷ Cs	Vegetation	1	1	75–125
²³⁹⁺²⁴⁰ Pu	Vegetation	1	1	75–125
²⁴¹ Am	Vegetation	2	2	75–125
Metals	Water	100	100	80–120
Volatiles	Water	86	86	70–130
Semi volatiles	Water	301	301	Laboratory specific

Table 14-2. Summary of laboratory control samples for 2022

Analyte	Matrix	Number of LCS Results Reported	Number Within Control Limits	Control Limits (%)
Miscellaneous	Water	75	75	80–120
Metals	Soil	8	8	80–120
Volatiles	Soil	55	55	70–130
Semi volatiles	Soil	38	38	Laboratory specific
Miscellaneous	Soil	0	0	80–120
UGTA Samples				
Tritium (standard)	Water	6	6	80-120
Tritium (low-level)	Water	4	2	75-125

14.5.2.3 Blank Analysis

In general, a blank is a sample that has not been exposed to the targeted environment and is analyzed in order to monitor “no exposure” analyte levels and contamination that might be introduced during sampling, transport, storage, and/or analysis. The blank is subjected to the usual analytical and measurement process to establish a baseline or background value, and is sometimes used to adjust or correct routine analytical results (DOE 2019). Blanks are processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures. The following list identifies the blanks routinely used during environmental monitoring activities.

- A trip blank is a sample of analyte-free media taken from the laboratory to the sampling site and returned to the laboratory unopened. A trip blank is used to document contamination attributable to shipping and field handling procedures. This type of blank is useful in documenting contamination of volatile organics samples.
- An equipment blank is a sample of analyte-free media that has been used to rinse common sampling equipment to check effectiveness of decontamination procedures.
- A field blank is prepared in the field by filling a clean container with purified water (appropriate for the target analytes) and appropriate preservative, if any, for the specific sampling activity being undertaken. The field blank is used to indicate the presence of contamination due to sample collection and handling.
- A method blank is a sample of a matrix similar to the associated sample batch in which no target analytes or interferences are present at concentrations that would impact the sample analyses results. Method blank data are summarized in Table 14-3.

There were no systemic blank data issues and no failures identified in 2022 that required invalidating the associated sample data.

Table 14-3. Summary of laboratory method blank samples for 2022

Analyte	Matrix	Number of Blank Results Reported	Number of Results < MDC
Environmental Monitoring Samples			
Tritium	Air	68	66
⁷ Be	Air	5	5
⁶⁰ Co	Air	2	2
¹³⁷ Cs	Air	5	5
²³⁸ Pu	Air	7	7
²³⁹⁺²⁴⁰ Pu	Air	7	5
²⁴¹ Am	Air	11	8
Gross alpha	Water	10	9
Gross beta	Water	10	10
Tritium (standard)	Water	12	12
⁶⁰ Co	Water	1	1
⁹⁰ Sr	Water	0	0
¹³⁷ Cs	Water	1	1
²³⁸ Pu	Water	0	0
²³⁹⁺²⁴⁰ Pu	Water	0	0

Table 14-3. Summary of laboratory method blank samples for 2022

Analyte	Matrix	Number of Blank Results Reported	Number of Results < MDC
²⁴¹ Am	Water	1	1
Tritium	Soil	0	0
⁶⁰ Co	Soil	5	4
⁹⁰ Sr	Soil	7	7
¹³⁷ Cs	Soil	7	7
²³⁸ Pu	Soil	7	7
²³⁹⁺²⁴⁰ Pu	Soil	7	7
²⁴¹ Am	Soil	12	12
⁶⁰ Co	Vegetation	1	1
⁹⁰ Sr	Vegetation	1	1
¹³⁷ Cs	Vegetation	1	1
²³⁸ Pu	Vegetation	1	1
²³⁹⁺²⁴⁰ Pu	Vegetation	1	1
²⁴¹ Am	Vegetation	2	1
Metals	Water	115	100
Volatiles	Water	108	108
Semi volatiles	Water	259	259
Miscellaneous	Water	252	245
Metals	Soil	16	10
Volatiles	Soil	77	77
Semi volatiles	Soil	67	67
Miscellaneous	Soil	0	0
UGTA Samples			
Tritium (standard)	Water	4	4
Tritium (low-level)	Water	4	4

14.5.2.4 Matrix Spike Analysis

A matrix spike is a sample spiked with a known concentration of analyte. This spiked sample is subjected to the same sample preparation and analysis as the original environmental sample. The matrix spike is used to indicate if the matrix (e.g., soil, water with sediment) interferes with the analytical results. Matrix spike analyses were conducted for samples in 2022, and there were no issues identified by the analysis data, except for two UGTA low-level tritium samples (Table 14-4). The low-level tritium results for the two UGTA samples associated with the poor matrix spike recoveries were identified as estimates (see Chapter 5, Table 5-4).

Table 14-4. Summary of matrix spike samples for 2022

Analyte	Matrix	Number of Matrix Spikes Reported	Number Within Control Limits	Control Limits ^(a) (%)
Environmental Monitoring Samples				
Tritium	Air	18	18	60–140
Gross alpha	Water	11	10	60–140
Gross beta	Water	11	11	60–140
Tritium	Water	12	12	60–140
UGTA Samples				
Tritium (standard)	Water	4	4	60–140
Tritium (low-level)	Water	4	2	60–140

(a) These control limits apply when the sample results are < 4x the amount of spike added.

14.5.2.5 Proficiency Testing Program Participation

All contracted laboratories are required to participate in proficiency testing programs. Laboratory performance supports decisions on work distribution and may also be a basis for state certifications. Table 14-5 presents the 2022 results for the laboratory performance in the March and August studies of the Mixed Analyte Performance Evaluation Program (MAPEP) (<http://www.id.energy.gov/resl/mapep/mapepreports.html>) administered by the Radiological and Environmental Sciences Laboratory operated by the DOE Idaho Operations Office.

Table 14-5. Summary of 2022 Mixed Analyte Performance Evaluation Program reports

Analyte	Matrix	Number of Results Reported	Number within Control Limits ^(a)
Environmental Monitoring Samples			
⁶⁰ Co	Filter	3	3
¹³⁷ Cs	Filter	3	3
²³⁸ Pu	Filter	3	3
²³⁹⁺²⁴⁰ Pu	Filter	3	3
²⁴¹ Am	Filter	3	3
Tritium (standard)	Water	3	3
⁶⁰ Co	Water	3	3
⁹⁰ Sr	Water	3	3
¹³⁷ Cs	Water	3	3
²³⁸ Pu	Water	3	3
²³⁹⁺²⁴⁰ Pu	Water	3	3
²⁴¹ Am	Water	3	3
⁶⁰ Co	Vegetation	3	3
⁹⁰ Sr	Vegetation	3	2
¹³⁷ Cs	Vegetation	3	3
²³⁸ Pu	Vegetation	3	3
²³⁹⁺²⁴⁰ Pu	Vegetation	3	3
⁶⁰ Co	Soil	3	3
⁹⁰ Sr	Soil	3	3
¹³⁷ Cs	Soil	3	3
²³⁸ Pu	Soil	3	3
²³⁹⁺²⁴⁰ Pu	Soil	3	3
²⁴¹ Am	Soil	3	3
Metals	Water	57	55
Metals	Soil	60	49
Gross Alpha	Water	2	2
Gross Beta	Water	2	2

(a) Based upon MAPEP criteria.

Table 14-6 shows the summary of inter-laboratory comparison sample results for the MSTS External Dosimetry Program (EDP). DOE Standard DOE-STD-1095-2018, “Department of Energy Laboratory Accreditation for External Dosimetry,” establishes the methodology for determining acceptable performance testing of dosimeter systems. It also establishes the technical basis for performance testing and the testing categories and performance criteria, which are outlined in American National Standards Institute/Health Physics Society (ANSI/HPS) Standard N13.11-2009, “American National Standard for Dosimetry—Personnel Dosimetry Performance—Criteria for Testing,” and in ANSI/HPS N13.32-2008, “An American National Standard, Performance Testing of Extremity Dosimeters.” The MSTS EDP participated in a blind testing program through the Battelle Pacific Northwest National Laboratory program and the Radiological and Environmental Sciences Laboratory during the course of the year.

Table 14-6. Summary of inter-laboratory comparison TLD samples (UD-802 dosimeters) for 2022

Analysis	Matrix	Number of Results Reported	Number within Control Limits ^(a)
Gamma Radiation	TLD	24 batches of 5 TLDs	24 batches of 5 TLDs

(a) Based upon ANSI/HPS N13.11-2009 criteria.

ANSI/HSP N13.37-2014, “Environmental Dosimetry – Criteria for System Design and Implementation,” contains guidance on conducting “blind spike” quality assurance testing. This process was last followed in 2022 by having 24 Panasonic UD-814AS environmental TLDs exposed to a known radiation level (100 milliroentgens) and placing them with routine monitoring TLDs for analysis. A performance quotient for each **dosimeter** was calculated as follows: $P = (\text{reported exposure} - \text{true value}) / \text{true value}$. According to the standard, the absolute value of the mean performance quotient should not exceed 0.15. The value for the 2022-tested environmental TLDs was 0.05, demonstrating good agreement between the results and the controlled exposure using the blind spike.

14.6 References

DOE, see U.S. Department of Energy.

EPA, see U.S. Environmental Protection Agency.

Stanley, T. W., and S. S. Verner, 1985. “The U.S. Environmental Protection Agency’s Quality Assurance Program.” In: Taylor, J. K., and T. W. Stanley (eds.), *Quality Assurance for Environmental Measurements*, ASTM STP-867, Philadelphia, PA.

The NELAC Institute, 2009. *Volume 1: Management and Technical Requirements for Laboratories Performing Environmental Analysis*, 2009, Weatherford, Texas.

U.S. Department of Energy, 2019. *Department of Defense (DoD) Department of Energy (DOE) Consolidated Quality Systems Manual (QSM) for Environmental Laboratories*, 2019, Washington D.C.

U.S. Environmental Protection Agency, 2016. QA Glossary, Environmental Monitoring & Assessment Program, Available at: https://archive.epa.gov/emap/archive-emap/web/html/qa_terms.html.

_____, 2021. Forum on Environmental Measurements (FEM) Glossary, accessed in June 2021 (https://iaspub.epa.gov/sor_internet/registry/termreg/searchandretrieve/glossariesandkeywordlists/search.do?details=&vocabName=FEM%20Glossary#formTop)

Chapter 15: Quality Assurance Program for the Community Environmental Monitoring Program

John Goreham

Desert Research Institute

The Community Environmental Monitoring Program (CEMP) Quality Assurance Management and Assessment Plan (QAMAP) (Desert Research Institute [DRI] 2009) is followed for the collection and analysis of radiological air and water data presented in Chapter 7 of this report. The CEMP QAMAP ensures compliance with U.S. Department of Energy (DOE) Order DOE O 414.1D, “Quality Assurance,” which implements a quality management system, ensuring the generation and use of quality data. This QAMAP addresses the following items previously defined in Chapter 14:

- Data Quality Objectives (DQOs)
- Sampling plan development to satisfy the DQOs
- Environmental health and safety
- Sampling plan execution
- Sample analyses
- Data review
- Continuous improvement

15.1 Data Quality Objectives

The DQO process is a strategic planning approach used to plan data collection activities. It provides a systematic process for defining the criteria that a data collection design should satisfy. These criteria include when and where samples should be collected, how many samples to collect, and the tolerable level of decision errors for the study. DQOs are unique to the specific data collection or monitoring activity, and follow similar guidelines for onsite activities where applicable (Chapter 14).

15.2 Measurement Quality Objectives (MQOs)

The MQOs are basically equivalent to DQOs for analytical processes. The MQOs provide direction to the analytical laboratory concerning performance objectives or requirements for specific method performance characteristics. Default MQOs are established in the subcontract with the laboratory, but may be altered in order to satisfy changes in the DQOs. The MQOs for the CEMP project are described in terms of precision, accuracy, representativeness, comparability, and completeness requirements. These terms are defined and discussed in Section 14.1 for onsite activities.

15.3 Sampling Quality Assurance Program

Quality Assurance (QA)¹ in CEMP field operations includes sampling assessment, surveillance, and oversight of the following supporting elements:

- The sampling plan, DQOs, and field data sheets accompanying the sample package
- Database support for field and laboratory results, including systems for long-term storage and retrieval
- A training program to ensure that qualified personnel are available to perform required tasks

Sample packages include the following:

- Station manager checklist confirming all observable information pertinent to sample collection
- An Air Surveillance Network Sample Data Form documenting air sampler parameters, collection dates and times, and total sample volumes collected
- Chain-of-custody forms

This managed approach ensures that the sampling is traceable and enhances the value of the final data. The sample package also ensures that the Community Environmental Monitor station manager (Chapter 7 describes Community Environmental Monitors) followed proper procedures for sample collection. The CEMP Project

¹ The definition of word(s) in ***bold italics*** may be found by referencing the Glossary, Appendix B.

Manager or QA Officer routinely performs assessments of the station managers and field monitors to ensure that standard operating procedures and sampling protocols are followed properly.

Data obtained in the course of executing field operations are entered in the documentation accompanying the sample package during sample collection and in the CEMP database along with analytical results upon their receipt and evaluation.

Completed sample packages are kept as hard copy in file archives at DRI. Analytical reports are kept as hard copy in file archives as well as in electronic form by calendar year. Analytical reports and databases are protected and maintained in accordance with DRI's Computer Protection Program.

15.4 Laboratory QA Oversight

The CEMP QA Officer ensures that DOE O 414.1D requirements are met with respect to laboratory services through review of the vendor laboratory policies formalized in a Laboratory Quality Assurance Plan (LQAP). The CEMP is assured of obtaining quality data from laboratory services through a multifaceted approach involving specific procurement protocols, the conduct of quality assessments, and requirements for selected laboratories to have an acceptable QA program. These elements are discussed below.

15.4.1 Procurement

Laboratory services are procured through subcontracts. The subcontract establishes the technical specifications required of the laboratory and provides the basis for determining compliance with those requirements and evaluating overall performance. The subcontract is awarded on a "best value" basis as determined by pre-award audits. The prospective vendor is required to provide a review package to the CEMP QA Officer that includes the following:

- All procedures pertinent to subcontract scope
- Environment, Safety, and Health Plan
- LQAP
- Example deliverables (hard copy and/or electronic)
- Proficiency testing (PT) results from the previous year from recognized PT programs
- Résumés of laboratory personnel
- All procedures pertinent to subcontract scope
- Facility design/description
- Accreditations and certifications
- Licenses
- Pricing
- Audits performed by an acceptable DOE program covering comparable scope
- Past performance surveys

The CEMP QA Officer evaluates the review package in terms of technical capability. Vendor selection is based solely on these capabilities and not biased by pricing.

15.4.2 Initial and Continuing Assessment

An initial assessment of a laboratory is managed through the procurement process above, including a pre-award audit. Pre-award audits are conducted by the CEMP (usually by the CEMP QA Officer). The CEMP does not initiate work with a laboratory without approval from the CEMP Program Manager.

A continuing assessment of a selected laboratory involves ongoing monitoring of a laboratory's performance against the contract terms and conditions, of which technical specifications are a part. The following tasks support continuing assessment:

- Tracking schedule compliance
- Monitoring the laboratory's adherence to the LQAP
- Reviewing analytical data deliverables
- Conducting regular audits
- Monitoring for continued successful participation in approved PT programs

15.4.3 Laboratory QA Program

The laboratory policy and approach to implement DOE O 414.1D is verified in an LQAP prepared by the laboratory. The required elements of a CEMP LQAP are similar to those required by Mission Support and Test Services, LLC, for onsite monitoring (Section 14.3).

15.5 Data Review

Essential components of process-based QA are data checks, verification, validation, and data quality assessment to evaluate data quality and usability.

Data Checks – Data checks are conducted to ensure accuracy and consistency of field data collection operations prior to and upon data entry into CEMP databases and data management systems.

Data Verification – Data verification is defined as a subcontract compliance and completeness review to ensure that all laboratory data and sample documentation are present and complete. Sample preservation, chain-of-custody, and other field sampling documentation is reviewed during the verification process. Data verification ensures that the reported results entered in CEMP databases correctly represent the sampling and/or analyses performed and includes evaluation of *quality control (QC)* sample results.

Data Validation – Data validation is the process of reviewing a body of analytical data to determine if it meets the data quality criteria defined in operating instructions. Data validation ensures that the reported results correctly represent the sampling and/or analyses performed, determines the validity of reported results, and assigns data qualifiers (or “flags”), if required. The process of data validation consists of the following:

- Evaluating the quality of data to ensure all project requirements are met
- Determining the impact on data quality of those requirements if they are not met
- Verifying compliance with QA requirements
- Checking QC values against defined limits
- Applying qualifiers to analytical results in CEMP databases to define the limitations in the use of the reviewed data

Operating instructions, procedures, applicable project-specific work plans, field sampling plans, QA plans, analytical method references, and laboratory statements of work may all be used in the process of data validation. Documentation of data validation includes checklists, qualifier assignments, and summary forms.

Data Quality Assessment (DQA) – DQA is the scientific evaluation of data to determine if the data obtained from environmental data operations are of the right type, quality, and quantity to support their intended use. DQA review is a systematic review against pre-established criteria to verify that the data are valid for their intended use.

15.6 QA Program Assessments

The overall effectiveness of the QA Program is determined through management and independent assessments as defined in the CEMP QAMAP. These assessments evaluate the plan execution workflow (sampling plan development and execution, chain-of-custody, sample receiving, shipping, subcontract laboratory analytical activities, and data review) as well as program requirements as they pertain to the organization.

15.7 Sample QA Results

QA assessments were performed by the CEMP, including the laboratories responsible for sample analyses. These assessments ensure that sample collection procedures, analytical techniques, and data provided by the subcontracted laboratories comply with CEMP requirements. Data were provided by Pace Analytical National Center for Testing & Innovation (Pace National), Landauer, Inc. (optically stimulated luminescence dosimeters), and the American Radiation Services Laboratory (ARS Aleut) in Port Allen, Louisiana (*tritium* [^{3}H] data). A brief discussion of the 2022 results for field duplicates, laboratory control samples, blank analyses, and inter-laboratory comparison studies is provided along with summary tables within this section. The 2022 CEMP radiological air and water monitoring data are presented in Chapter 7.

15.7.1 Field Duplicates (Precision)

A field duplicate is a sample collected, handled, and analyzed by the same procedures as the primary sample. The relative percent difference (RPD) between the field duplicate result and the corresponding field sample result is a measure of the variability in the process caused by the sampling uncertainty (matrix heterogeneity, collection variables, etc.) and measurement uncertainty (field and laboratory) used to arrive at a final result. The average absolute RPD, expressed as a percentage, was determined for the calendar year 2022 samples and is listed in Table 15-1. An RPD of zero indicates a perfect duplication of results of the duplicate pair, whereas an RPD greater than 100% generally indicates that a duplicate pair falls beyond QA requirements and is not considered valid for use in data interpretation. These samples are further evaluated to determine the reason for QA failure and if any corrective actions are required. Overall, the RPD values for all analyses indicate very good results.

Table 15-1. Summary of 2022 field duplicate samples for CEMP monitoring

Analysis	Matrix	Number of Samples Reported ^(a)	Number of Samples Reported above MDC ^(b)	Average Absolute RPD of those above MDC (%) ^(c)
Gross Alpha	Air	8	8	23.6
Gross Beta	Air	8	8	8.9
Gamma – Beryllium-7	Air	8	3	30.6
³ H	Water	1	0	NA ^(d)
Dosimeters	Ambient Radiation	12	NA ^(d)	14.4

(a) Represents the number of field duplicates reported for the purpose of monitoring precision. If an associated field sample was not processed, the field duplicate was not included in this table.

(b) Represents the number of field duplicate–field sample result sets reported above the minimum detectable concentration (MDC) (MDC is not applicable for dosimeters). If either the field sample or its duplicate was reported below the MDC, the precision was not determined.

(c) Reflects the average absolute RPD calculated for those field duplicates reported above the MDC.

(d) Not applicable.

The absolute RPD calculation is as follows:

$$Absolute RPD = \frac{|FD - FS|}{(FD + FS)/2} \times 100\% \quad \text{Where: FD = Field duplicate result}$$

FS = Field sample result

15.7.2 Laboratory Control Samples (Accuracy)

Laboratory control samples (LCSs) are performed by the subcontract laboratory to evaluate analytical accuracy, which is the degree of agreement of a measured value with the true or expected value. Samples of known activity are analyzed using the same methods as employed for the project samples. The results are determined as the measured value divided by the true value, expressed as a percentage. To be considered valid, the results must fall within established control limits (or percentage ranges) for further analyses to be performed. The LCS results obtained for 2022 are satisfactory and are summarized in Table 15-2.

Table 15-2. Summary of 2022 laboratory control samples for CEMP monitoring

Analysis	Matrix	Number of LCS Results Reported	Number Within Control Limits	Control Limits
Gross Alpha	Air	6	6	29.9-170%
Gross Beta	Air	6	6	50.7-151%
Gamma (¹³⁷ Cs, ⁶⁰ Co, ²⁴¹ Am)	Air	6	6	80-120%
³ H	Water	2	2	75-125%

15.7.3 Blank Analysis

Laboratory blank analyses are essentially the opposite of LCSs. These samples do not contain any of the analyte of interest. Results of these analyses are expected to be below the MDC of a specific procedure. Blank analysis and control samples are used to evaluate overall laboratory procedures, including sample preparation and instrument performance. The laboratory blank sample results obtained for 2022 are summarized in Table 15-3. Overall, the laboratory blank results were satisfactory for the air and water sample matrices.

Table 15-3. Summary of 2022 laboratory blank samples for CEMP monitoring

Analysis	Matrix	Number of Blank Results Reported	Number within Control Limits ^(a)
Gross Alpha	Air	6	6
Gross Beta	Air	6	6
Gamma	Air	6	6
³ H	Water	1	1

(a) Control limit is less than the MDC.

15.7.4 Inter-laboratory Comparison Studies

Inter-laboratory comparison studies are conducted by the subcontracted laboratories to evaluate their performance relative to other laboratories providing the same service. These types of samples are commonly known as “blind” samples, in which the expected values are known only to the program conducting the study. The analyses are evaluated and, if found satisfactory, the laboratory is certified that its procedures produce reliable results.

The subcontracted laboratories utilized by the CEMP for the analysis of air filter (Pace National) and tritium (ARS Aleut) samples have participated in the Mixed Analyte Performance Evaluation Program (MAPEP). MAPEP is administered by the Radiological and Environmental Sciences Laboratory, a government-owned and -operated laboratory, managed by the DOE Idaho Operations Office.

Although Pace National did not participate in the most recent (August 2022) MAPEP study, it demonstrated acceptable performance in the March 2022 MAPEP Radiological Air Filter Standard study for the measurement of ²⁴¹Am, ⁶⁰Co, ¹³⁴Cs, and ¹³⁷Cs. Although MAPEP also conducts biannual gross alpha/beta air filter studies, Pace National has not participated in these studies. Despite this, it is noteworthy that Pace National is accredited by the DOE Consolidated Audit Program-Accreditation Program, meaning it has demonstrated successful completion of the American Association for Laboratory Accreditation evaluation process (Certificate Number: 1461.01, valid to November 30, 2023). This includes an assessment of the laboratory’s compliance against the Department of Defense / Department of Energy Consolidated Quality Systems Manual (currently version 5.4, January 2021). The Quality Systems Manual is based on Volume 1 of The NELAC Institute Standards (September 2009), which incorporates International Organization for Standardization / International Electrotechnical Commission Standard ISO/IEC 17025:2005 and 17025:2017, “General requirements for the competence of testing and calibration laboratories.” More specifically, Pace National is accredited to perform U.S. Environmental Protection Agency method 9310 for gross alpha and gross beta, and DOE method (Health and Safety Laboratory) HASL-300 Ga-01-R for gamma spectrometry.

Although ARS Aleut participated in both 2022 Mixed Analyte Water Standard MAPEP studies, it did not report a tritium result in either study. However, ARS Aleut demonstrated acceptable performance for the measurement of tritium in the August 2021 Mixed Analyte Water Standard study.

Table 15-4 shows the summary of the in-house performance evaluation results conducted by the subcontract dosimetry laboratory, Landauer, Inc. The internal evaluations are performed in accordance with American National Standards Institute (ANSI) Standard ANSI N13.11-2009, “Personal Dosimetry Performance – Criteria for Testing.” All internal audit performance tests conducted by the dosimetry laboratory in 2022 received passing ratings.

Table 15-4. Summary of 2022 in-house performance evaluation for CEMP subcontract dosimetry lab

Analysis	Matrix	Number of Results Reported	Number Within Control Limits^(a)
Optically stimulated luminescence dosimeters	Ambient	12	12

(a) Based upon ANSI criteria; $B^2 + S^2 \leq 0.09$, where B is the average bias of the sample and S is the standard deviation of the bias for the sample analyzed.

15.8 References

Desert Research Institute, 2009. *DOE NNSA/NSO Community Environmental Monitoring Program Quality Assurance Management and Assessment Plan*, July 2009. Las Vegas, NV.

Appendix A
Las Vegas Area Support Facilities

THIS PAGE INTENTIONALLY LEFT BLANK

TABLE OF CONTENTS

A.1	North Las Vegas Facility	A-1
A.1.1	Air Quality and Protection	A-1
A.1.2	Water Quality and Protection	A-3
A.1.2.1	Storm Water No Exposure Waiver ISW-40565	A-3
A.1.2.2	National Pollutant Discharge Elimination System DeMinimis General Permit	A-3
A.1.2.3	Groundwater Control and Dewatering Operation.....	A-5
A.1.2.4	Oil Pollution Prevention.....	A-6
A.1.3	Radiation Protection	A-6
A.1.3.1	National Emission Standards for Hazardous Air Pollutants	A-6
A.1.3.2	U.S. Department of Energy Order 458.1	A-6
A.1.4	Hazardous Waste Management	A-7
A.1.5	Hazardous Materials Control and Management	A-7
A.2	Remote Sensing Laboratory–Nellis	A-7
A.2.1	Air Quality and Protection	A-8
A.2.2	Water Quality and Protection	A-8
A.2.2.1	Oil Pollution Prevention.....	A-8
A.2.3	Underground Storage Tank Management.....	A-9
A.2.4	Hazardous Materials Control and Management	A-9
A.3	References	A-9

FIGURES

Figure A-1.	Location of NNSS offsite facilities in Las Vegas and North Las Vegas	A-2
Figure A-2.	Location of dewatering and monitoring wells around Building A-1	A-4

TABLES

Table A-1.	Summary of air emissions for the NLVF in 2022	A-1
Table A-2.	NLVF NPDES permit 2022 monitoring requirements and analysis results of storage tank water samples.....	A-5
Table A-3.	Results of 2022 direct radiation exposure monitoring at the NLVF.....	A-7
Table A-4.	Summary of air emissions for RSL-Nellis in 2022	A-8

THIS PAGE INTENTIONALLY LEFT BLANK

Appendix A: Las Vegas Area Support Facilities

Troy S. Belka, Jennifer M. Larotonda, Xianan Liu, Erika Lomeli-Uribe, Nikolas J. Taranik, and Brian G. Verheyen

Mission Support and Test Services, LLC

The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) manages two facilities in Clark County, Nevada, that support NNSA/NFO missions on and off the Nevada National Security Site (NNSS). These are the North Las Vegas Facility (NLVF) and the Remote Sensing Laboratory–Nellis (RSL-Nellis) (Figure A-1). This appendix describes environmental monitoring and compliance activities in 2022 at these facilities.

A.1 North Las Vegas Facility

The NLVF is a controlled-access complex composed of 31 buildings that house much of the NNSS project management, diagnostic development and testing, design, engineering, and procurement personnel. The 32-hectare (80-acre) facility is located along Losee Road, a short distance west of Interstate Highway 15 (Figure A-1). The facility is buffered on the north, south, and east by general industrial zoning. The western border separates the property from fully developed, single-family residential-zoned property. Environmental compliance and monitoring activities associated with this facility in 2022 included the maintenance of one air quality operating permit; one wastewater permit; one National Pollutant Discharge Elimination System (NPDES) permit; one Spill Prevention, Control, and Countermeasure (SPCC) Plan; and one hazardous materials permit (Table 2-2 lists NNSA/NFO permits). NNSA/NFO also monitors **tritium (3H)**¹ in air and ambient gamma emissions to comply with federal radiation protection regulations.

A.1.1 Air Quality and Protection

Sources of air pollutants at the NLVF are regulated by the Source 657 Minor Source Permit issued by the Clark County Division of Air Quality (DAQ) for the emission of **criteria pollutants**. These pollutants include particulate matter (PM), nitrogen oxide (NO_x), carbon monoxide (CO), sulfur dioxide (SO₂), and volatile organic compounds (VOCs). Because the NLVF is considered a true minor source, there is no requirement to report **hazardous air pollutants**. The regulated sources of emissions at the NLVF include diesel generators, a fire pump, cooling towers, and boilers. The DAQ requires an annual emissions inventory of criteria air pollutants; the 2022 inventory reported the estimated quantities (Table A-1) on March 22, 2023.

Table A-1. Summary of air emissions for the NLVF in 2022

Parameter	Criteria Pollutant (tons/yr) ^(a)					
	PM10 ^(b)	PM2.5 ^(c)	NO _x	CO	SO ₂	VOC
PTE ^(d)	1.24	1.24	19.58	4.75	0.09	0.92
Actual ^(e)	0.10	0.10	0.58	0.36	0.01	0.06
Total Emissions = 1.21 Actual, 27.82 PTE						

(a) 1 ton equals 0.91 metric tons (yr = year).

(b) Particulate matter equal to or less than 10 microns in diameter.

(c) Particulate matter equal to or less than 2.5 microns in diameter.

(d) **Potential to emit (PTE)** is the quantity of criteria air pollutants that facilities/pieces of equipment would emit annually if they were operated for the maximum number of hours at the maximum production rate specified in the air permit.

(e) Emissions based on calculations using actual hours of operation for each piece of equipment.

Clark County air regulations specify that the opacity from any emission unit may not exceed the Clean Air Act National Ambient Air Quality Standards (NAAQS) opacity limit of 20% for more than 6 consecutive minutes.

The NLVF air permit requires that a visible emissions check be performed from each diesel-fired generator and fire pump when operated for testing and maintenance.

¹ The definition of word(s) in ***bold italics*** may be found by referencing the Glossary, Appendix B.

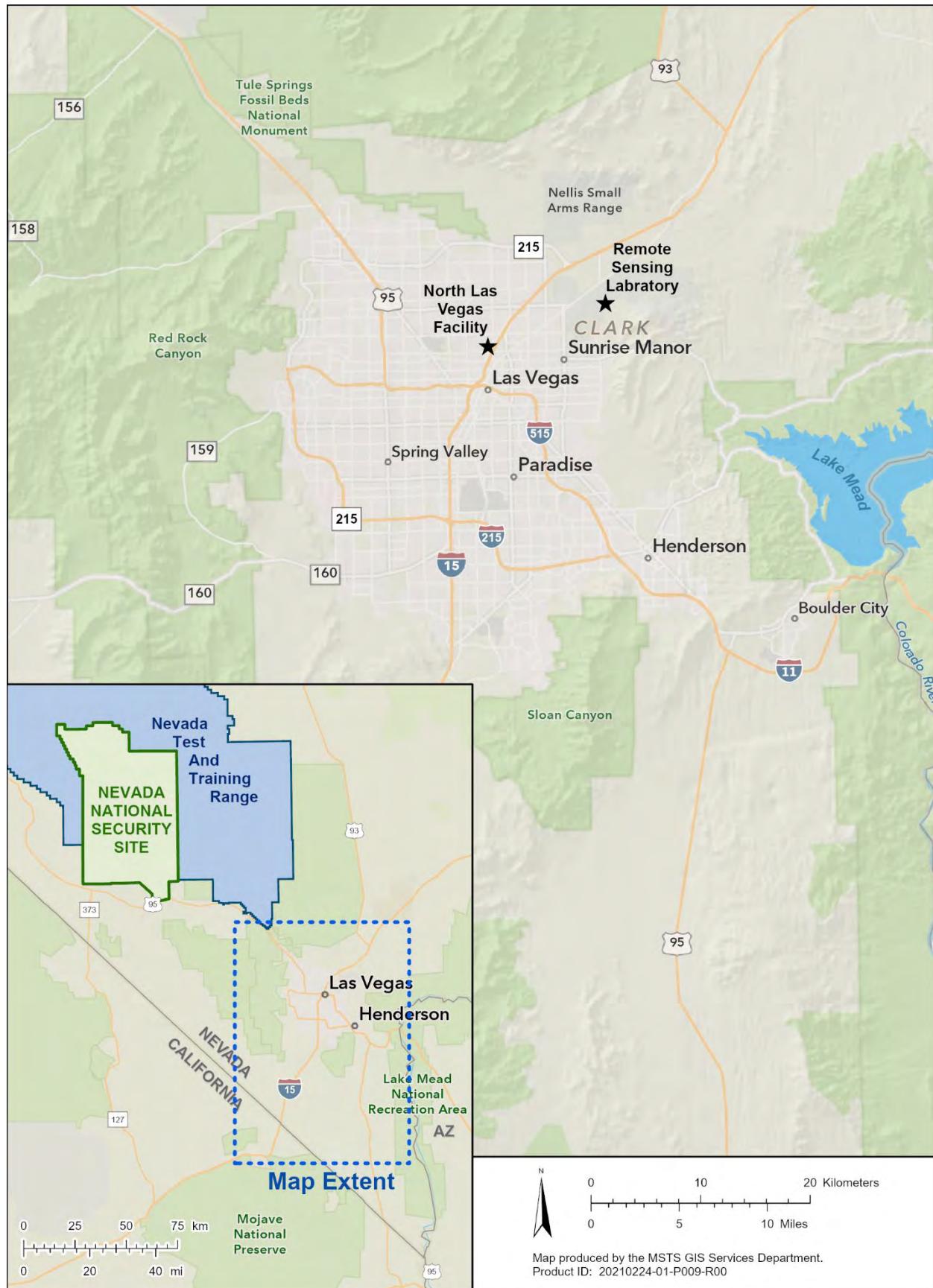


Figure A-1. Location of NNSS offsite facilities in Las Vegas and North Las Vegas

If emissions that appear to exceed the opacity limits are observed, then immediate corrective action would be taken. If practical, U.S. Environmental Protection Agency (EPA) Method 9 opacity readings would be recorded by a certified visible-emissions evaluator. In 2022, two NLVF Maintenance Engineers were recertified.

If visible emissions appear to exceed the limit, corrective actions must be taken to minimize emissions. In 2022, observations were taken for diesel-fired generators; emissions were below the NAAQS opacity limit of 20%. One non-emissions deviation report, involving reporting more hours than actual operating hours, was submitted for the NLVF.

At NLVF, a verbal notification to the City of North Las Vegas (CNLV) Fire Department is required before each fire extinguisher training session. In 2022, one hot work live fire extinguisher training session was conducted at the NLVF. Quantities of criteria air pollutants produced by the open burns during training are not required to be calculated or reported.

A.1.2 Water Quality and Protection

Water used at the NLVF is supplied by the CNLV and meets or exceeds federal drinking water standards. Water quality permits issued to NNSA/NFO include a Class II Wastewater Control Permit (036555-02) from the CNLV for NLVF sewer discharges and an NPDES DeMinimis (NVG201000) permit from the Nevada Division of Environmental Protection (NDEP) for dewatering operations to control rising groundwater levels at the facility. Discharges of sewage and industrial wastewater from the NLVF must meet permit limits set by the CNLV. These limits support the permit limits for the Publicly Owned Treatment Works operated by the CNLV. The Class II Permit specifies substances prohibited from being discharged at NLVF and requires that CNLV be notified of changes in discharge flow rates, spills, or other abnormal events. In 2022, no changes, spills, or abnormal events occurred.

A.1.2.1 Storm Water No Exposure Waiver ISW-40565

This waiver was approved on July 16, 2015, and provides a conditional exemption from the NPDES Storm Water Program and the State of Nevada Stormwater General Permit. The conditions specify that storm water discharges from the NLVF will not be exposed to industrial activities or materials. In 2022, no storm water exposures to such activities or materials occurred.

A.1.2.2 National Pollutant Discharge Elimination System DeMinimis General Permit

An NPDES DeMinimis general permit covers the dewatering operation at the NLVF (Section A.1.2.3). Dewatering wells (NLVF-13s, -15, -16, -17) and the A-01 Basement Sump Well pump groundwater into a 37,854-liter (L) (10,000-gallon [gal]) storage tank (Figure A-2). The water is then discharged from the storage tank into the Las Vegas Wash via direct discharge (Outfall 002) into the CNLV storm drainage system. Chemical analyses are performed annually on water samples collected from the storage tank. The total quantities of groundwater produced and discharged and the results of chemical analyses are reported annually to NDEP's Bureau of Water Pollution Control.

In 2022, the five dewatering wells at the NLVF produced an average of about 465,780 L (123,046 gal) per month that were directed into the storage tank. Annual water sampling for the presence of 23 analytes (permit NVG201000, Section A.10.3.4) was performed on October 6, 2022. All analyte concentrations were below permit limits, and discharge rates (i.e., daily maximum flows) did not exceed the NPDES DeMinimis general permit limits (Table A-2).

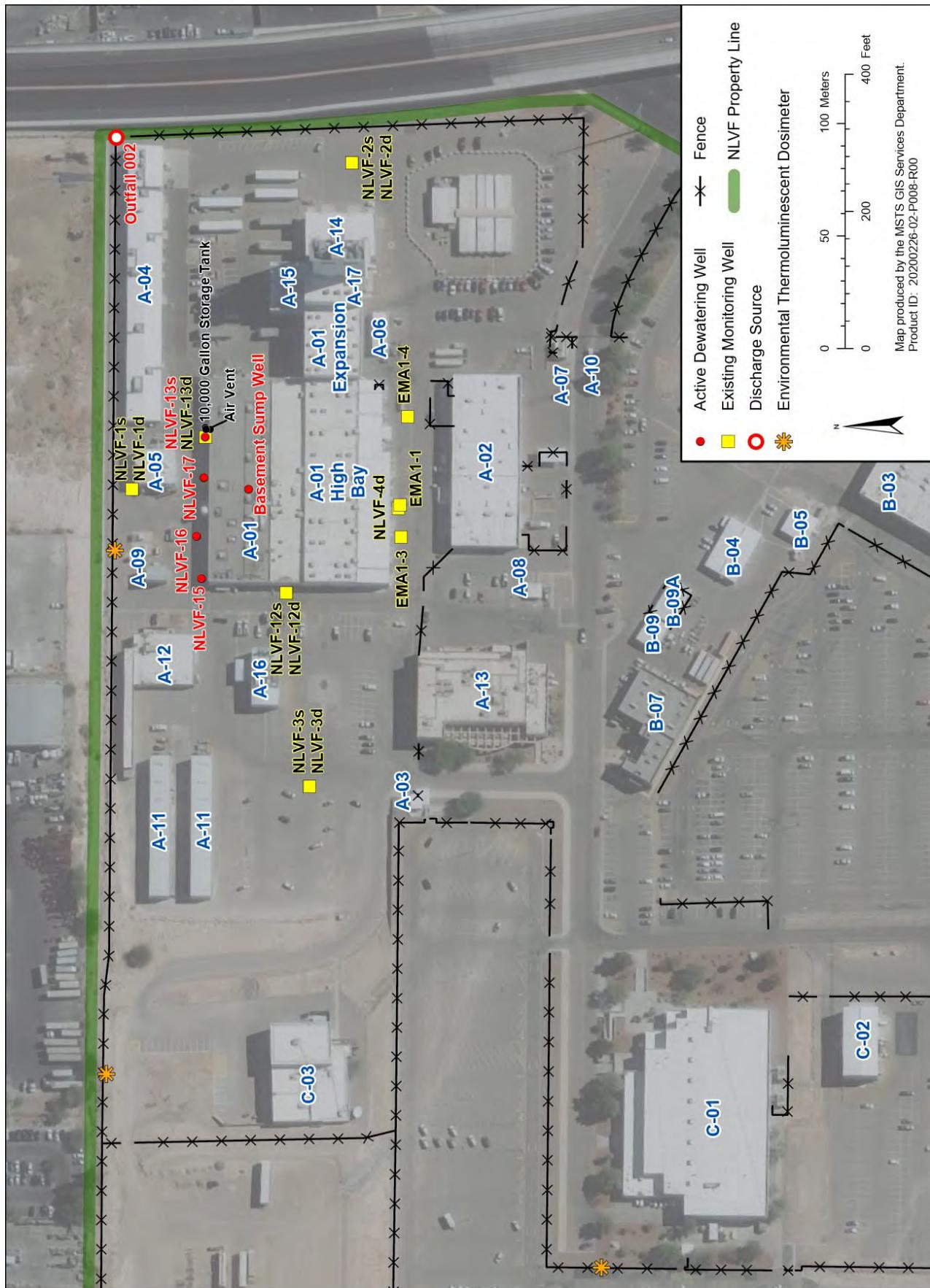


Figure A-2. Location of dewatering and monitoring wells around Building A-1

Table A-2. NLVF NPDES permit 2022 monitoring requirements and analysis results of storage tank water samples

Parameter	Monitoring Requirements		Permit Discharge Limits	Sample Results			
	Sample Frequency	Sample Type		Daily Maximum	1 st Quarter	2 nd Quarter	3 rd Quarter
Daily Maximum Flow (MGD) ^(a)	Continuous	Flow Meter	0.36	0.004	0.004	0.004	0.004
Total Petroleum Hydrocarbons ^(b) (mg/L)	Annually ^(c)	Discrete	1	NS ^(d)	NS	NS	ND ^(e)
Total Suspended Solids (mg/L)	Annually	Discrete	M&R ^(f)	NS	NS	NS	ND
Total Dissolved Solids (mg/L)	Annually	Discrete	M&R	NS	NS	NS	1340
Total Inorganic Nitrogen as N (mg/L)	Annually	Discrete	10	NS	NS	NS	1.44
pH (Standard Units)	Annually	Discrete	6.5–9.0	NS	NS	NS	7.86
Total Residual Chlorine (mg/L)	Annually ^(g)	Discrete	0.10	NS	NS	NS	ND
Methyl tert-Butyl Ether (μg/L) ^(h)	Annually	Discrete	20.0	NS	NS	NS	ND
Total Phosphorus (mg/L)	Annually	Discrete	M&R	NS	NS	NS	0.092
Trichloroethylene (μg/L)	Annually	Discrete	5.0	NS	NS	NS	ND
Tetrachloroethylene (μg/L)	Annually	Discrete	5.0	NS	NS	NS	ND
Benzene (μg/L)	Annually	Discrete	5.0	NS	NS	NS	ND
Ethylbenzene (μg/L)	Annually	Discrete	100.0	NS	NS	NS	ND
Toluene (μg/L)	Annually	Discrete	100.0	NS	NS	NS	ND
Xylene (μg/L)	Annually	Discrete	200.0	NS	NS	NS	ND
Barium (mg/L)	Annually	Discrete	2.0	NS	NS	NS	0.08
Fluoride (mg/L)	Annually	Discrete	M&R	NS	NS	NS	ND
Iron (mg/L)	Annually	Discrete	1.0	NS	NS	NS	ND
Sulfate (mg/L)	Annually	Discrete	M&R	NS	NS	NS	7620
Molybdenum (mg/L)	Annually	Discrete	6.16	NS	NS	NS	ND
Turbidity (NTU) ⁽ⁱ⁾	Annually	Discrete	M&R	NS	NS	NS	ND
Fecal Coliform (MPN/100 ml) ^(j)	Annually	Discrete	M&R	NS	NS	NS	ND
Escherichia Coli (MPN/100 ml)	Annually	Discrete	M&R	NS	NS	NS	ND
Dissolved Oxygen (mg/L)	Annually	Discrete	M&R	NS	NS	NS	3.28

(a) MGD = million gallons per day.

(b) This parameter includes three analytes, in milligrams per liter (mg/L): diesel range organics, gasoline range organics, and oil range organics.

(c) Sampled in the 4th quarter of the calendar year.

(d) NS = not required to be sampled that quarter.

(e) ND = not detected; values were less than the laboratory detection limits.

(f) M&R = Monitor and report

(g) The permit includes a “Two/Discharge” sampling frequency, but since this is continually discharging, the annual monitoring meets the requirement.

(h) μg/L = micrograms per liter

(i) NTU = nephelometric turbidity unit

(j) MPN/100 ml = most probable number per 100 milliliters

A.1.2.3 Groundwater Control and Dewatering Operation

In 2022, the groundwater control and dewatering project at the NLVF continued efforts to reduce the intrusion of groundwater below Building A-01. The project has transitioned from initial groundwater investigations and characterization to a long-term/permanent dewatering operation project. A review of the rising groundwater situation, and past efforts to understand and remediate this, is presented in previous reports (Bechtel Nevada 2003, 2004; National Security Technologies, LLC, 2006). Monitoring for this operation includes periodic measurements of water level at 24 of the 27 NLVF monitoring wells (not all wells are presented on Figure A-2), continuous water level measurements at the A-01 Basement Sump Well, measurement of water level at the A-01 elevator shaft, measurement of the total volume of discharged groundwater, and conducting groundwater characterization in accordance with the NPDES DeMinimis general permit. Groundwater data are assessed as new data become

available. This information is used to help characterize groundwater conditions and evaluate the dewatering operation.

When the A-01 Basement Sump Well pump is active, the water level directly beneath Building A-01 averages 31.8 centimeters (cm) (12.5 inches [in]) below the basement floor, as measured in a monitoring tube installed in a nearby elevator shaft. This average water level is based on daily measurements taken in 2022 and reflects a drop of about 53.3 cm (21.0 in) in the local *water table* beneath Building A-01 since full-scale dewatering operations began in 2006. The general trend for the NLVF site-wide monitoring network shows an average rise in the water level of 1.2 meters (4.0 feet) since 2003. Dewatering efforts must continue to counter this rising groundwater trend.

A.1.2.4 Oil Pollution Prevention

The NLVF has an SPCC Plan that was prepared in accordance with the Clean Water Act to minimize the potential discharge of petroleum products, animal fats and vegetable oils, and other non-petroleum oils and greases into waters of the U.S. (i.e., the Las Vegas Wash). The EPA requires SPCC Plans for non-transportation-related facilities having the potential to pollute waters of the U.S. and having an aggregate aboveground oil storage capacity of more than 4,997 L (1,320 gal). Oil storage facilities at the NLVF include 10 aboveground tanks, 18 transformers, 13 pieces of oil-filled machining equipment (e.g., lathes, elevators), and numerous 55-gal drums that are used to store new and used oils. These facilities/pieces of equipment are located within approved spill and storm water runoff containment structures. The SPCC specifies procedures for removing storm water from containment structures and identifies discharge countermeasures, disposal methods for recovered materials, and discharge reporting requirements.

In 2022, quarterly inspections of tanks, transformers, oil-filled equipment, and drums were conducted in March, May, September, and November. Throughout 2022, all NLVF employees who handle oil received their required annual spill prevention and management training. No spills occurred in 2022 that met regulatory agency reporting criteria.

A.1.3 Radiation Protection

A.1.3.1 National Emission Standards for Hazardous Air Pollutants

In compliance with the National Emission Standards for Hazardous Air Pollutants (NESHAP) of the Clean Air Act, the *radionuclide* air emissions from the NLVF and the resultant radiological *dose* to the public surrounding the facility were assessed. NESHAP establishes a dose limit for the general public to be no greater than 10 millirems per year (mrem/yr) from all radioactive air emissions (Mission Support and Test Services, LLC [MSTS], 2023). The basement of Building A-01 was contaminated with ^{3}H in 1995 when a container of ^{3}H foils was opened, emitting about 1 curie of ^{3}H (U.S. Department of Energy, Nevada Operations Office 1996). Complete cleanup of the ^{3}H was unsuccessful due to the ^{3}H being absorbed into the building materials. This has resulted in a continuous but decreasing release of ^{3}H into the basement air space, which is ventilated to the outdoors. Since 1995, a dose assessment has been performed every year for this building.

In 2022, ^{3}H emissions continued emanating from building materials in the building's basement. This ^{3}H emission was estimated by taking two air samples from the basement (on April 12–19 and September 15–26, 2022) in order to compute average ^{3}H emissions. A calculated annual total of 2.25 millicuries were released from the basement air that was vented to the outside. Based on this emission rate, the 2022 calculated radiation dose to the nearest member of the general public from the NLVF was very low: 0.000011 mrem/yr (MSTS 2023). The nearest public place is 100 meters (328 feet) northwest of Building A-01. This annual public dose is well below the regulatory limit of 10 mrem/yr.

A.1.3.2 U.S. Department of Energy Order 458.1

DOE Order DOE O 458.1, “Radiation Protection of the Public and the Environment,” specifies that the radiological dose to a member of the public from radiation from all pathways must not exceed 100 mrem/yr as a result of DOE activities. This dose limit does not include the dose contribution from natural *background* radiation. The Atlas A-1 Source Range Laboratory and the Building C-3 High Intensity Source Building are two NLVF facilities that use radioactive sources or where radiation-producing operations are conducted that have the

potential to expose the general population or non-project personnel to direct radiation. Direct radiation monitoring is conducted using **thermoluminescent dosimeters (TLDs)** to monitor external **gamma radiation exposure** near the boundaries of these facilities. The methods of TLD use and data analyses are described in Chapter 6 of this report.

In 2022, radiation exposure was measured at two locations along perimeter fences for Buildings A-01 and C-3 and at one control location along the west fence of Building C-1 (Figure A-2). Annual exposure rates estimated from measurements at those locations are summarized in Table A-3. The radiation exposure in air measured by the TLDs is in the unit of milliroentgens per year (mR/yr), which is considered equivalent to the unit of mrem/yr for tissue. These exposures are similar to the average natural background radiation of 69.5 mrem/yr (excluding radon) in Las Vegas (<https://cemp.dri.edu/cemp/Radiation.html>). The NLVF TLD results indicate that facility activities do not contribute a radiological dose to the surrounding public that can be distinguished from the dose due to background radiation.

Table A-3. Results of 2022 direct radiation exposure monitoring at the NLVF

Location	Number of Samples	Gamma Exposure (mR/yr)			
		Mean	Median	Minimum	Maximum
West Fence of Building C-1 (Control)	4	98	97	97	99
North Fence of Building A-01	4	67	68	64	70
North Fence of Building C-3	4	68	68	67	70

A.1.4 Hazardous Waste Management

Hazardous wastes (HWs) generated at the NLVF include such items as non-empty aerosol cans, lead debris, and oily rags. HWs are accumulated temporarily in satellite accumulation areas until they are direct-shipped to approved disposal facilities. The NLVF is a Very Small Quantity Generator and does not store HW; therefore, no HW permit is required by the State of Nevada. However, the Southern Nevada Health District (SNHD) issues the facility an annual permit for restricted waste management. The SNHD normally conducts an annual audit to validate proper handling and storage of restricted wastes; SNHD conducted the audit in 2022 and no issues were identified.

A.1.5 Hazardous Materials Control and Management

The 2022 NLVF chemical inventory was submitted to the state in the Nevada Combined Agency (NCA) Report on February 25, 2022. The inventory data were submitted in accordance with the requirements of the Hazardous Materials Permit 95585. For a description of the content, purpose, and federal regulatory driver behind the NCA Report, see Section 2.4.4.1, “Emergency Planning and Community Right-to-Know Act.” No accidental or unplanned release of an extremely hazardous substance (EHS) occurred at the NLVF. Also, the quantities of toxic chemicals kept at the NLVF that are used annually did not exceed the specified reporting thresholds (Chapter 2, Table 2-6 concerning Toxic Chemical Release Inventory, Form R).

A.2 Remote Sensing Laboratory–Nellis

RSL-Nellis is approximately 13.7 kilometers (km) (8.5 miles [mi]) northeast of the Las Vegas city center and approximately 11.3 km (7 mi) northeast of the NLVF. It occupies six facilities on approximately 14 secured hectares (35 acres) at Nellis Air Force Base. A Memorandum of Agreement between the U.S. Air Force (USAF) and NNSA/NFO acknowledges that the land belongs to the USAF and is leased to NNSA/NFO, while the RSL facilities are owned by NNSA/NFO. RSL-Nellis provides emergency response resources for weapons-of-mass-destruction incidents. The laboratory also designs and conducts field tests of counterterrorism/intelligence technologies, and has the capability to assess environmental and facility conditions using complex radiation measurements and multi-spectral imaging technologies.

Environmental compliance and monitoring activities at RSL-Nellis in 2022 included maintenance of an air quality permit, an underground storage tank (UST) permit for one active UST, and a hazardous materials permit (Table 2-2 lists NNSA/NFO permits). Sealed radiation sources are used for calibration at RSL-Nellis, but the public has no access to any area that may have elevated gamma radiation emitted by the sources. Therefore,

no environmental TLD monitoring is conducted. However, dosimetry monitoring is performed to ensure worker protection.

A.2.1 Air Quality and Protection

Sources of air pollutants at RSL-Nellis are regulated by the Source 348 Minor Source Permit issued by the Clark County DAQ for the emission of criteria pollutants. Regulated sources of air pollutant emissions at RSL-Nellis include an aluminum sander, an abrasive blaster, spray paint booth, generators, a fire pump, and boilers. The 2022 emissions inventory of criteria air pollutants was submitted to the DAQ on March 22, 2023, and is shown in Table A-4.

Clark County air regulations specify that the opacity from any emission unit may not exceed the NAAQS opacity limit of 20% for more than 6 consecutive minutes. The RSL-Nellis air permit requires a visible emissions check be performed from each diesel-fired generator and fire pump when operated for testing and maintenance. If emissions appear to exceed the opacity limit, then immediate corrective action would be taken. If practical, EPA Method 9 opacity readings would be recorded by a certified visible-emissions evaluator. In 2022, one RSL Maintenance engineer was certified.

Table A-4. Summary of air emissions for RSL-Nellis in 2022

Parameter	Criteria Pollutant (tons/yr) ^(a)					
	PM10 ^(b)	PM2.5 ^(c)	NO _x	CO	SO ₂	VOC
PTE ^(d)	0.51	0.51	4.13	1.63	0.04	0.36
Actual ^(e)	0.06	0.06	0.28	0.22	0.00	0.03
Total Emissions = 0.65 Actual, 7.18 PTE						

(a) 1 ton equals 0.91 metric tons.

(b) Particulate matter equal to or less than 10 microns in diameter.

(c) Particulate matter equal to or less than 2.5 microns in diameter.

(d) PTE is the quantity of criteria pollutants that facilities/pieces of equipment would emit annually if they were operated for the maximum number of hours at the maximum production rate specified in the air permit.

(e) Emissions based on calculations using actual hours of operation for each piece of equipment.

A.2.2 Water Quality and Protection

Water used at RSL-Nellis is supplied by the Southern Nevada Water Authority and meets or exceeds federal drinking water standards. The Clark County Water Reclamation District (CCWRD) determined that a discharge permit is not necessary for RSL-Nellis since no industrial wastewaters are discharged. Instead, an annual submission of a Zero Discharge Form verifying that no industrial wastewater was discharged to the sanitary sewer system is required. A Zero Discharge Certification for 2022 was submitted to CCWRD on February 18, 2022. There were no regulatory inspections of RSL-Nellis by the CCWRD and no findings or corrective actions were identified by internal assessments.

A.2.2.1 Oil Pollution Prevention

An SPCC Plan is in place for RSL-Nellis. Similar to the NLVF (Section A.1.2.4), the SPCC Plan is required because the facility has an aggregate aboveground oil storage capacity of more than 4,997 L (1,320 gal), and spills could potentially enter the Las Vegas Wash. Oil storage facilities at RSL-Nellis include five aboveground tanks, four transformers, and two pieces of oil-filled machining equipment (i.e., elevators). These facilities and pieces of equipment are within approved spill and storm water runoff containment structures. The SPCC specifies procedures for removing storm water from containment structures and identifies discharge countermeasures, disposal methods for recovered materials, and discharge reporting requirements.

In 2022, quarterly inspections of tanks, transformers, and oil-filled equipment were conducted in March, May, July, and November. All RSL-Nellis employees who handle oil received their required annual spill prevention and management training. No spills occurred in 2022 that met regulatory agency reporting criteria.

A.2.3 Underground Storage Tank Management

The SNHD has oversight authority of USTs in Clark County. On January 1, 2022, the UST program at RSL-Nellis consisted of one fully regulated active tank for diesel fuel and three fully regulated temporarily closed tanks (one for unleaded gasoline, one for diesel fuel, and one for used oil), and three excluded tanks. The fully regulated USTs are operated under the RSL-Nellis UST Permit PR0064276 issued by SNHD. The fully regulated, active, and temporarily closed tanks are inspected annually by SNHD. In November 2022, SNHD inspected the fully regulated USTs at RSL-Nellis. No deficiencies were noted.

A.2.4 Hazardous Materials Control and Management

The chemical inventory at RSL-Nellis was submitted to the state in the NCA Report on February 25, 2022, in accordance with the requirements of the Hazardous Materials Permit 95579 (Section 2.4.4.1 describes the content, purpose, and federal regulatory driver behind the NCA Report). No accidental or unplanned release of an EHS occurred at RSL-Nellis in 2022. Also, no annual usage quantities of toxic chemicals kept at RSL-Nellis exceeded specified thresholds (Chapter 2, Table 2-5 concerning Toxic Chemical Release Inventory, Form R).

A.3 References

Bechtel Nevada, 2003. *Summary Report for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office FY02/FY03 Groundwater Control Study at the North Las Vegas Facility*. Las Vegas, NV.

———, 2004. *Summary Report for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Groundwater Control at Building A-01 North Las Vegas Facility*. Las Vegas, NV.

Mission Support and Test Services, LLC, 2023. *National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions Calendar Year 2022*. DOE/NV/03624--1733, prepared for U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office, Las Vegas, NV.

MSTS, see Mission Support and Test Services, LLC.

National Security Technologies, LLC, 2006. *Groundwater Control at Building A-01, North Las Vegas Facility Enhanced Dewatering Initiative*. Las Vegas, NV.

U.S. Department of Energy, Nevada Operations Office, 1996. *National Emission Standards for Hazardous Air Pollutants Submittal – 1995*. DOE/NV/11718--032, Las Vegas, NV. OSTI ID: 436417

THIS PAGE INTENTIONALLY LEFT BLANK

Appendix B: Glossary of Terms

A Absorbed dose: the amount of energy absorbed by an object or person per unit mass. It reflects the amount of energy that ionizing radiation sources deposit in materials through which they pass, and is measured in units of radiation-absorbed dose (rad). The related international system unit is the gray (Gy), where 1 Gy is equivalent to 100 rad.

Actinide: any of the series of 15 metallic elements from actinium (atomic number 89) to lawrencium (atomic number 103) in the periodic table. They are all radioactive, the heavier members being extremely unstable and not of natural occurrence. The actinides mentioned in this document include uranium, plutonium, and americium.

Alpha particle: a positively charged particle emitted from the nucleus of an atom having mass and charge equal to those of a helium nucleus (two protons and two neutrons), usually emitted by transuranic elements (elements with atomic numbers greater than 92 [the atomic number of uranium], all of which are unstable and decay radioactively into other elements).

Alpha radioactivity: ionizing radiation consisting of alpha particles, emitted by some substances undergoing radioactive decay.

Aquifer: a saturated layer of rock or soil below the ground surface that can supply usable quantities of groundwater to wells and springs and be a source of water for domestic, agricultural, and industrial uses.

Area 5 Radioactive Waste Management Complex (RWMC): the complex in Area 5 of the Nevada National Security Site at which low-level waste (LLW) and mixed low-level waste (MLLW) may be received, examined, packaged, stored, or disposed. Limited quantities of onsite-generated transuranic waste (TRU) are also stored temporarily at the RWMC. The RWMC is composed of the Area 5 Radioactive Waste Management Site (RWMS) and the Waste Examination Facility (WEF) and supporting administrative buildings, parking areas, and utilities. The operational units of the Area 5 RWMS include active, inactive, and closed LLW and MLLW cells and a Real Time Radiography Building. The operational units of the WEF include the TRU Pad, TRU Pad Cover Building, TRU Loading Operations Area, WEF Yard, WEF Drum Holding Pad, Sprung Instant Structure, and the Visual Examination and Repackaging Building.

As low as reasonably achievable (ALARA): an approach to radiation safety that strives to manage and control doses to the work force and general public.

Atom: the smallest particle of an element capable of entering into a chemical reaction.

B Background: as used in this report, background is the term for the amounts of chemical constituents or radioactivity in the environment that are not caused by Nevada National Security Site operations. In the broader context outside this report, background radiation refers to radiation arising from natural sources always present in the environment, including solar and cosmic radiation from outer space and naturally radioactive elements in the atmosphere, the ground, building materials, and the human body.

Becquerel (Bq): the International System of Units unit of activity of a radionuclide, equal to the activity of a radionuclide having one spontaneous nuclear transition per second.

Beta particle: a negatively charged particle emitted from the nucleus of an atom, having charge, mass, and other properties of an electron, emitted from fission products such as cesium-137.

Beta radioactivity: ionizing radiation consisting of beta particles emitted in the radioactive decay of an atomic nucleus.

Biochemical oxygen demand (BOD): a measure of the amount of dissolved oxygen that microorganisms need to break down organic matter in water; used as an indicator of water quality.

Bureau of Land Management (BLM) herd management areas (HMA): the BLM manages wild horses and burros in 177 herd management areas across 10 western states. Each HMA is unique in its terrain features, local climate and natural resources, just as each herd is unique in its history, genetic heritage, coloring and size distribution (source: <https://www.blm.gov/programs/wild-horse-and-burro/herd-management/herd-management-areas>).

C Classified Non-Radioactive (CNR) waste: waste to which access has been limited for national security reasons and cannot be declassified, and which does not need to be managed for its radioactive content.

Classified Non-Radioactive Hazardous (CNRH) waste: waste to which access has been limited for national security reasons and cannot be declassified, does not need to be managed for its radioactive content, and contains a hazardous component subject to the Resource Conservation and Recovery Act (RCRA), as amended.

Clean Air Package, 1988, (CAP88-PC): a computer model with a set of computer programs, databases and associated utility programs for estimating dose and risk from radionuclide emissions to air. CAP88 is a regulatory compliance tool under the National Emissions Standard for Hazardous Air Pollutants (NESHAP) (source: <https://www.epa.gov/radiation/cap-88-pc>).

Closure-in-place: the stabilization or isolation of pollutants, hazardous wastes, and solid wastes, with or without partial treatment, removal activities, and/or post-closure monitoring. Closures-in-place of legacy contamination sites on and off the Nevada National Security Site, which are managed by the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office, are attained in accordance with approved corrective action plans outlined in the 1996 Federal Facility Agreement and Consent Order (as amended) between the U.S. Department of Energy, the U.S. Department of Defense, and the State of Nevada.

Code of Federal Regulations (CFR): a codification of all regulations promulgated by federal government agencies.

Collective population dose: the sum of the total effective dose equivalents of all individuals within a defined population. The unit of collective population dose is person-rem or person-sievert. Collective population dose may also be referred to as “collective effective dose equivalent” or simply “population dose.”

Committed effective dose equivalent (CEDE): the sum of the committed dose equivalents to various tissues in the body, each multiplied by an appropriate weighting factor representing the relative vulnerability of different parts of the body to radiation. Committed effective dose equivalent is expressed in units of rem or sievert.

Community water system: as defined in Nevada Revised Statute 445A.808, a public water system that has at least 15 service connections used by year-round residents of the area served by the system; or regularly serves at least 25 year-round residents of the area served by the system.

Composite analysis (CA): an analysis of the risks posed by all wastes disposed in a low-level radioactive waste disposal facility and by all other sources of residual contamination that may interact with the disposal site. CAs, along with performance assessments (PAs), are conducted for the Area 3 and Area 5 Radioactive Waste Management Sites on the Nevada National Security Site to assess and predict their long-term performance.

Concentration Level (CL): the Clean Air Act National Emission Standards for Hazardous Air Pollutants Concentration Level for Environmental Compliance. The CL value represents the annual average concentration that would result in a dose of 10 millirem per year, which is the federal dose limit to the public from all radioactive air emissions.

Confining unit: a geologic unit of relatively low permeability that impedes the vertical movement of groundwater.

Contaminant Boundary: a type of boundary developed for an Underground Test Area (UGTA) corrective action unit (CAU). It is a forecast perimeter and a lower hydrostratigraphic unit boundary that delineates the potential extent of radionuclide-contaminated groundwater from underground testing for 1,000 years. Contaminated groundwater is defined as water exceeding the radiological standards of the Safe Drinking Water Act (SDWA). The forecasted contamination is a volume, which is projected upward to the ground surface to define a two-dimensional contaminant boundary perimeter. Simulation modeling of the transport of radiological contaminants in groundwater is usually used to forecast the locations of the contaminant boundaries within the next 1,000 years. CAU-specific contaminant boundaries are approved by the Nevada Division of Environmental Protection.

Continuous release: defined by the U.S Environmental Protection Agency as a release that occurs without interruption or abatement, or that is routine, anticipated, intermittent, and incidental to normal operation or treatment process.

Criteria pollutants: those air pollutants designated by the U.S. Environmental Protection Agency as potentially harmful and for which National Ambient Air Quality Standards under the Clean Air Act have been established to protect the public health and welfare. These pollutants include sulfur dioxide (SO₂), nitrogen oxides (NO_x), carbon monoxide (CO), ozone, lead, and particulate matter equal to or less than 10 microns in diameter (PM10). The State of Nevada, through an air quality permit, establishes emission limits on the Nevada National Security Site for SO₂, NO_x, CO, PM10, and volatile organic compounds (VOCs). Ozone is not regulated by the permit as an emission, as it is formed in part from NO_x and VOCs. Lead is considered a hazardous air pollutant (HAP) as well as a criteria pollutant, and lead emissions on the Nevada National Security Site are reported as part of the total HAP emissions. Lead emissions above a specified threshold are also reported under Section 313 of the Emergency Planning and Community Right-to-Know Act.

Critical Level (L_c) (also known as decision level): the counts of radioactivity (or concentration level of a radionuclide) in a sample that must be exceeded before there is a specified level of confidence (typically 95 or 99 percent) that the sample contains radioactive material above the background.

Critical receptor samplers: a type of radiological air monitoring station on the NNSS that samples air particulates and water vapor for the purpose of assessing dose to the public from airborne radionuclides originating from past or current NNSS activities and documenting if the assessed dose exceeds the DOE public dose limit of 10 millirems per year from inhalation. The U.S. Environmental Protection Agency has approved a sampling network of six such stations on the NNSS. The critical receptor is assumed to be an individual who resides at the station location. Air sample analysis results for each station identify whether this hypothetical individual would be exposed to airborne radionuclides that would exceed the DOE public dose limit. It is assumed that if air sampling results at these six locations on the NNSS indicate doses below the public limit, then the public who reside off the NNSS at greater distances from the NNSS sources of airborne radionuclides, then the offsite public dose is even less.

Curie (Ci): a unit of measurement of radioactivity, defined as the amount of radioactive material in which the decay rate is 3.7×10^{10} (37 billion) disintegrations per second; one Ci is approximately equal to the decay rate of one gram of pure radium.

D Daughter nuclide (also known as isotope or product): a nuclide formed by the radioactive decay of another nuclide, which is called the parent.

Decay (see Radioactive decay).

Decision level (also known as critical level): the counts of radioactivity (or concentration level of a radionuclide) in a sample that must be exceeded before there is a specified level of confidence (typically 95 or 99 percent) that the sample contains radioactive material above the background.

Depleted uranium (DU): uranium having a lower proportion of the isotope ^{235}U than is found in naturally occurring uranium. The masses of the three uranium isotopes with atomic weights 238, 235, and 234 occur in depleted uranium in the weight-percentages 99.8, 0.2, and 5×10^{-4} , respectively.

Derived Concentration Standard (DCS): concentration of a given radionuclide in either water or air that results in a member of the public receiving 100 millirem (1 millisievert) effective dose following continuous exposure for one year via each of the following pathways: ingestion of water, submersion in air, and inhalation. They replace the Derived Concentration Guides previously published by the U.S. Department of Energy (DOE) in 1993 in DOE Order DOE O 5400.5. Since 1993, the radiation protection framework on which DCSs are based has evolved with more sophisticated biokinetic and dosimetric information provided by the International Commission on Radiological Protection (ICRP), thus enabling consideration of age and gender. DOE-STD-1196-2011 establishes DCS values that reflect the current state of knowledge and practice in radiation protection. These DCSs are based on age-specific effective dose coefficients, revised gender specific physiological parameters for the Reference Man (ICRP 2002), and the latest information on the energies and intensities of radiation emitted by radionuclides (ICRP 2008).

Designated pollutant: any pollutant regulated by the Clean Air Act's New Source Performance Standards that is not a criteria pollutant. Examples of these are acid mist, fluorides, hydrogen sulfide in acid gas, and total reduced sulfur.

Diffuse source: an area source from which radioactive air emissions are continuously distributed over a given area or emanate from a number of points randomly distributed over the area (generally, all sources other than point sources). Diffuse sources are not actively ventilated or exhausted. Diffuse sources include: emissions from large areas of contaminated soil, resuspension of dust deposited on open fields, ponds and uncontrolled releases from openings in a structure.

Dose: the energy imparted to matter by ionizing radiation; the unit of absorbed dose is the rad, equal to 0.01 joules per kilogram for irradiated material in any medium.

Dosimeter: a portable detection device for measuring the total accumulated exposure to ionizing radiation.

Dosimetry: the theory and application of the principles and techniques of measuring and recording radiation doses.

E Effective dose equivalent (EDE): an estimate of the total risk of potential effects from radiation exposure; it is the summation of the products of the dose equivalent and weighting factor for each tissue. The weighting factor is the decimal fraction of the risk arising from irradiation of a selected tissue to the total risk when the whole body is irradiated uniformly to the same dose equivalent. These factors permit dose equivalents from non-uniform exposure of the body to be expressed in terms of an EDE that is numerically equal to the dose from a uniform exposure of the whole body that entails the same risk as the internal exposure. The EDE includes the committed effective dose equivalent from internal deposition of radionuclides and the EDE caused by penetrating radiation from sources external to the body, and is expressed in units of rem or sievert.

Exposure: the absorption of ionizing radiation or ingestion of a radioisotope. Acute exposure is a large exposure received over a short period. Chronic exposure is exposure received over a long period, such as during a lifetime.

F Federal citation: a reference to a federal law identified by its Public Law (Pub. L) or United States Code (USC) abbreviation, or a reference to the implementing regulation of a federal law identified by its Code of Federal Regulations (CFR) abbreviation. CFR citations are used in this report unless none have been written, in which case, USC citations are used. If a public law has yet to be incorporated into the USC, then its public law (Pub. L) citation is used.

When a bill is signed by the President and becomes a new public law, it is assigned a law number, legal statutory citation, and prepared for publication as a slip law. Citations for public laws include the abbreviation, Pub. L., the Congress number, and the number of the law. At the end of each session of

Congress, the slip laws are compiled into bound volumes called the Statutes at Large, which present a chronological arrangement of the laws in the order that they have been enacted.

Every 6 years, public laws are incorporated into the USC, which is a codification of all general and permanent laws of the United States. They are assigned a USC number which reflects their relationship to similar laws or laws that govern similar programs. A supplement to the USC is published during each interim year until the next comprehensive volume is published. The USC is arranged by subject matter, and it shows the present status of laws with amendments already incorporated in the text that have been amended on one or more occasions.

Implementing regulations for federal laws are written by the government agencies responsible for the subject matter of the laws and explain in detail how the laws are to be carried out. For example, the United States Environmental Protection Agency writes the regulations concerning water pollution control which are found in Title 40 of the CFR, while the U. S. Fish and Wildlife Service writes the regulations concerning endangered species protection found in Title 50 of the CFR.

G **Gamma radiation:** high-energy, short-wavelength, ionizing, electromagnetic radiation emitted from the nucleus of an atom, frequently accompanying the emission of alpha or beta particles. It consists of photons in the highest observed range of photon energy. Gamma radiation (or gamma rays) easily pass through the human body but can be almost completely blocked by about 40 inches of concrete, 40 feet of water, or a few inches of lead.

Gray (Gy): the International System of Units unit of measure for absorbed dose; the quantity of energy imparted by ionizing radiation to a unit mass of matter, such as tissue. One gray equals 100 rads, or 1 joule per kilogram.

Gross alpha: the measure of radioactivity caused by all radionuclides present in a sample that emit alpha particles. Gross alpha measurements reflect alpha activity from all sources, including those that occur naturally. Gross measurements are used as a method to screen samples for relative levels of radioactivity.

Gross beta: the measure of radioactivity caused by all radionuclides present in a sample that emit beta particles. Gross beta measurements reflect beta activity from all sources, including those that occur naturally. Gross measurements are used as a method to screen samples for relative levels of radioactivity.

H **Half-life:** the time required for one-half of the radioactive atoms in a given amount of material to decay; for example, after one half-life, half of the atoms will have decayed; after two half-lives, three-fourths; after three half-lives, seven-eighths; and so on, exponentially.

Hazardous air pollutant (HAP): a toxic air pollutant that is known or suspected to cause cancer or other serious health effects, such as reproductive effects or birth defects, or adverse environmental effects. The U.S. Environmental Protection Agency has set emission standards for 22 of the 187 designated HAPs. Examples of toxic air pollutants include benzene, which is found in gasoline; perchloroethylene, which is emitted from some dry cleaning facilities; and methylene chloride, which is used as a solvent and paint stripper by a number of industries. Examples of other listed HAPs include dioxin, asbestos, toluene, and metals such as cadmium, mercury, chromium, and lead compounds.

Hazardous waste (HW): hazardous wastes exhibit any of the following characteristics: ignitability, corrosivity, reactivity, or Extraction Procedure toxicity (yielding excessive levels of toxic constituents in a leaching test), but other wastes that do not necessarily exhibit these characteristics have been determined to be hazardous by the U.S. Environmental Protection Agency (EPA). Although the legal definition of hazardous waste is complex, according to the EPA, the term generally refers to any waste that, if managed improperly, could pose a threat to human health and the environment.

High-efficiency particulate air (HEPA) filter: a disposable, extended-media, dry-type filter used to capture particulates in an air stream; HEPA collection efficiencies are at least 99.97 percent for 0.3-micrometer diameter particles.

I Incidental take: an unintentional, but not unexpected, taking that results from activities that are otherwise lawful.

International System of Units (SI): an international system of physical units that includes meter (length), kilogram (mass), kelvin (temperature), becquerel (radioactivity), gray (radioactive dose), and sievert (dose equivalent). The abbreviation, SI, comes from the French term Système International d’Unités.

Ionizing radiation: a form of radiation, which includes alpha particles, beta particles, gamma rays, x-rays, neutrons, high-speed electrons, high-speed protons, and other particles capable of producing ions. Compared to non-ionizing radiation, such as radio- or microwaves, or visible, infrared, or ultraviolet light, ionizing radiation is considerably more energetic. When ionizing radiation passes through material such as air, water, or living tissue, it deposits enough energy to produce ions by breaking molecular bonds and displace (or remove) electrons from atoms or molecules. This electron displacement may lead to changes in living cells. Given this ability, ionizing radiation has a number of beneficial uses, including treating cancer or sterilizing medical equipment. However, ionizing radiation is potentially harmful if not used correctly, and high doses may result in severe skin or tissue damage.

Isotope (also known as daughter nuclide or product): each of two or more forms of the same element that contain equal numbers of protons but different numbers of neutrons in their nuclei, and hence differ in relative atomic mass but not in chemical properties; in particular, a radioactive form of an element. For example, carbon-12 (^{12}C), the most common form of carbon, has six protons and six neutrons, whereas carbon-14 (^{14}C), the radioactive isotope of carbon, has six protons and eight neutrons.

L Lc: see Critical Level (L_c).

Low-level radioactive waste (LLW): defined by U.S. Department of Energy Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” as radioactive waste that is not high-level radioactive waste, spent nuclear fuel, transuranic waste, byproduct material (as defined in section 11e.(2) of the Atomic Energy Act of 1954, as amended), or naturally occurring radioactive material.

M Maximally exposed individual (MEI): a hypothetical member of the public at a fixed location who, over an entire year, receives the maximum effective dose equivalent (summed over all pathways) from a given source of radionuclide release. Generally, the MEI is different for each source at a site.

Maximum contaminant level (MCL): the highest level of a contaminant in drinking water that is allowed by U.S. Environmental Protection Agency regulation.

Minimum detectable concentration (MDC): also known as the lower limit of detection, the smallest amount of radioactive material in a sample that can be quantitatively distinguished from background radiation in the sample with 95 percent confidence.

Mixed low-level waste (MLLW): waste containing both radioactive and hazardous components. It is defined by U.S. Department of Energy Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” as low-level waste determined to contain both source, special nuclear, or byproduct material subject to the Atomic Energy Act of 1954, as amended, and a hazardous component subject to the Resource Conservation and Recovery Act (RCRA), as amended.

N Non-community water system: as defined in Nevada Revised Statute 445A.828, it is a public water system that is not a community water system.

O Ozone Depleting Substances (ODS): substances regulated by the EPA in the U.S. as Class I or Class II controlled substances. Class I substances have a higher ozone depletion potential (0.2 or higher) and have been completely phased out in the U.S. With a few exceptions, this means no one can produce or import Class I substances. Class I ODS include halons, chlorofluorocarbons (CFCs), methyl chloroform, carbon tetrachloride, and methyl bromide. Class II substances have an ozone depletion potential less than 0.2 and are all hydrochlorofluorocarbons (HCFCs). HCFCs were developed as transitional substitutes for many Class I

substances. New production and import of most HCFCs will be phased out by 2020. The most common HCFC in use today is HCFC-22 or R-22, a refrigerant still used in existing air conditioners and refrigeration equipment.

P Performance assessment (PA): a systematic analysis of the potential risks posed by a waste disposal facility to the public and to the environment from disposed low-level radioactive waste. PAs are conducted, along with composite analyses (CAs), for the Area 3 and Area 5 Radioactive Waste Management Sites on the Nevada National Security Site to assess and predict their long-term performance.

Piezometer: an instrument for measuring the pressure of a liquid or gas, or something related to pressure (such as the compressibility of liquid). Piezometers are often placed in boreholes to monitor the pressure or depth of groundwater.

Plowshare Program: the program established by the United States Atomic Energy Commission (AEC), now the Department of Energy (DOE), as a research and development activity to explore the technical and economic feasibility of using nuclear explosives for industrial applications. The reasoning was that the relatively inexpensive energy available from nuclear explosions could prove useful for a wide variety of peaceful purposes. The Plowshare Program began in 1958 and continued through 1975. Between December 1961 and May 1973, the U.S. conducted 27 Plowshare nuclear explosive tests comprising 35 individual detonations. (source: <https://www.osti.gov/opennet/reports/plowshar.pdf>)

Point source: a single well-defined point (origin) of an airborne release, such as a stack or vent or other functionally equivalent structure. Point sources are actively ventilated or exhausted. Point source monitoring is monitoring emissions from a stack or vent.

Polychlorinated biphenyls (PCBs): a chemical belonging to the broad family of man-made organic chemicals known as chlorinated hydrocarbons. PCBs were domestically manufactured from 1929 until their manufacture was banned by the U.S. Congress in 1979. They have a range of toxicity and vary in consistency from thin, light-colored liquids to yellow or black waxy solids. Due to their non-flammability, chemical stability, high boiling point, and electrical insulating properties, PCBs were used in hundreds of industrial and commercial applications including electrical, heat transfer, and hydraulic equipment; as plasticizers in paints, plastics, and rubber products; in pigments, dyes, and carbonless copy paper; and many other industrial applications. PCBs can persist in the environment and accumulate in the food chain. PCBs' are classified as persistent organic pollutants. Their production was banned by the Stockholm Convention on Persistent Organic Pollutants in 2001. The International Research Agency on Cancer (IRAC) rendered PCBs as definite carcinogens in humans. According to the U.S. Environmental Protection Agency, PCBs cause cancer in animals and are probable human carcinogens.

Polychlorinated biphenyl (PCB) bulk waste: building material (i.e., substrate) “coated or serviced” with PCB bulk product waste (e.g., caulk, paint, mastics, sealants) at the time of disposal are managed as a PCB bulk product waste, even if the PCBs have migrated from the overlying bulk product waste into the substrate (source: <https://www.epa.gov/pcbs/polychlorinated-biphenyl-pcb-guidance-reinterpretation>).

Potential to emit (PTE): the quantity of a criteria air pollutant that each facility/piece of equipment would emit annually if it were operated for the maximum number of hours at the maximum production rate specified under its applicable air permit.

Private water system: a water system that is not a public water system, as defined in Nevada Revised Statute 445A.235, and is not regulated under State of Nevada permits.

Product (also known as daughter nuclide or isotope): each of two or more forms of the same element that contain equal numbers of protons but different numbers of neutrons in their nuclei, and hence differ in relative atomic mass but not in chemical properties; in particular, a radioactive form of an element. For example,

carbon-12 (^{12}C), the most common form of carbon, has six protons and six neutrons, whereas carbon-14 (^{14}C), the radioactive isotope of carbon, has six protons and eight neutrons.

Progeny (see Radon progeny).

Public water system (PWS): as defined in Nevada Revised Statute 445A.235, it is a system, regardless of ownership, that provides the public with water for human consumption through pipes or other constructed conveyances, if the system has 15 or more service connections, as defined in NRS 445A.843, or regularly serves 25 or more persons. The three PWSs on the NNSS are permitted by the State of Nevada as non-community water systems.

Q Quality assurance (QA): a system of activities whose purpose is to provide the assurance that standards of quality are attained with a stated level of confidence.

Quality control (QC): procedures used to verify that prescribed standards of performance are attained.

R Rad: one of the two units used to measure the amount of radiation absorbed by an object or person, known as the “absorbed dose,” which reflects the amount of energy that radioactive sources deposit in materials through which they pass. The radiation-absorbed dose (rad) is the amount of energy (from any type of ionizing radiation) deposited in any medium (e.g., water, tissue, air). An absorbed dose of 1 rad means that 1 gram of material absorbed 100 ergs of energy (a small but measurable amount) as a result of exposure to radiation. The related international system unit is the gray (Gy), where 1 Gy is equivalent to 100 rad.

Radioactive decay: the spontaneous transformation of one radionuclide into a different nuclide (which may or may not be radioactive), or de-excitation to a lower energy state of the nucleus by emission of nuclear radiation, primarily alpha or beta particles, or gamma rays (photons).

Radioactivity: the spontaneous emission of nuclear radiation, generally alpha or beta particles, or gamma rays, from the nucleus of an unstable isotope.

Radioisotope: same as radionuclide.

Radionuclide: may also be called a radioactive nuclide, radioisotope, or radioactive isotope. It is an atom that has excess nuclear energy, making it unstable. This excess energy can either create and emit from the nucleus new radiation (gamma radiation) or a new particle (alpha particle or beta particle), or transfer this excess energy to one of its electrons, causing it to be ejected (conversion electron). During this process, the radionuclide is said to undergo radioactive decay.

Radon progeny: When radon in air decays, it forms a number of short-lived radioactive decay products (radon progeny), which include polonium-218, lead-214, bismuth-214 and polonium-214. All are radioactive isotopes of heavy metal elements and all have half-lives that are much less than that of radon.

Regulatory Boundary: a type of boundary developed for an Underground Test Area (UGTA) corrective action unit (CAU). It is established by negotiation between the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) and the Nevada Division of Environmental Protection (NDEP) during the CAU closure process based upon negotiated CAU-specific objectives to provide protection for the public and the environment from the effects of migration of radioactive contaminants. If radionuclides above the agreed-upon levels reach this boundary, NNSA/NFO is required to submit a plan for NDEP approval that will identify how the CAU-specific regulatory boundary objectives will be met.

Rem: one of the two standard units used to measure the dose equivalent (or effective dose), which combines the amount of energy (from any type of ionizing radiation that is deposited in human tissue), along with the medical effects of the given type of radiation. For beta and gamma radiation, the dose equivalent is the same as the absorbed dose. By contrast, the dose equivalent is larger than the absorbed dose for alpha and neutron radiation, because these types of radiation are more damaging to the human body. Thus, the dose equivalent (in rems) is equal to the absorbed dose (in rads) multiplied by the quality factor of the type of radiation

[see Title 10, Section 20.1004, of the *Code of Federal Regulations* (10 CFR 20.1004), "Units of Radiation Dose"]. The related international system unit is the sievert (Sv), where 100 rem is equivalent to 1 Sv.

Roentgen (R): a unit of measurement used to express radiation exposure in terms of the amount of ionization produced in a volume of air. It is the amount of gamma or x-rays required to produce ions resulting in a charge of 0.000258 coulombs/kilogram of air under standard conditions. Named after Wilhelm Roentgen, the German scientist who discovered x-rays in 1895.

S **Saturated zone:** a zone below the earth's surface below which all pore spaces between rocks or soil are completely filled with water.

Section 106: Section 106 of the National Historic Preservation Act requires federal agencies to take into account the effects of their undertakings on historic properties and afford the Council a reasonable opportunity to comment on such undertakings (source: <https://www.achp.gov/protecting-historic-properties>).

Sievert (Sv): the International System of Units unit of radiation dose equivalent and effective dose equivalent, that is the product of the absorbed dose (gray), quality factor, distribution factor, and other necessary modifying factors; 1 Sv equals 100 rem.

Solid waste: most simply, waste generated by routine operations that is not regulated as hazardous or radioactive by state or federal agencies.

Source term: the amount of a specific pollutant emitted or discharged to a particular medium, such as the air or water, from a particular source.

Spectrometry: the measurement of energy emitted from natural or man-made radioactive elements.

Subcritical experiment: an experiment using high explosives and nuclear weapon materials (including special nuclear materials like plutonium) to gain data used to maintain the nuclear stockpile without conducting nuclear explosions banned by the Comprehensive Nuclear Test Ban Treaty.

Subsidence crater: a hole or depression left on the surface of an area which has had an underground (usually nuclear) explosion.

T **Take:** as per the Endangered Species Act (ESA), 'take' means to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect, or to attempt to engage in any such conduct of a listed species under the ESA.

Thermoluminescent dosimeter (TLD): a device used to measure external beta or gamma radiation levels, and which contains a material that, after exposure to beta or gamma radiation, emits light when processed and heated.

Total effective dose equivalent (TEDE): The sum of the external exposures and the committed effective dose equivalent (CEDE) for internal exposures.

Transuranic (TRU) waste: material contaminated with alpha-emitting transuranium nuclides, which have an atomic number greater than 92 (e.g., ^{239}Pu), half-lives longer than 20 years, and are present in concentrations greater than 100 nanocuries per gram of waste. Mixed TRU waste also contains hazardous waste.

Tritium (^3H): a radioactive form of hydrogen that is produced naturally in the upper atmosphere when cosmic rays strike nitrogen molecules in the air. Although tritium can be a gas, its most common form is in water, because, like non-radioactive hydrogen, tritium reacts with oxygen to form water. Tritium replaces one of the stable hydrogens in the water molecule, H_2O , and is called tritiated water (HTO). Like H_2O , tritiated water is colorless and odorless. Naturally-occurring tritium is found in very small or trace amounts in the environment as HTO, which easily disperses in the atmosphere, water bodies, soil, and rock. Tritium is also produced during nuclear weapons explosions, as a by-product in nuclear reactors producing electricity, and in special production reactors, where the isotope lithium-6 is bombarded to produce tritium. In the mid-1950s

and early 1960s, tritium was widely dispersed during the above-ground testing of nuclear weapons. The quantity of tritium in the atmosphere from weapons testing peaked in 1963 and has been decreasing ever since. Tritium is a contaminant of groundwater in select areas of the NNSS as a result of historical underground nuclear testing and is the contaminant of concern being monitored in NNSS groundwater samples. Tritium decays at a half-life of 12.3 years by emitting a low-energy beta particle. In 1976, EPA established a dose-based drinking water standard of 4 mrem per year and set a maximum contaminant level for drinking water of 20,000 picocuries per liter (pCi/L) for tritium, the level assumed to yield a dose of 4 mrem per year. One year of drinking water with this amount of contamination would produce approximately the same dose of radiation you would get during a single commercial flight between Los Angeles and New York City.

U **Uncertainty:** the parameter associated with a sample measurement that characterizes the range of the measurement that could reasonably be attributed to the sample. Used in this report, the uncertainty value is established at ± 2 standard deviations.

United States Code (USC): a codification of all general and permanent laws of the United States. Laws in the USC are grouped into various Titles, Chapters, and Sections by topic. For example, the citation 16 USC 1531-1544 is for Title 16 (Conservation), Sections 1531-1544 (in Chapter 35) which comprise the law called the Endangered Species Act.

Unsaturated zone: that portion of the subsurface in which the pores are only partially filled with water and the direction of water flow is vertical; also referred to as the vadose zone.

Use-Restriction (UR) Boundary: a type of boundary developed for an Underground Test Area (UGTA) corrective action unit (CAU). It delineates an area expected to require institutional controls to restrict access to potentially contaminated groundwater. A UR boundary is established by negotiation between the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) and the Nevada Division of Environmental Protection. It is based primarily on **contaminant boundary** (see Glossary definition) forecasts. A UR boundary is established to protect site workers from inadvertently contacting, or site activities from affecting, the flow paths of contaminated groundwater. NNSA/NFO, and any future land manager, must maintain all official CAU-specific UR boundary records.

V **Vadose zone:** the partially saturated or unsaturated region above the water table that does not yield water to wells; also referred to as the unsaturated zone.

W **Water table:** the underground boundary between saturated and unsaturated soils or rock. It is the point beneath the surface of the ground at which natural groundwater is found. It is the upper surface of a saturation zone where the body of groundwater (i.e., aquifer) is not confined by an overlying impermeable formation. In the situation where an aquifer does have an overlying confining formation, the aquifer has no water table.

Library Distribution List

Libraries in this list will be mailed a hard copy of this full report (NNSSER) and a hard copy of the *Nevada National Security Site Environmental Report Summary 2022* (SUM). All versions are uncontrolled and available at <https://nnss.gov/publication-library/environmental-publications/>.

Alamo Branch Library, P.O. Box 239, Alamo, NV 89001

Amargosa Valley Library District, HCR 69-2, P.O. Box 401-T, Amargosa Valley, NV 89020

Beatty Library District, P.O. Box 129, Beatty, NV 89003

Boulder City Library, 701 Adams Blvd., Boulder City, NV 89005

Caliente Branch Library, P.O. Box 306, Caliente, NV 89009

Cedar City Public Library, 303 N. 100 E., Cedar City, UT 84720-2610

Delta City Library, 76 N. 200 W., Delta, UT 84624-9440

Goldfield Public Library, P.O. Box 430, Goldfield, NV 89013

Henderson District Public Library, 280 Water Street, Henderson, NV 89015

Indian Springs Library, P.O. Box 629, Indian Springs, NV 89018

Las Vegas – Clark County Library District, 7060 W. Windmill Lane, Las Vegas, NV 89113

Library of Congress, U.S./Anglo Division, U.S. Government Documents Section, 101 Independence Avenue, SI, STOP 4274, Washington, DC 20540-4274

Lincoln County Library, P.O. Box 330, Pioche, NV 89043

Milford Public Library, P.O. Box 579, Milford, UT 84751-0579

Moapa Valley Library, P.O. Box 397, Overton, NV 89040

Pahrump Library District, 2101 E. Calvada Boulevard, Pahrump, NV 89048

Tonopah Library District, P.O. Box 449, Tonopah, NV 89049

UNLV Library Government Documents, University of Nevada-Las Vegas, P.O. Box 457013, Las Vegas, NV 89154-7013

University of Nevada Libraries, Business & Government Information Center/322, 1664 North Virginia Street, Reno, NV 89557-0044

U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office, Public Reading Facility c/o Nuclear Testing Archive, P.O. Box 98521, M/S 400, Las Vegas, NV 89193-8521 (2 CDs)

U.S. Department of Energy, Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062 (1 electronic copy NNSSER/SUM/Attachment A)

Washington County Library, 50 S. Main Street, St. George, UT 84770-3490

White Pine County Library, 950 Campton Street, Ely, NV 89301

THIS PAGE INTENTIONALLY LEFT BLANK

Document Availability

Available for sale to the public from:

**U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road
Alexandria, Virginia 22312**

Phone: **1-800-553-6847**

Fax: **(703) 605-6880**

E-mail: **info@ntis.gov; customerservice@ntis.gov**

Downloadable (no charge) at: **<https://classic.ntis.gov/search/>**

Available electronically (no charge) at: **<http://www.osti.gov>**,
<https://nnss.gov/publication-library/environmental-publications/>

Available, in paper, for a processing fee to the U.S. Department of Energy and its contractors from:

**U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, Tennessee 37831-0062**

Phone: **(865) 576-8401**

Fax: **(865) 576-5728**

E-mail: **reports@osti.gov**

**Work performed under
contract number:**

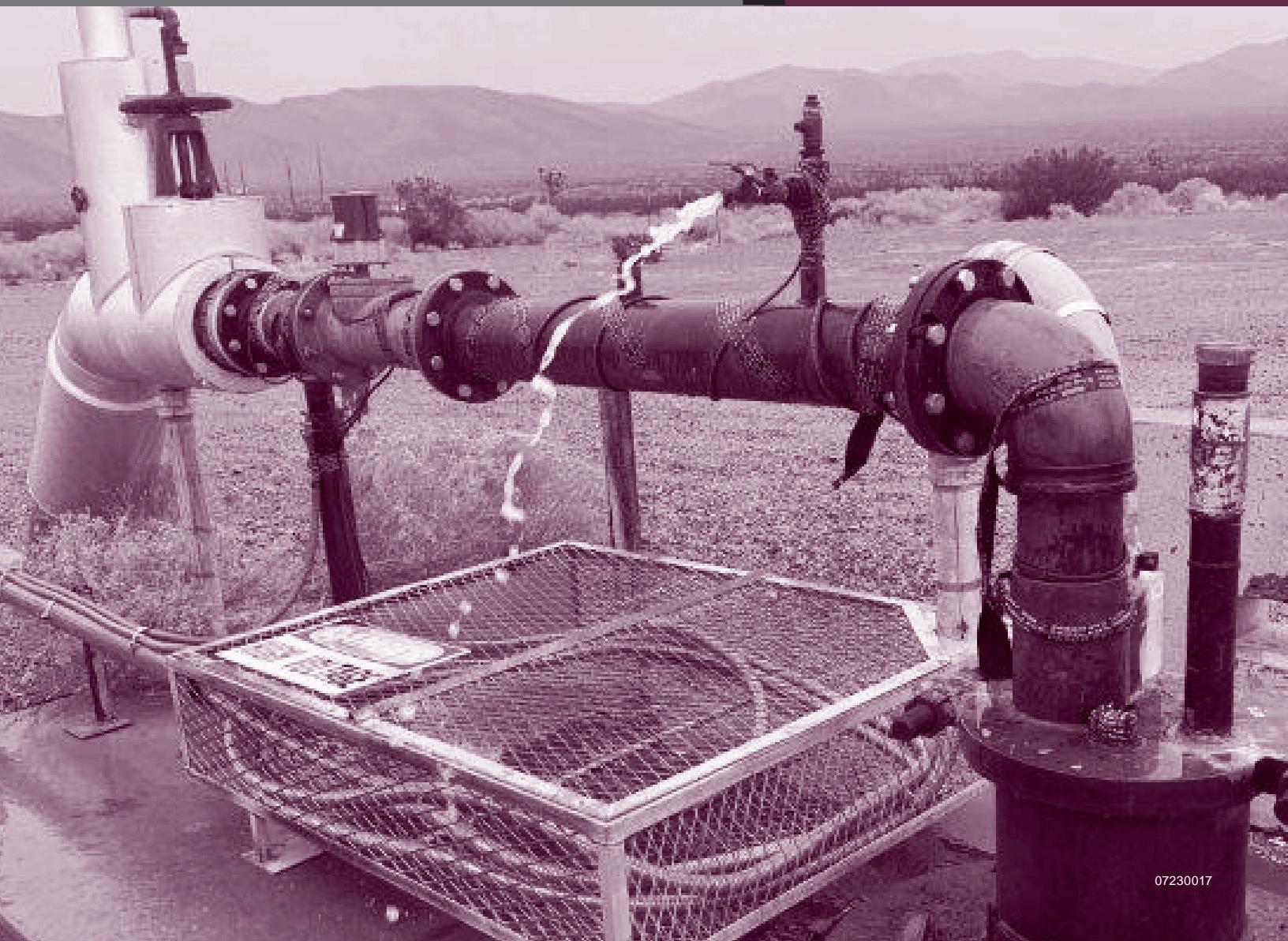
DE-NA0003624

This report was prepared for:

**U.S. Department of Energy
National Nuclear Security Administration
Nevada Field Office**

By:

**Mission Support and Test Services LLC
P.O. Box 98521
Las Vegas, Nevada 89193-8521**


Disclaimer

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof.

For more information, contact:

**U.S. Department of Energy
National Nuclear Security Administration
Nevada Field Office
Office of Public Affairs
P.O. Box 98518
Las Vegas, Nevada 89193-8518**

**Phone: (702) 295-3521
Fax: (702) 295-0154
E-mail: nevada@nnsa.doe.gov**
<http://www.nNSS.gov>

September 2023

2022

Environmental Report

Attachment A: Site Description

2022 Environmental Report

Attachment A: Site Description

This report was prepared for:

**U.S. Department of Energy
National Nuclear Security Administration
Nevada Field Office**

By:

**Mission Support and Test Services LLC
Las Vegas, Nevada**

September 2023

Compiled by **Theodore Redding, Editor**

Graphic Designer: **Katina Loo**

Geographic Information System Specialist: **Ashley Burns**

*Work performed under contract number:
DE-NA0003624*

THIS PAGE INTENTIONALLY LEFT BLANK

TABLE OF CONTENTS

List of Figures	A-iv
List of Tables	A-iv
Acronyms and Abbreviations	A-v
A.1 Geology.....	A-1
A.1.1 Physiographic/Geologic Setting	A-1
A.1.2 Stratigraphy	A-7
A.1.3 Structural Controls.....	A-7
A.2 Hydrology	A-8
A.2.1 Surface Water	A-8
A.2.2 Groundwater.....	A-9
A.2.3 Hydrogeologic Framework for the NNSS and Vicinity	A-14
A.2.3.1 Hydrogeologic Units	A-14
A.2.3.2 Hydrostratigraphic Units	A-16
A.2.4 General Hydraulic Characteristics of NNSS Rocks.....	A-17
A.2.5 Hydrogeology of the NNSS Underground Test Areas	A-18
A.2.5.1 Frenchman Flat Underground Test Area.....	A-20
A.2.5.2 Yucca Flat/Climax Mine Underground Test Area	A-22
A.2.5.3 Pahute Mesa Underground Test Area	A-26
A.2.5.4 Rainier Mesa/Shoshone Mountain	A-31
A.2.6 Conclusion.....	A-36
A.3 Climatology.....	A-36
A.3.1 Monitoring Networks.....	A-36
A.3.2 Precipitation.....	A-38
A.3.3 Temperature.....	A-41
A.3.4 Wind.....	A-41
A.3.5 Relative Humidity.....	A-41
A.3.6 Atmospheric Pressure	A-43
A.3.7 Dispersion Stability Categories	A-43
A.3.8 Other Natural Phenomena	A-43
A.4 Ecology.....	A-45
A.4.1 Flora.....	A-45
A.4.2 Fauna.....	A-45
A.4.3 Natural Water Sources.....	A-52
A.5 Cultural Resources.....	A-54
A.5.1 Cultural Resources Investigations on the NNSS	A-54
A.5.2 Prehistory	A-54
A.5.3 Ethnohistoric American Indian.....	A-55
A.5.4 Euro-American Emigration, Exploration, and Settlement.....	A-56
A.5.5 Historic Mining on and near the NNSS	A-57
A.5.6 The Cold War, Nuclear Testing, and Nuclear Research on the NNSS	A-58
A.5.6.1 The Cold War.....	A-58
A.5.6.2 Nuclear Testing, Nuclear Research, and the Continental Test Site	A-59
References.....	A-63

FIGURES

Figure A-1.	Basin and Range Province and Great Basin Province.....	A-3
Figure A-2.	Generalized geologic map of the NNSS and vicinity.....	A-4
Figure A-3.	Hydrographic subbasins on the NNSS	A-10
Figure A-4.	Natural springs and seeps on the NNSS	A-11
Figure A-5.	Groundwater subbasins of the NNSS and vicinity.....	A-12
Figure A-6.	Groundwater flow systems on the NNSS	A-13
Figure A-7.	Locations of UGTA CAUs and historical underground nuclear tests (not including test locations at Buckboard Mesa [Area 18] and Dome Mountain [Area 30]).....	A-19
Figure A-8.	Conceptual east-west cross section through Frenchman Flat	A-21
Figure A-9.	Generalized west-east hydrogeologic cross section through central Yucca Flat	A-24
Figure A-10.	Generalized hydrostratigraphic cross section through the Silent Canyon complex, Pahute Mesa.....	A-29
Figure A-11.	Generalized hydrostratigraphic cross section through Aqueduct Mesa	A-32
Figure A-12.	West-east hydrogeologic cross section through Well ER-16-1	A-35
Figure A-13.	Example of a typical MEDA station with a 10-meter tower	A-36
Figure A-14.	MEDA station locations on the NNSS	A-37
Figure A-15.	Climatological rain gauge network on the NNSS	A-39
Figure A-16.	Mean monthly precipitation at six NNSS rain gauge stations	A-40
Figure A-17.	Temperature extremes and average maximums and minimums at six NNSS MEDA stations	A-42
Figure A-18.	Annual wind rose climatology for the NNSS (2005–2022).....	A-44
Figure A-19.	Distribution of plant alliances on the NNSS.....	A-46
Figure A-20.	Known locations of sensitive plant species on the NNSS	A-51
Figure A-21.	Natural water sources on the NNSS	A-53
Figure A-22.	Prehistoric projectile points from the NNSS	A-60
Figure A-23.	Brownware bowl recovered from archaeological excavations on Pahute Mesa.....	A-60
Figure A-24.	Overview of the Tippipah Spring area	A-61
Figure A-25.	Bower cabin on the NNSS.....	A-61
Figure A-26.	The town of Mercury, Nevada.....	A-62
Figure A-27.	The NRDS Engine Maintenance and Disassembly Building.....	A-62

TABLES

Table A-1.	Information summary of NNSS underground nuclear tests.....	A-2
Table A-2.	Quaternary and Tertiary stratigraphic units of the NNSS and vicinity.....	A-5
Table A-3.	Pre-Tertiary stratigraphic units of the NNSS and vicinity	A-7
Table A-4.	Hydrogeologic units of the NNSS area	A-15
Table A-5.	Summary of hydrologic properties for hydrogeologic units at the NNSS	A-18
Table A-6.	Dominant hydrostratigraphic units of the Frenchman Flat underground test area	A-21
Table A-7.	Hydrostratigraphic units of the Yucca Flat underground test area.....	A-25
Table A-8.	Hydrostratigraphic units of the Pahute Mesa-Oasis Valley area.....	A-30
Table A-9.	Hydrostratigraphic units of the Rainier Mesa-Shoshone Mountain area.....	A-33
Table A-10.	List of sensitive and protected/regulated plant and animal species known to occur on the NNSS.....	A-47

Acronyms and Abbreviations

AA	alluvial aquifer
AEC	Atomic Energy Commission
a.k.a.	also known as
ARL/SORD	Air Resources Laboratory, Special Operations and Research Division
ATCU	argillic tuff confining unit
ATICU	Ammonia Tanks intrusive confining unit
BA	Benham aquifer
BFCU	Bullfrog confining unit
BLM	Bureau of Land Management
BMICU	Black Mountain intrusive confining unit
BN	Bechtel Nevada
BRA	Belted Range aquifer
BRCU	Belted Range confining unit
°C	degree Celsius
ca.	<i>circa</i> , meaning “approximately”
CA	carbonate aquifer
CAS	corrective action site
CAU	corrective action unit
CCICU	Claim Canyon intrusive confining unit
CCU	clastic confining unit
CFCM	Crater Flat composite unit
CFCU	Crater Flat confining unit
CG	cloud-to-ground
CHCU	Calico Hills confining unit
CHICU	Calico Hills intrusive confining unit
CHVCM	Calico Hills vitric composite unit
CHVTA	Calico Hills vitric-tuff aquifer
CHZCM	Calico Hills zeolitized composite unit
cm	centimeter(s)
CP	Control Point
DOE	U.S. Department of Energy
DOE/NV	U.S. Department of Energy, Nevada Operations Office
DRI	Desert Research Institute
dT/dz	change in temperature with height
DVCM	detached volcanics composite unit
ESA	Endangered Species Act
°F	degree Fahrenheit
FCCM	Fortymile Canyon composite unit
FCCU	Fluorspar Canyon confining unit
FFACO	Federal Facility Agreement and Consent Order
ft	foot or feet
GCU	granite confining unit

GPS	Global Positioning System
HGU	hydrogeologic unit
HSA	Hydrological Services America
HSU	hydrostratigraphic unit
IA	inlet aquifer
IICU	intracaldera intrusive confining unit
in.	inch(es)
IT	International Technology Corporation
KA	Kearsarge aquifer
km	kilometer(s)
kph	kilometer(s) per hour
kt	kiloton(s)
LCA	lower carbonate aquifer
LCA3	lower carbonate aquifer - upper thrust plate
LCCU	lower clastic confining unit
LCCU1	lower clastic confining unit - upper thrust plate
LFA	lava-flow aquifer
LPCU	lower Paintbrush confining unit
LTCU	lower tuff confining unit
LTCU1	lower tuff confining unit 1
LVTA	lower vitric-tuff aquifer
LVTA1	lower vitric-tuff aquifer 1
LVTA2	lower vitric-tuff aquifer 2
m	meter(s)
Ma	million years ago
mb	millibar(s)
MEDA	Meteorological Data Acquisition
MGCU	Mesozoic granite confining unit
mi	mile(s)
mph	mile(s) per hour
NASA	National Aeronautics and Space Administration
NDNH	Nevada Division of Natural Heritage
NNES	Navarro Nevada Environmental Services, LLC
NNSA/NFO	U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office
NNSA/NSO	U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office
NNSS	Nevada National Security Site
NOAA	National Oceanic and Atmospheric Administration
NRDS	Nuclear Rocket Development Station
NSTec	National Security Technologies, LLC
NTS	Nevada Test Site
NV	Nevada
OSBCU	Oak Spring Butte confining unit
PBRCM	Pre-Belted Range composite unit
PCM	Paintbrush composite unit
PCU	playa confining unit

PDT	Pacific Daylight Time
PLFA	Paintbrush lava-flow aquifer
PM-OV	Pahute Mesa–Oasis Valley
PST	Pacific Standard Time
PVTA	Paintbrush vitric-tuff aquifer
RMBCU	Rainier Mesa breccia confining unit
RMICU	Rainier Mesa intrusive confining unit
RM-SM	Rainier Mesa–Shoshone Mountain
RVA	Redrock Valley Aquifer
RVBCU	Redrock Valley Breccia Confining Unit
RVICU	Redrock Valley intrusive confining unit
SCCC	Silent Canyon caldera complex
SCICU	Silent Canyon intrusive confining unit
SCVCU	subcaldera volcanic confining unit
SNJV	Stoller-Navarro Joint Venture
SWA	Stockade Wash aquifer
SWL	static water level
SWNVF	Southwestern Nevada Volcanic Field
TCA	Tiva Canyon Aquifer
TCU	tuff confining unit
TCVA	Thirsty Canyon volcanic aquifer
THCM	Tannenbaum Hill composite unit
THLFA	Tannenbaum Hill lava-flow aquifer
TMA	Timber Mountain aquifer
TMCC	Timber Mountain caldera complex
TMCM	Timber Mountain composite unit
TMLVTA	Timber Mountain lower vitric-tuff aquifer
TMUVTA	Timber Mountain upper vitric-tuff aquifer
TMWTA	Timber Mountain welded-tuff aquifer
TPA	Twin Peaks aquifer
TSA	Topopah Spring aquifer
TUBA	Tub Spring aquifer
UCA	upper carbonate aquifer
UCCU	upper clastic confining unit
UGTA	Underground Test Area
UPCU	upper Paintbrush confining unit
USFS	U.S. Forestry Service
UTCU	upper tuff confining unit
UTCU1	upper tuff confining unit 1
UTCU2	upper tuff confining unit 2
VCU	volcaniclastic confining unit
VTA	vitric-tuff aquifer
WCU	Wahmonie confining unit
WTA	welded-tuff aquifer
WWA	Windy Wash aquifer

YMCFCM Yucca Mountain Crater Flat composite unit
YMCHLFA Yucca Mountain Calico Hills lava-flow aquifer
YVCM younger volcanic composite unit

Attachment A: Nevada National Security Site Description

This attachment expands on the general description of the Nevada National Security Site (NNSS) presented in the Chapter 1 Introduction to the *Nevada National Security Site Environmental Report 2022*. Included are subsections that summarize the site's geological, hydrological, climatological, and ecological settings and the cultural resources of the NNSS. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NNSS. An adequate knowledge of the site's environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NNSS. The NNSS environment contributes to several key features of the site that afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NNSS operations. These key features include the general remote location of the NNSS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This attachment complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

A summary of information about historic NNSS underground nuclear explosive tests, including their locations and geologic setting, is provided in Table A-1.

A.1 Geology

Margaret Townsend and Jennifer M. Larotonda
Mission Support and Test Services, LLC

A.1.1 Physiographic/Geologic Setting

The NNSS is located in the southern part of the Great Basin, the northern-most subprovince of the Basin and Range Physiographic Province (Figure A-1). The NNSS terrain is typical of much of the Basin and Range Physiographic Province, characterized by mostly tilted, fault-bounded blocks that are as much as 80 kilometers (km) (50 miles [mi]) long and 24 km (15 mi) wide. These features are modified locally by the Las Vegas Shear Zone (a component of the Walker Lane regional structural belt) in the southern part of the NNSS, and by resurgent calderas of the Southwestern Nevada Volcanic Field (SWNVF). The land forms and topography of the NNSS area reflect the complex geology and its location in the arid Mojave Desert.

The NNSS area is geologically complex, with at least seven Tertiary-age calderas nearby, many relatively young basin-and-range-style normal faults (due to extensional forces), Mesozoic-age thrust faults (due to compressional forces), and igneous intrusive bodies, all superimposed on a basement complex of highly deformed Proterozoic- and Paleozoic-age sedimentary and metasedimentary rocks. Geologic units exposed at the surface in the NNSS area can be categorized as approximately 40% alluvium-filled basins and 20% Paleozoic and uppermost Precambrian sedimentary rocks, the remainder being Tertiary-age volcanic rocks with a few intrusive masses (Orkild 1983; Slate et al. 1999). A generalized geologic map of the NNSS area is given in Figure A-2.

The NNSS area is dominated by Tertiary-age volcanic rocks formed from materials that were erupted from various vents in the SWNVF, located on and adjacent to the northwestern part of the NNSS (Figure A-2). At least seven major calderas have been identified in this multi-caldera silicic volcanic field (Byers et al. 1976; National Security Technologies, LLC [NSTec] 2007). The calderas were formed by the voluminous eruption of zoned ash-flow tuffs between 16 and 7.5 million years ago (Ma) (Sawyer et al. 1994). From oldest to youngest, the calderas are Redrock Valley, Grouse Canyon, Area 20, Claim Canyon, Rainier Mesa, Ammonia Tanks, and Black Mountain calderas. A comprehensive review of past studies and the evolution of concepts on calderas of the SWNVF during the period from 1960 to 1988 is presented in Byers et al. (1989).

The volcanic rocks are covered in many areas by a variety of late Tertiary and Quaternary surficial deposits. These younger deposits consist of alluvium, colluvium, eolian (wind-blown sand) deposits, spring deposits, basalt lavas, lacustrine (fresh-water lake) deposits, and playa deposits.

Table A-1. Information summary of NNSS underground nuclear tests

Physiographic Area NNSS Area(s)	Total Underground ^(a)		Test Dates ^(a)	Depth of Burial Range	Overburden Media	Comments
	Tests	Detonations				
Yucca Flat 1, 2, 3, 4, 6, 7, 8, 9, 10	659	747	1951–1992	27–1,219 m (89–3,999 ft)	Alluvium/playa, Volcanic tuff	Various test types and yields; almost all were vertical emplacements above and below static water level; includes four high-yield ^(b) detonations.
Pahute Mesa 19, 20	85	85	1965–1992	31–1,452 m (100–4,765 ft)	Alluvium (thin), volcanic tuffs and lavas	Almost all were large-diameter vertical emplacements above and below static water level; includes 18 high-yield detonations.
Rainier/Aqueduct Mesa 12	61	62	1957–1992	61–640 m (200–2,100 ft)	Tuffs with welded tuff caprock (little or no alluvium)	Two vertical emplacements; all others were horizontal tunnel emplacements above static water level; mostly low-yield ^(c) U.S. Department of Defense weapons effects tests.
Frenchman Flat 5, 11	10	10	1965–1971	179–296 m (587–971 ft)	Mostly alluvium, minor volcanic tuff	Various emplacement configurations, both above and below static water level.
Shoshone Mountain 16	6	6	1962–1971	244–640 m (800–2,100 ft)	Bedded tuff, ash-flow tuff	Tunnel-based low-yield weapons effects and Vela Uniform ^(d) tests.
Oak Spring Butte (Climax Area) 15	3	3	1962–1966	229–351 m (750–1,150 ft)	Granite	Three tests above static water level. (Hard Hat, Tiny Tot, and Pile Driver).
Buckboard Mesa 18	3	3	1962–1964	≤ 27 m (90 ft)	Basaltic lavas	Shallow, low-yield experiments (Sulky, Johnnie Boy ^(e) , and Danny Boy); all were above static water level.
Dome Mountain 30	1	5	03/12/1968	50 m (165 ft)	Mafic lava	Buggy (A, B, C, D, and E); Plowshare cratering test using a 5-detonation, horizontal salvo; all above static water level.

(a) Source: U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) (2015).

Source: Allen et al. (1997)

(b) High-yield detonations – detonations more than 200 kt.

(c) Low-yield detonations – detonations less than 20 kt.

(d) Vela Uniform was a Department of Defense program designed to improve the capability to detect, identify, and locate underground nuclear explosions (according to NNSA/NFO 2015).

(e) Johnnie Boy was detonated at a depth of 23 ft (NNSA/NFO 2015; essentially a surface burst) approximately 1 mi east of Buckboard Mesa.

Note: ft = foot/feet; kt = kiloton(s); m = meter(s).

Figure A-1. Basin and Range Province and Great Basin Province
(Fiero 1986)

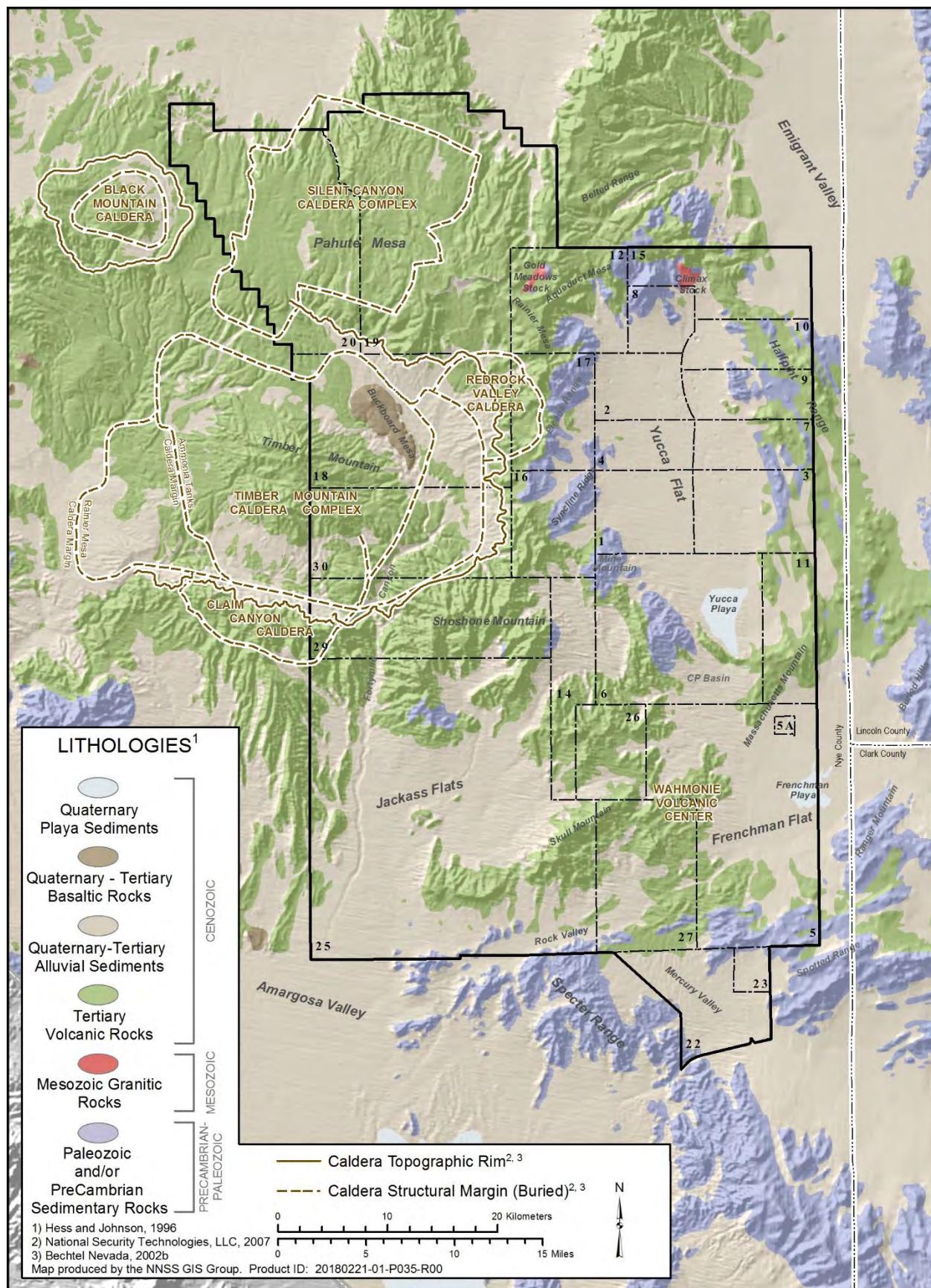


Figure A-2. Generalized geologic map of the NNSS and vicinity

The area includes more than 300 described Tertiary-age volcanic units (Warren et al. 2000a, 2003). As a matter of practicality, some units are grouped together, especially those of limited areal extent or thickness. Table A-2 presents most of the Tertiary volcanic units useful in characterizing the subsurface at the NNSS.

Table A-2. Quaternary and Tertiary stratigraphic units of the NNSS and vicinity

Stratigraphic Assemblages and Major Units ^(a, b)	Volcanic Sources ^(c)
Quaternary and Tertiary Sediments Young alluvium (Qay) Playa (Qp) Quaternary - Tertiary colluvium (QTC) Middle alluvium (Qam) Eolian sand (QTe) Quaternary-Tertiary alluvium (QTa)	Not applicable
Quaternary Basalts (Qby) Pliocene Basalts (Typ) Tertiary alluvium (Tgy)	Several discrete sources Several discrete sources Not applicable
Miocene Basalt and Rhyolite Thirsty Canyon and Younger Basalts (Tyb) Rhyolite of Obsidian Butte (Tyr)	Several discrete sources
Tertiary Sediments Late synvolcanic sedimentary rocks (Tgm) Caldera moat-filling sedimentary deposits (Tgc) Younger landslide and sedimentary breccia (Tgyx)	Not applicable
Thirsty Canyon Group (Tt) Gold Flat Tuff (Ttg) Trachyte of Hidden Cliff (Tth) Trachytic rocks of Pillar Spring and Yellow Cleft (Tts) Trail Ridge Tuff (Ttt) Pahute Mesa and Rocket Wash Tuffs (Ttp) Comendite of Ribbon Cliff (Ttc)	Black Mountain Caldera (9.1–9.4 Ma)
Volcanics of Forty-mile Canyon (Tf) Rhyolite of Boundary Butte (Tfu) Post-Timber Mountain Basaltic Rocks (Tft) Trachyte of Donovan Mountain (Tfn) Rhyolite of Shoshone Mountain (Tfs) Lavas of Dome Mountain (Tfd) Younger intrusive rocks (Tiy) Rhyolite of Rainbow Mountain (Tfr) Beatty Wash Formation (Tfb) Tuff of Leadfield Road (Tfl) Rhyolite of Fleur-de-lis Ranch (Tff)	Several discrete vent areas in and around the Timber Mountain Caldera Complex
Timber Mountain Group (Tm) Trachyte of East Cat Canyon (Tmay) Tuff of Buttonhook Wash (Tmaw) Ammonia Tanks Tuff (Tma) Bedded Ammonia Tanks Tuff (Tmab) Timber Mountain landslide breccia (Tmx) Rhyolite of Tannenbaum Hill (Tmat) Basalt of Tierra (Tmt) Rainier Mesa Tuff (Tmr) Rhyolite of Fluorspar Canyon (Tmrif) Tuff of Holmes Road (Tmrh) Landslide or eruptive breccia (Tmrx) Rhyolite of Windy Wash (Tmw) Transitional Timber Mountain rhyolites (Tmn)	Timber Mountain Caldera Complex: Ammonia Tanks Caldera (11.45 Ma) Rainier Mesa Caldera (11.6 Ma)
Paintbrush Group (Tp) Rhyolite of Benham (Tpb) Post-Tiva Canyon rhyolites (Tpu) Rhyolite of Scrugham Peak (Tps) Paintbrush caldera-collapse breccias (Tpx)	

Table A-2. Quaternary and Tertiary stratigraphic units of the NNSS and vicinity

Stratigraphic Assemblages and Major Units ^(a, b)	Volcanic Sources ^(c)
Tiva Canyon Tuff (Tpc)	Claim Canyon Caldera (12.65 Ma)
Yucca Mountain Tuff (Tpy)	
Rhyolite of Delirium Canyon (Tpd)	
Rhyolite of Echo Peak (Tpe)	
Middle Paintbrush Group rhyolites (Tpm)	
Pah Canyon Tuff (Tpp)	
Rhyolite of Silent Canyon (Tpr)	
Topopah Spring Tuff (Tpt)	
Calico Hills Formation (Th; formerly Tac)	Unknown (12.8 Ma)
Wahmonie Formation (Tw)	Wahmonie Volcanic Center (13.0 Ma)
Crater Flat Group (Tc)	Silent Canyon Caldera Complex:
Rhyolite of Inlet (Tci)	
Prow Pass Tuff (Tcp)	
Rhyolite of Kearsarage (Tckp)	
Andesite of Grimy Gulch (Tcg)	
Bullfrog Tuff (Tcb)	Area 20 Caldera (13.1 Ma)
Rhyolites in the Crater Flat Group (Tcr)	
Tram Tuff (Tct)	
Belted Range Group (Tb)	
Deadhorse Flat Formation (Tbd)	
Grouse Canyon Tuff (Tbg)	Grouse Canyon Caldera (13.6 Ma)
Comendite of Split Range (Tbgs)	
Comendite of Quartet Dome (Tbq)	
Tram Ridge Group (Tr)	
Lithic Ridge Tuff (Trl)	Uncertain
Dikes of Tram Ridge (Trd)	
Rhyolite of Picture Rock (Trr)	
Tunnel Formation (Tn)	
Tunnel 4 Member (Tn4)	Uncertain
Tunnel 3 Member (Tn3)	
Volcanics of Quartz Mountain (Tq)	
Tuff of Sleeping Butte (Tqs)	
Hornblende-bearing rhyolite of Quartz Mountain (Tqh)	Uncertain
Tuff of Tolicha Peak (Tqt)	
Early rhyolite of Quartz Mountain (Tqe)	
Dacite of Mount Helen (Tqm)	
Volcanics of Big Dome (Tu)	
Comendite of Ochre Ridge (Tuo)	
Tub Spring Tuff (Tub)	Unknown (14.9 Ma)
Comendite of Emigrant Valley (Tue)	
Volcanics of Oak Spring Butte (To)	
Tunnel bed 2 (Ton2)	
Yucca Flat Tuff (Toy)	Unknown (15.1 Ma)
Tunnel bed 1 (Ton1)	
Redrock Valley Tuff (Tor)	Redrock Valley Caldera (15.4 Ma)
Tuff of Twin Peaks (Tot)	Unknown (15.5 Ma)
Older Volcanics (Tqo)	Unknown
Paleocolluvium (Tl)	Not applicable

(a) Compiled from Slate et al. (1999) and Ferguson et al. (1994).

(b) Letters in parentheses are stratigraphic unit map symbols.

(c) Sources and ages, where known, from Sawyer et al. (1994). Sources for Redrock Valley caldera from NSTec (2007).

Refer to Table A-3 for lists of Mesozoic, Paleozoic, and Precambrian sedimentary rock formations.

Underlying the Tertiary volcanic rocks are Paleozoic and Proterozoic sedimentary rocks including dolomite, limestone, quartzite, and argillite, some of which form the primary regional aquifer and the regional hydrologic “basement” (Table A-3). In Precambrian and Paleozoic time, as much as 10,000 m (32,800 ft) of marine sediments were deposited in the NNSS region (Cole 1997). The only surface exposure of Mesozoic-age rocks in the NNSS area are granitic intrusive masses, the Gold Meadows Stock north of Rainier Mesa (Gibbons et al.

1963; Snyder 1977), and the Climax Stock located at the extreme north end of Yucca Flat (Barnes et al. 1963; Maldonado 1977) (Figure A-2).

Table A-3. Pre-Tertiary stratigraphic units of the NNSS and vicinity

Map Unit	Stratigraphic Unit Map Symbol	Stratigraphic Thickness		Dominant Lithology
		Feet	Meters	
Gold Meadows Stock Climax Stock	Kgg Kgc	N/A	N/A	Quartz monzonite Granodiorite
Tippipah Limestone (correlative with the Bird Spring Formation)	PPt	3,500	1,070	Limestone
Chainman Shale and Eleana Formation	Mc MDe	4,000	1,220	Shale, argillite, and quartzite
Guilmette Formation	Dg	1,400	430	Limestone
Simonson Dolomite	Ds	1,100	330	Dolomite
Sevy Dolomite	DSs	690	210	Dolomite
Laketown Dolomite	Sl	650	200	Dolomite
Ely Spring Dolomite	Oes	340	105	Dolomite
Eureka Quartzite	Oe	400	125	Quartzite
Antelope Valley Limestone	Oa	1,530	466	Limestone
Ninemile Formation	On	335	102	Limestone
Goodwin Limestone	Og	685	209	Limestone
Nopah Formation	Cn	2,050	620	Limestone
Bonanza King Formation	Cb	4,350	1,330	Limestone/dolomite
Carrara Formation (upper)	Cc	925	280	Limestone
Carrara Formation (lower)	Cc	925	280	Shale/Siltstone
Zabriskie Quartzite	Cz	200	60	Quartzite
Wood Canyon Formation	CZw	2,300	700	Micaceous quartzite
Stirling Quartzite	Zs	2,900	890	Quartzite
Johnnie Formation	Zj	3,000	914	Quartzite/siltstone/limestone

(Stratigraphic units and lithologies adapted from Cole [1992])

A.1.2 Stratigraphy

In order to confidently characterize the geology at the NNSS, geoscientists must start from a well-understood stratigraphic system. Refinement of the stratigraphy of the area was a continuous process during the decades in which geoscientists associated with the Weapons Testing Program worked to understand the complex volcanic setting (documented by Byers et al. 1989). The need to develop detailed geologic models in support of the Underground Test Area (UGTA) activity (Chapter 11 of the main report) intensified this process, and the recognition of smaller and smaller distinct volcanic units permitted a greater understanding of the three-dimensional configuration of the various types of rocks, which has been incorporated into the geologic framework. Efforts to understand the structure and stratigraphy of the non-volcanic rocks (pre-Tertiary) have also continued to a lesser degree (Cashman and Trexler 1991; Cole 1997; Cole and Cashman 1999; Trexler et al. 2003). The most widespread and significant Quaternary and Tertiary (mainly volcanic) units of the NNSS area are listed in Table A-2. Refer to Table A-3 for a list of Mesozoic (granitic), Paleozoic (sedimentary), and Precambrian (sedimentary and metamorphic) stratigraphic units.

A.1.3 Structural Controls

Geologic structures define the geometric configuration of the area, including the distribution, thickness, and orientation of units. Synvolcanic structures, including caldera faults and some normal faults, had a strong influence on depositional patterns of many of the units. Geologic structures are an important component of the hydrogeology of the area. The juxtaposition of units with different hydrologic properties across faults may have significant hydrogeologic consequences. Also, faults may act as either conduits or barriers to groundwater flow, depending on the difference in permeability between a fault zone and the surrounding rocks and the fault

orientation within the present stress field. This is partially determined by whether the fault zone is characterized by open fractures, or if it is associated with fine-grained gouge or increased alteration, which can reduce permeability.

Five main types of structural features exist in the area:

- Thrust faults (e.g., Belted Range and Control Point [CP] thrusts)
- Normal faults (e.g., Yucca and West Greeley faults)
- Transverse faults and structural zones (e.g., Rock Valley and Cane Spring faults)
- Calderas (e.g., Timber Mountain and Silent Canyon caldera complexes)
- Detachment faults (e.g., Fluorspar Canyon–Bullfrog Hills detachment fault)

The Belted Range thrust fault is the principal pre-Tertiary structure in the NNSS region and, thus, controls the distribution of pre-Tertiary rocks in the area. The fault can be traced or inferred from Bare Mountain, just south of the southwest corner of the NNSS area, to the northern Belted Range, just north of the NNSS, a distance of more than 130 km (81 mi). It is an eastward-directed thrust fault that generally places late Proterozoic to early Cambrian rocks over rocks as young as Mississippian. Several imbricate thrust faults have been identified east of the main thrust fault. Deformation related to the Belted Range thrust fault occurred sometime between 100 and 250 Ma. Lesser thrusts of similar age are also mapped in the area (e.g., the CP and Spotted Range thrusts).

Normal faults in the area are related mainly to basin-and-range extension (e.g., Yucca fault in Yucca Flat and West Greeley fault on Pahute Mesa). Most of these faults likely developed during and after the main phase of volcanic activity of the SWNVF (Sawyer et al. 1994). The majority of these faults are northwest- to northeast-striking, high-angle faults. However, the exact locations, amount of offset along the faults, and character of the faults become increasingly uncertain with depth.

Calderas are probably the most hydrogeologically important features in the NNSS area. Volcano-tectonic and geomorphic processes related to caldera development resulted in abrupt and dramatic lithologic and thickness changes across caldera margins. Consequently, caldera margins (i.e., faults) separate regions with considerably different hydrogeologic character.

A.2 Hydrology

Jennifer M. Larotonda

Mission Support and Test Services, LLC

The hydrologic character of the NNSS and vicinity reflects the region's arid climatic conditions and complex geology (D'Agnese et al. 1997). The hydrology of the NNSS has been extensively studied for over 60 years (U.S. Department of Energy, Nevada Operations Office [DOE/NV] 1996); numerous scientific reports and large databases are available (refer to cited references for more detailed information). The following subsections present an overview of the hydrologic setting of the NNSS and vicinity, including summary descriptions of surface water and groundwater, hydrogeologic framework, and brief descriptions of the hydrogeology for each of the idle underground test areas on the NNSS. The reader is directed to Chapter 11 of the main report for a discussion of the hydrogeologic modeling efforts conducted through the UGTA activity.

A.2.1 Surface Water

The NNSS is located within the Great Basin, a closed hydrographic province that comprises numerous closed (no outlet for surface water) hydrographic subbasins (Figure A-3). The closed hydrographic basins of the NNSS (most notably Yucca and Frenchman Flats) are subbasins of the Great Basin. Streams in the region are ephemeral, flowing only in response to precipitation events or snowmelt. Runoff is conveyed through normally dry washes toward the lowest areas of the closed hydrographic subbasins, and collects on playas. There are two playas (seasonally dry lakes) on the NNSS: Frenchman Lake and Yucca Lake, which lie in Frenchman and Yucca Flats, respectively. While

water may stand on the playas for a few weeks before evaporating, the playas are dry most of the year. Surface water may leave the NNSS in only a few places, such as Forty-mile Canyon in the southwestern NNSS.

Springs that emanate from local perched groundwater systems are the only natural sources of perennial surface water in the region. There are 28 known springs and seeps on the NNSS (Hall and Perry 2020) (Figure A-4). Spring discharge rates are low, ranging from 0.014 to 2.2 liters/second (0.22 to 35 gallons/minute) (International Technology Corporation [IT] 1997; Thordarson and Robinson 1971). Most water discharged from springs travels only a short distance from the source before evaporating or infiltrating into the ground. The springs are important sources of water for wildlife, but they are too small to be of use as a public water supply source.

Other surface waters on the NNSS include man-made impoundments constructed at several locations throughout the NNSS to support various operations. These are numerous and include open industrial reservoirs, containment ponds, and sewage lagoons. Surface water is not a source of drinking water on the NNSS.

A.2.2 *Groundwater*

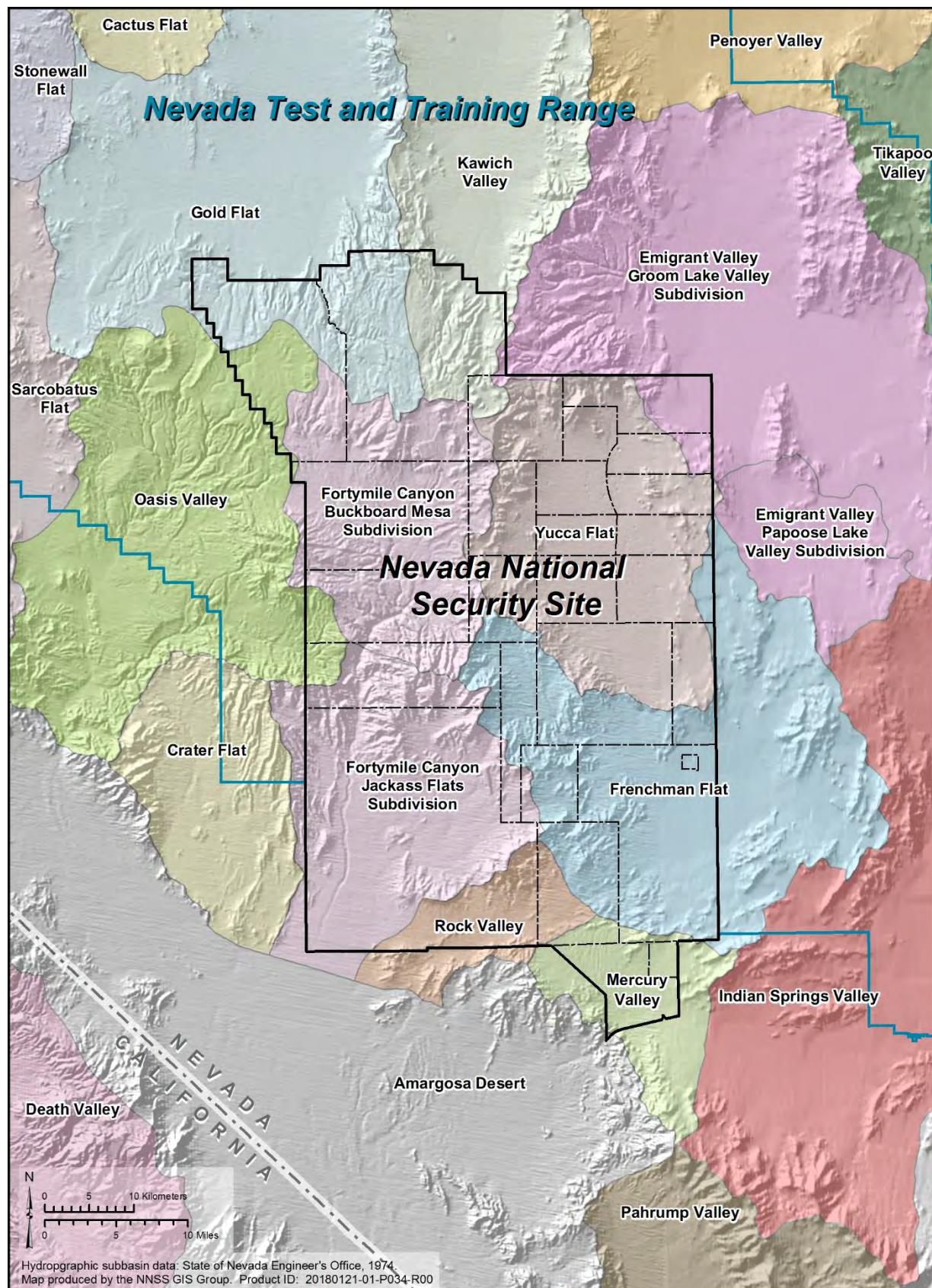
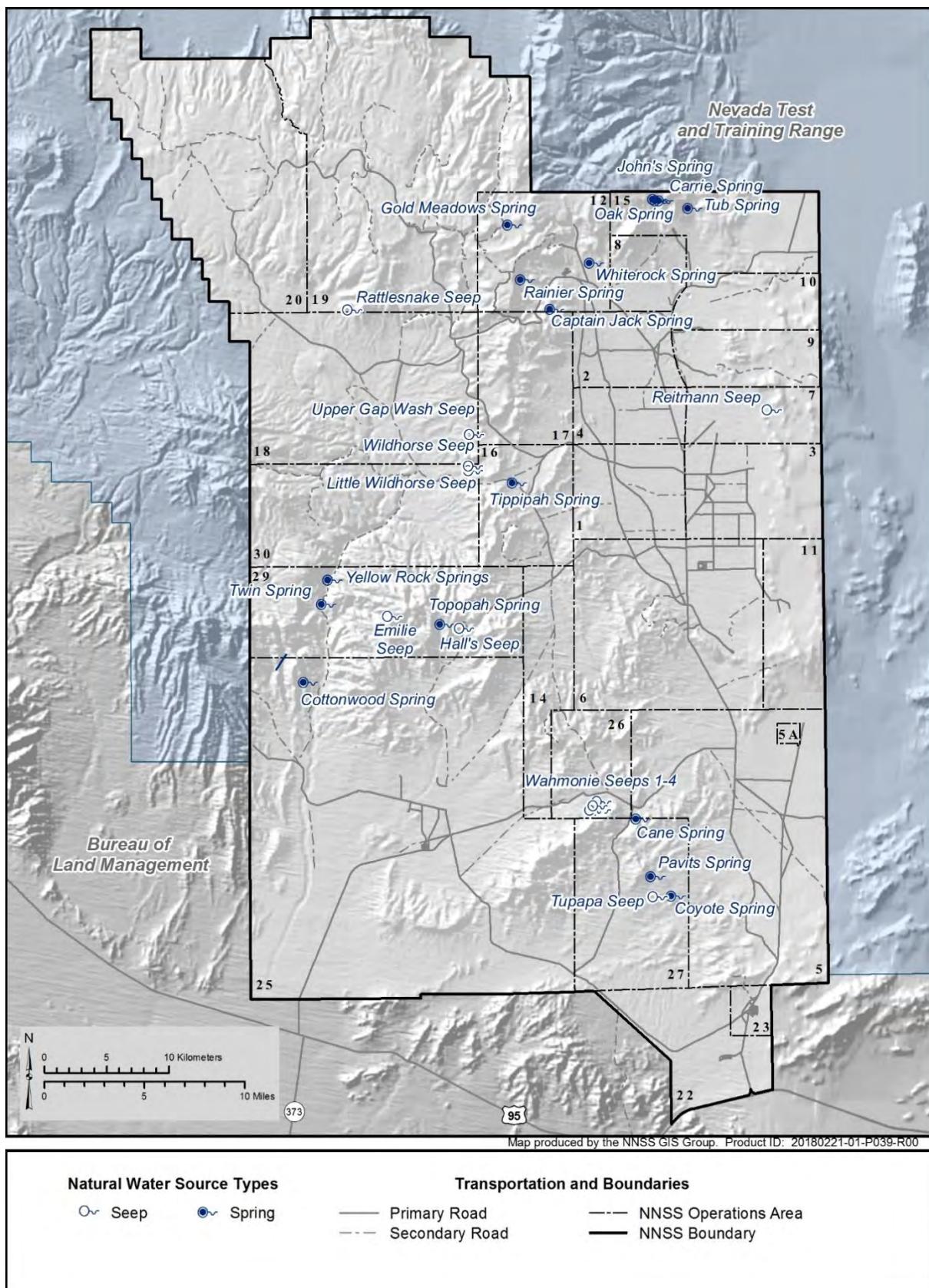
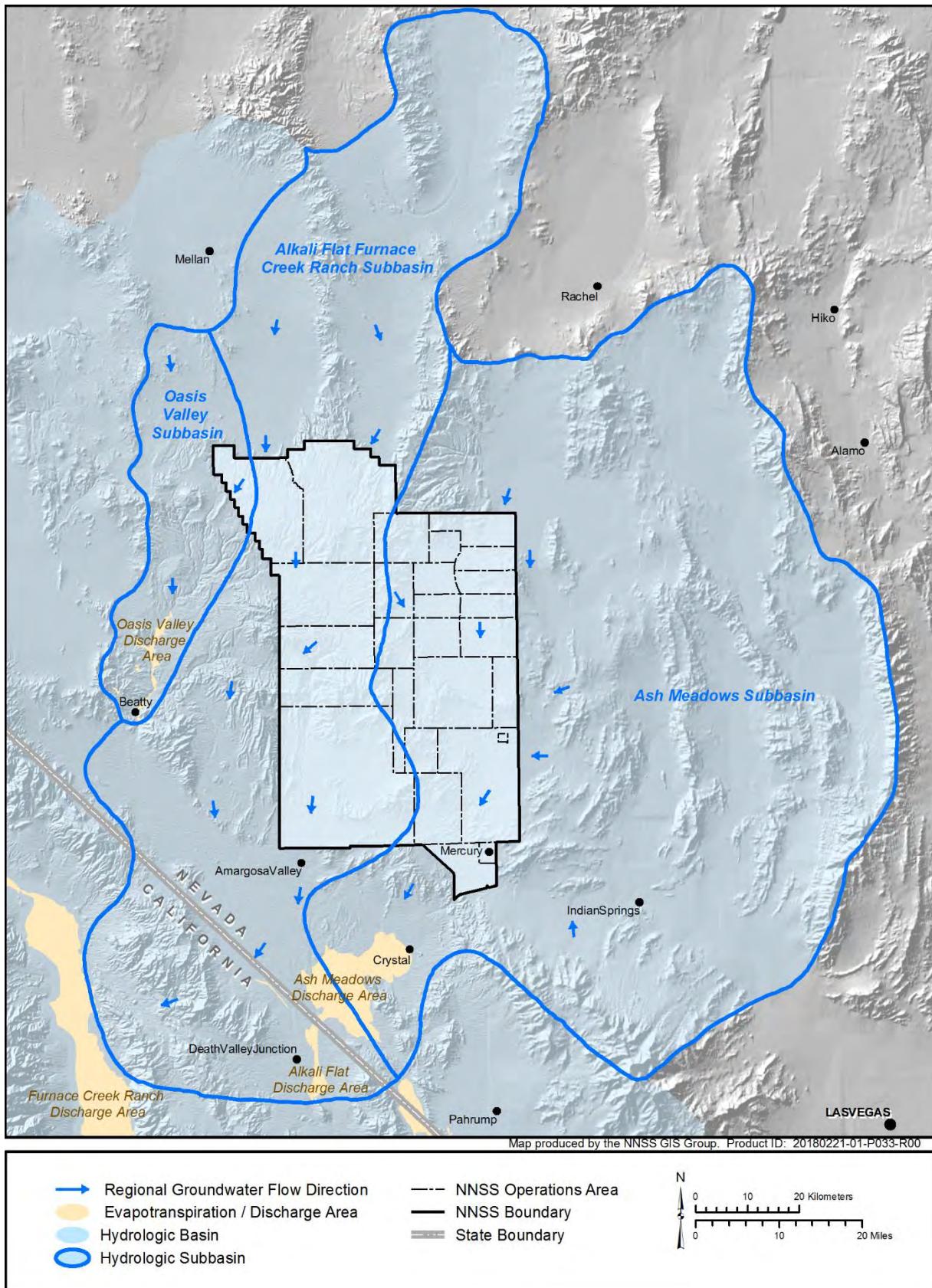
The NNSS is located within the Death Valley regional groundwater flow system, one of the major hydrologic subdivisions of the southern Great Basin (Waddell et al. 1984; Lacznak et al. 1996). Groundwater in southern Nevada is conveyed within several flow-system subbasins in the Death Valley regional flow system (a subbasin is defined as the area that contributes water to a major surface discharge area [Lacznak et al. 1996]). Three principal groundwater subbasins, named for their down-gradient discharge areas, have been identified within the NNSS region: the Ash Meadows, Oasis Valley, and Alkali Flat-Furnace Creek Ranch subbasins (Waddell et al. 1984; Fenelon et al. 2010) (Figure A-5).

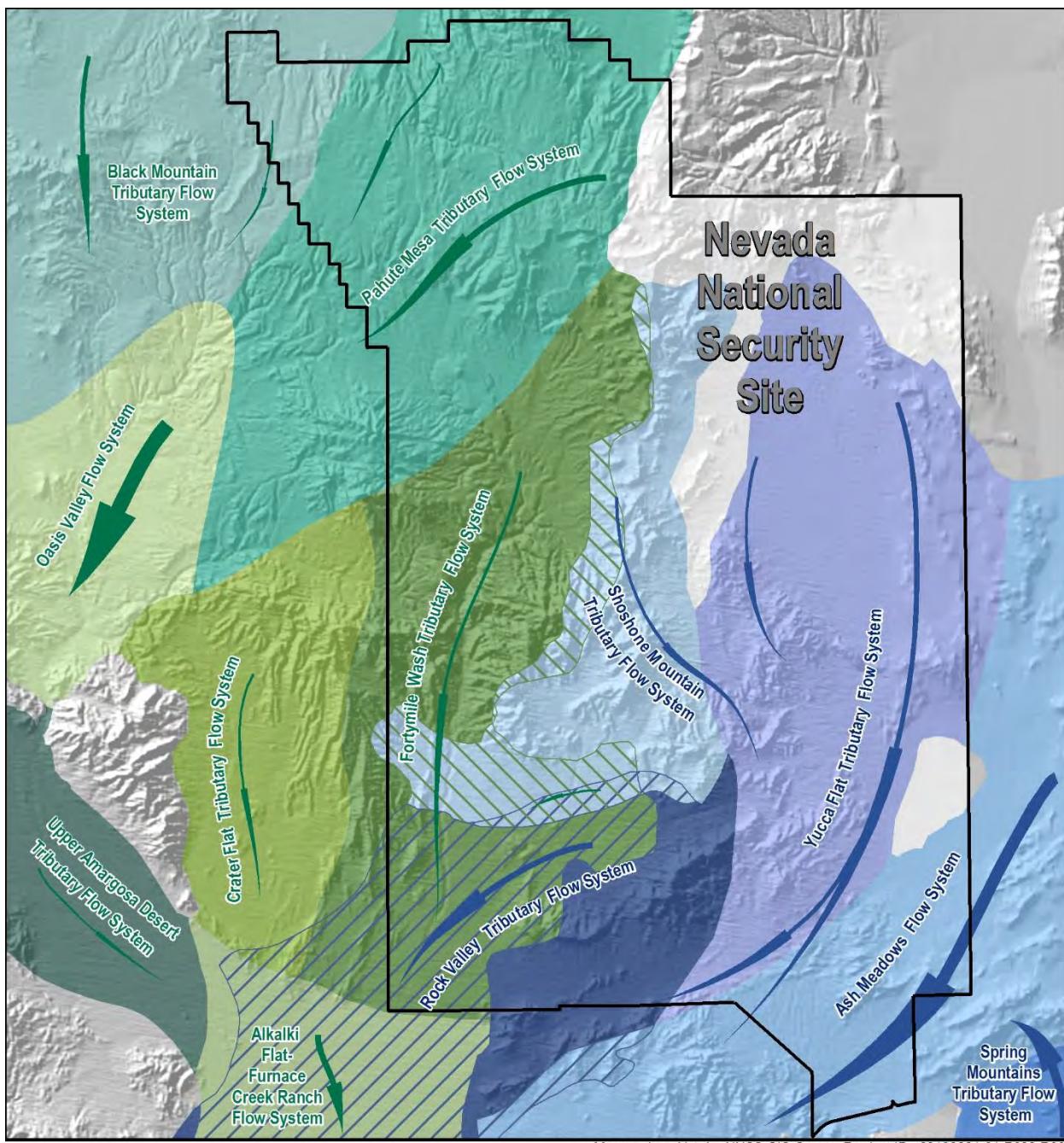
The groundwater-bearing rocks at the NNSS have been classified into several hydrogeologic units (HGUs) (Section A.2.3), of which the most important is the lower carbonate aquifer, a thick sequence of Paleozoic-age carbonate rock. This unit extends throughout the subsurface of central and southeastern Nevada, and is considered to be a regional aquifer (Winograd and Thordarson 1975; Lacznak et al. 1996; IT 1996a). Various volcanic and alluvial aquifers are also locally important as water sources.

In general, the static water level across the NNSS is deep, but measured depths vary depending on the land elevation from which each well was drilled. The depth to groundwater in wells at the NNSS varies from about 210 m (690 ft) below the land surface under the Frenchman Flat playa in the southeastern NNSS, to more than 610 m (2,000 ft) below the land surface in the northwestern NNSS beneath Pahute Mesa (Reiner et al. 1995; Robie et al. 1995; IT 1996b; O'Hagan and Lacznak 1996; Bright et al. 2001; Locke and La Camera 2003; Fenelon 2005, 2007; Fenelon et al. 2010; Elliott and Fenelon 2013). Perched groundwater (isolated lenses of water lying above the regional groundwater level) occurs locally throughout the NNSS, mainly within the volcanic rocks.

Recharge areas for the Death Valley groundwater system are the higher mountain ranges of central and southern Nevada, where there can be significant precipitation and snowmelt. Groundwater flow is generally from these upland areas to natural discharge areas in the south and southwest. Groundwater at the NNSS is also derived from underflow from basins up-gradient of the area (Harrill et al. 1988). The direction of groundwater flow may locally be influenced by structure, rock type, or other geologic conditions. Based on existing water-level data (Hale et al. 1995; Reiner et al. 1995; IT 1996b; Fenelon et al. 2010; Elliott and Fenelon 2013) and flow models (IT 1996a; D'Agnese et al. 1997; Stoller-Navarro Joint Venture [SNJV] 2006a, 2006b, 2007; Navarro Nevada Environmental Services, LLC [NNES], 2010a, 2010b; Belcher et al. 2017), the general groundwater flow direction within major water-bearing units beneath the NNSS is to the south and southwest (Figure A-6).

Most of the natural discharge from the Death Valley flow system is via transpiration by plants or evaporation from soil and playas in the Amargosa Desert and Death Valley (Lacznak et al., 1996). Groundwater discharge at the NNSS is minor, consisting of small springs that drain perched water lenses and artificial discharge at a limited number of water supply wells.


Figure A-3. Hydrographic subbasins on the NNSS
(from State of Nevada Engineers Office 1974)

**Figure A-4. Natural springs and seeps on the NNSS
(adapted from Hall and Perry 2020)**

**Figure A-5. Groundwater subbasins of the NNSS and vicinity
(modified from Waddell et al. 1984; Lacniak et al. 1996, 2001)**

Regional Groundwater Flow System	Carbonate Flow System:	Alluvial-Volcanic Flow System:
<p>Shallower alluvial-volcanic flow systems which occur in the western portion of the NNSS</p> <p>Deeper carbonate flow systems which occur in the eastern portion of the NNSS</p> <p>Arrow direction indicates regional groundwater flow direction and width indicates relative groundwater flow volume.</p> <p>Groundwater flow beneath the NNSS is complex and determined by subsurface hydrogeology. Its direction and volume within specific underground tributary flow systems are depicted, modified from Fenelon¹.</p>	<p>Areas where a flow system lies below a portion of another flow system are depicted with diagonal, parallel lines.</p> <ul style="list-style-type: none"> Ash Meadows Rock Valley Tributary Shoshone Mountain Tributary Spring Mountains Tributary Yucca Flat Tributary 	<ul style="list-style-type: none"> Alkali Flat-Furnace Creek Ranch Black Mountain Tributary Crater Flat Tributary Fortymile Wash Tributary Oasis Valley Flow System Pahute Mesa Tributary Upper Amargosa Desert

Figure A-6. Groundwater flow systems on the NNSS

Groundwater is the only local source of potable water on the NNSS. The supply wells that make up the NNSS water system (Gillespie et al. 1996; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO] 2008) and the other supply wells for the various water systems in the area (town of Beatty, small mines, and local ranches) produce water for human and industrial use from the carbonate, volcanic, and alluvial aquifers. Water chemistry varies from a sodium-potassium-bicarbonate type to a calcium-magnesium-carbonate type, depending on the mineralogical composition of the aquifer source. Groundwater quality within aquifers of the NNSS is generally acceptable for drinking water and industrial and agricultural uses (Chapman 1994) and meets Safe Drinking Water Act standards (Chapman and Lyles 1993; Rose et al. 1997; MSTS 2021).

A.2.3 Hydrogeologic Framework for the NNSS and Vicinity

When the need for testing nuclear devices underground was recognized in the 1950s, among the first concerns was the effect testing would have on the groundwater of the area. One of the earliest nuclear tests conducted below the groundwater table (the Bilby test conducted in 1963) was designed in part to study explosion effects on groundwater and the movement in groundwater of radioactive byproducts from the explosion (Hale et al. 1963; Garber 1971). Since that time, additional studies at various scales have been conducted to aid in the understanding of groundwater flow at the NNSS. The current understanding of the regional groundwater flow at the NNSS is derived from work by Winograd and Thordarson (1975), which was summarized and updated by Lacznak et al. (1996), and has further been developed by the UGTA activity hydrogeologic modeling team (IT 1996a; Bechtel Nevada [BN] 2002a, 2005, 2006a; NSTec 2007, 2009a) (Chapter 11 of the main report).

Winograd and Thordarson (1975) established a hydrogeologic framework, incorporating the work of Blankenbach and Weir (1973), who first defined HGUs to address the complex hydraulic properties of volcanic rocks. HGUs are used to categorize lithologic units according to their ability to transmit groundwater, which is mainly a function of their primary lithologic properties, degree of fracturing, and secondary mineral alteration. Hydrostratigraphic units (HSUs) for the NNSS volcanic rocks were first defined during the UGTA modeling initiative (IT 1996a). HSUs are groupings of contiguous stratigraphic units that have a particular hydrogeologic character, such as an aquifer (unit through which water moves readily) or confining unit (unit that generally is impermeable to water movement). The concept of HSUs is very useful in volcanic terrains where stratigraphic units can vary greatly in hydrologic character both laterally and vertically.

The rocks of the NNSS have been classified for hydrologic modeling using this two-level classification scheme in which HGUs are grouped to form HSUs (IT 1996a; NSTec 2009a). An HSU may consist of several HGUs, but is defined so that a single general type of HGU dominates (for example, mostly welded-tuff and vitric-tuff aquifers or mostly tuff confining units).

A.2.3.1 Hydrogeologic Units

All the rocks of the NNSS and vicinity can be classified as one of ten HGUs, which include the alluvial aquifer, a playa confining unit, four volcanic HGUs, two intrusive units, and two HGUs that represent the pre-Tertiary rocks (Table A-4).

The deposits of alluvium (alluvial aquifer) fill the main basins of the NNSS, and generally consist of a consolidated mixture of boulders, gravel, and sand derived from volcanic and Paleozoic sedimentary rocks through erosion (Slate et al. 1999). The finest sediments can be deposited as playa deposits (or dry lake beds) in some closed basins (e.g., Yucca and Frenchman Flats). Because of their silty/clayey nature, these fine-grained units tend to behave hydrologically as confining units (restrictive of groundwater flow).

Table A-4. Hydrogeologic units of the NNSS area

Hydrogeologic Unit (Symbol)	Typical Lithologies	Hydrologic Significance
Alluvial Aquifer (AA)	Unconsolidated to partially consolidated gravelly sand, eolian sand, and colluvium	Has characteristics of a highly conductive aquifer, but less so where lenses of clay-rich paleocolluvium or zeolitic alteration are present at depth.
Playa Confining Unit (PCU)	Clayey silt, sandy silt	Surface and near-surface confining unit at Yucca and Frenchman Lakes and within the lower portion of the alluvial section in the deepest portions of Frenchman Flat.
Welded-Tuff Aquifer (WTA)	Welded ash-flow tuff; vitric to devitrified	Degree of welding greatly affects interstitial porosity (less porosity as degree of welding increases) and permeability (greater fracture permeability as degree of welding increases).
Vitric-Tuff Aquifer (VTA)	Bedded tuff; ash-fall and reworked tuff; vitric	Constitutes a volumetrically minor hydrogeologic unit. Generally does not extend far below the static water level due to tendency to become zeolitized (which drastically reduces permeability) under saturated conditions. Significant interstitial porosity (20% to 40%). Generally insignificant fracture permeability.
Lava-Flow Aquifer (LFA)	Rhyolite, basalt, and dacite lava flows; includes flow breccias (commonly at base) and pumiceous zones (commonly at top)	Generally occurs as small, moderately thick (rhyolite) to thin (basalt) local flows. Hydrologically complex; wide range of transmissivities; fracture density and interstitial porosity differ with lithologic variations.
Tuff Confining Unit (TCU)	Zeolitic bedded tuff with interbedded, but less significant, zeolitic, nonwelded to partially welded ash-flow tuff	May be saturated but measured transmissivities are very low. May cause accumulation of perched and/or semi-perched water in overlying units.
Intracaldera Intrusive Confining Unit (IICU)	Highly altered, highly injected/intruded country rock and granitic material	Assumed to be impermeable. Conceptually underlies each of the SWNVF calderas and Calico Hills.
Granite Confining Unit (GCU)	Granodiorite, quartz monzonite	Relatively impermeable; forms local bulbous stocks, north of Rainier Mesa and Yucca Flat; may contain perched water.
Clastic Confining Unit (CCU)	Argillite, siltstone, quartzite	Clay-rich rocks are relatively impermeable; more siliceous rocks are fractured, but with fracture porosity generally sealed due to secondary mineralization.
Carbonate Aquifer (CA)	Dolomite, limestone	Transmissivity values differ greatly and are directly dependent on fracture frequency.

Note: Adapted from NSTec (2009a).

The volcanic rocks of the NNSS and vicinity can be categorized into four HGUs based on primary lithologic properties, degree of fracturing, and secondary mineral alteration (Table A-4). In general, the altered (typically zeolitized but hydrothermally altered near caldera margins) volcanic rocks act as confining units (tuff confining unit), and the unaltered rocks form aquifers. The volcanic aquifer units can be further divided into welded-tuff aquifers or vitric-tuff aquifers (depending upon the degree of welding) and lava-flow aquifers. The denser rocks (welded ash-flow tuffs and lava flows) tend to fracture more readily and therefore have relatively high permeability (Blankenagel and Weir 1973; Winograd and Thordarson 1975; Laczniak et al. 1996; IT 1996c, 1997; Prothro and Drellack 1997).

The pre-Tertiary sedimentary rocks at the NNSS and vicinity are also categorized as aquifer or confining unit HGUs based on lithology. The silicic clastic rocks (quartzite, siltstone, shale) tend to be aquitards or confining units, while the carbonates (limestone and dolomite) tend to be aquifers (Winograd and Thordarson 1975; Laczniak et al. 1996). The granite confining unit is considered to behave as a confining unit due to low primary porosity and low permeability, and because most fractures tend to be filled with secondary minerals (Walker 1962).

A.2.3.2 Hydrostratigraphic Units

The rocks at the NNSS and vicinity are grouped into more than 76 HSUs (NSTec 2009a). The more important and widespread HSUs in the area are discussed separately below, from oldest to youngest. Additional information regarding other HSUs is summarized in Section A.2.5, and can be found in the documentation packages for the UGTA corrective action unit (CAU)-scale hydrogeologic models (BN 2002a, 2005, 2006a; NSTec 2007).

Lower Clastic Confining Unit (LCCU) – The Proterozoic to Middle-Cambrian-age rocks are largely quartzite and silica-cemented siltstone. Although these rocks are brittle and commonly fractured, secondary mineralization has apparently greatly reduced formation permeability (Winograd and Thordarson 1975). These units make up the LCCU, which is considered to be the regional hydrologic basement (IT 1996a). The LCCU is interpreted to underlie the entire region, except at the calderas. Where it is in a structurally high position, the LCCU may act as a barrier to deep regional groundwater flow.

Lower Carbonate Aquifer (LCA) – The LCA consists of thick sequences of Middle Cambrian through Upper Devonian carbonate rocks. This HSU serves as the regional aquifer for most of southern Nevada and, locally, may be as thick as 5,000 m (16,400 ft) (Cole 1997; Cole and Cashman 1999). The LCA is present under most of the area, except where the LCCU is structurally high and at the calderas. Measured transmissivities of these rocks differ from place to place, apparently reflecting the observed differences in fracture and fault densities and characteristics (Winograd and Thordarson 1975; NSTec 2009b).

Upper Clastic Confining Unit (UCCU) – Upper Devonian and Mississippian silicic clastic rocks in the NNSS vicinity are assigned to the Eleana Formation and the Chainman Shale (Trexler et al. 1996, 2003; Cashman and Trexler 1991). Both formations are grouped into the UCCU. At the NNSS, this HSU is found mainly within a north-south band along the western portion of Yucca Flat. It is a significant confining unit and in many places forms the footwall of the Belted Range and CP thrust faults.

Lower Carbonate Aquifer - Upper Thrust Plate (LCA3) – Cambrian through Devonian, mostly carbonate rocks that occur in the hanging walls of the Belted Range and CP thrust faults are designated as LCA3. These rocks are equivalent stratigraphically to the LCA but are structurally separated from the LCA by the Belted Range thrust fault. The LCA3 is patchily distributed as remnant thrust blocks, particularly along the western and southern sides of Yucca Flat (at Mine Mountain and the CP Hills), at Calico Hills, and at Bare Mountain.

Mesozoic Granite Confining Unit (MGCU) – The Mesozoic era is represented at the NNSS only by intrusive igneous rocks. Cretaceous-age granitic rocks are exposed at two locations: in northern Yucca Flat at the Climax Stock, and the Gold Meadows Stock, which lies 12.9 km (8 mi) west of the Climax Stock, just north of Rainier Mesa (Snyder 1977; Bath et al. 1983) (Figure A-2). The two are probably related in both source and time and are believed to be connected at depth (Jachens 1999; Phelps et al. 2004). Because of its low intergranular porosity and permeability, and the lack of inter-connecting fractures (Walker 1962), the MGCU is considered a confining unit. The Climax and Gold Meadows intrusives are grouped into the MGCU HSU.

Tertiary and Quaternary Hydrostratigraphic Units – Tertiary- and Quaternary-age strata at the NNSS are organized into dozens of HSUs. Nearly all are of volcanic origin, except the alluvial aquifer and playa confining unit, which are the uppermost HSUs. These rocks are important because (1) most of the underground nuclear tests at the NNSS were conducted in these units, (2) they constitute a large percentage of the rocks in the area, and (3) they are inherently complex and heterogeneous. As pointed out in Section A.2.3.1, the volcanic rocks are divided into aquifer or confining units according to lithology and secondary alteration. More detailed information can be found in the documentation packages for the UGTA CAU-scale hydrogeologic models (BN 2002a, 2005, 2006a; NSTec 2007, 2009b).

Alluvial Aquifer (AA) – The alluvium throughout most of the NNSS is a consolidated mixture of detritus derived from silicic volcanic and Paleozoic-age sedimentary rocks, ranging in particle size from clay to boulders. Sediment deposition is largely in the form of alluvial fans (debris flows, sheet wash, and braided streams), which coalesce to form discontinuous, gradational, and poorly sorted deposits. Eolian sand, playa deposits, and rare basalt flows are also present within the alluvial section of some valleys. The alluvium thickness in major valleys (e.g., Frenchman Flat and Yucca Flat) generally ranges from about 30 m (100 ft) to more than 1,128 m (3,700 ft) in the deepest subbasins. The AA HSU is restricted primarily to the basins of the NNSS. However, because the water table in the vicinity is moderately deep, the alluvium is generally unsaturated, except in the deep subbasins of some valleys. These sediments are porous and, thus, have high storage coefficients. Hydraulic conductivity may also be high, particularly in the coarser, gravelly beds.

A.2.4 General Hydraulic Characteristics of NNSS Rocks

Volcanic rocks at the NNSS are extremely variable in lithologic character both laterally and vertically. The rock characteristics that control the density and character of fractures are the primary determinants of their hydraulic properties, and most hydraulic heterogeneity ultimately is related to fracture characteristics such as fracture density, openness, orientation, and other properties. Secondary fracture-filling minerals can drastically obstruct the flow through or effectively seal an otherwise transmissive formation (IT 1996c; Drellack et al. 1997). Fracture density typically increases with proximity to faults, potentially increasing the hydraulic conductivity of the formation; however, the hydrologic properties of faults, *per se*, are not well known. Limited data suggest that the full spectrum of hydraulic properties, from barrier to conduit, may be possible (Blankenagel and Weir 1973; Faunt 1998).

Table A-5 presents a brief summary of the hydrologic properties of NNSS HGUs. The lowest transmissivity values in volcanic rocks at the NNSS are typically associated with nonwelded ash-flow tuff and bedded tuff (ash-fall and reworked tuffs). Although interstitial porosity may be high, the interconnectivity of the pore space is limited, and these relatively incompetent rocks tend not to support open fractures. Secondary alteration of these tuffs (most commonly, zeolitization) ultimately produces a very impermeable unit. As described in Section A.2.3.1 and in NSTec (2009a), these zeolitized tuffs are considered to be confining units (aquiclude and aquitards). The equivalent unaltered bedded and nonwelded tuffs are considered to be vitric-tuff aquifers, and have intermediate transmissivities.

In general, the most transmissive rocks tend to be moderately to densely welded ash-flow tuffs (welded-tuff aquifer), rhyolite lava flows (lava-flow aquifer), and carbonate rocks (limestone and dolomite). Although their interstitial porosity is low, these competent lithologies tend to be highly fractured, and groundwater flow through these rocks is largely through an interconnected network of fractures (Blankenagel and Weir 1973; GeoTrans, Inc. 1995).

Underground nuclear explosions affect hydraulic properties of the geologic medium, creating both long-term and short-term effects. Effects include enhanced permeability from shock-induced fractures, the formation of vertical conduits (e.g., collapse chimneys), and elevated water levels (mounding and over-pressurization of saturated low-permeability units). However, these effects tend to be localized (Borg et al. 1976; Brikowski 1991; Allen et al. 1997).

Table A-5. Summary of hydrologic properties for hydrogeologic units at the NNSS

Hydrogeologic Unit^(a)		Fracture Density^(b, c)	Relative Hydraulic Conductivity^(c)
Alluvial Aquifer		Very low	Moderate to very high
Vitric-Tuff Aquifer		Low	Low to moderate
Welded-Tuff Aquifer		Moderate to high	Moderate to very high
Lava-Flow Aquifer ^(d)	Pumiceous	Low	Low to moderate
	Lava	Low	Very low
	Zeolitic	Moderate to high	Moderate to very high
	Stoney Lava and Vitrophyre	Low to moderate	Low to moderate
Flow Breccia		Low	Very low
Tuff Confining Unit		Low	Very low
Intrusive Confining Unit		Low to moderate	Very low
Granite Confining Unit		Low to moderate	Very low
Carbonate Aquifer		Low to high (variable)	Low to very high
Clastic Confining Unit		Moderate	Very low to low ^(e)

(a) Refer to Table A-4 for hydrogeologic nomenclature.

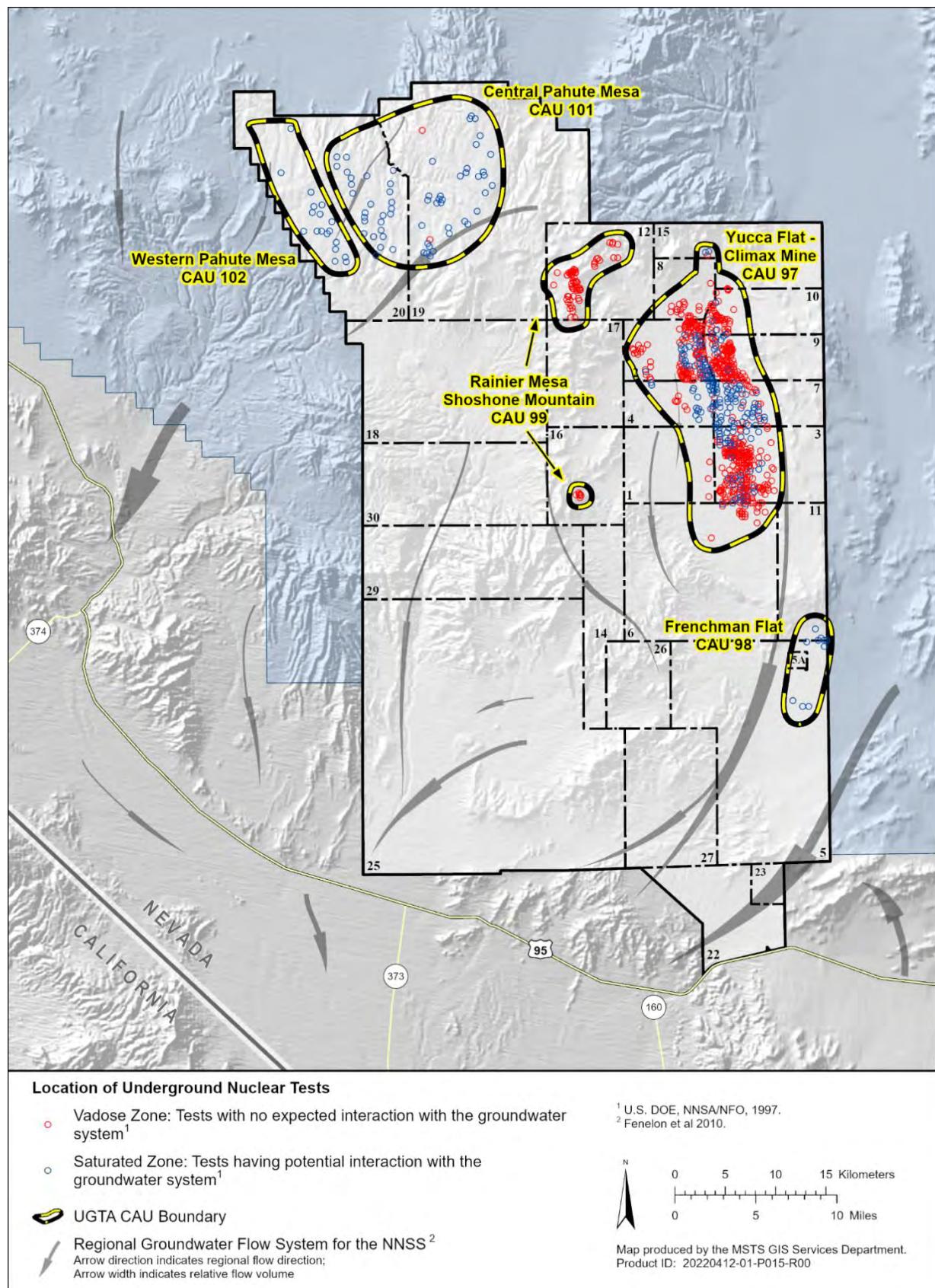
(b) Including primary (cooling joints in tuffs) and secondary (tectonic) fractures.

(c) The values presented are from BN (2002a).

(d) Abstracted from Prothro and Drellack (1997).

(e) Fractures tend to be sealed by the presence of secondary minerals.

Note: Adapted from BN (2002a).


A.2.5 Hydrogeology of the NNSS Underground Test Areas

Most NNSS underground nuclear detonations were conducted in three main UGTAs (Figure A-7; NNSA/NFO 2015): (1) Yucca Flat, (2) Pahute Mesa, and (3) Rainier Mesa (including Aqueduct Mesa). Underground tests in Yucca Flat and Pahute Mesa typically were conducted in vertical drill holes, whereas almost all tests conducted in Rainier Mesa were tunnel emplacements. A total of 85 underground tests (85 detonations) were conducted on Pahute Mesa, including 18 high-yield detonations (more than 200 kt). Rainier Mesa hosted 61 underground tests (62 detonations), almost all of which were relatively low-yield (less than 20 kt), tunnel-based weapons-effects tests. Yucca Flat was the most extensively used UGTA, hosting 659 underground tests (747 detonations), 4 of which were high-yield detonations (Allen et al. 1997; NNSA/NFO 2015).

In addition to the three main UGTAs, underground nuclear tests were conducted in Frenchman Flat (ten tests), Shoshone Mountain (six tests), the Oak Spring Butte/Climax Mine area (three tests), the Buckboard Mesa area (three tests), and Dome Mountain (one test with five detonations) (Allen et al. 1997; NNSA/NFO 2015). It should be noted that these totals include nine cratering tests (13 total detonations) conducted in various areas of the NNSS. Table A-1 is a synopsis of information about the locations of UGTAs at the NNSS, and Figure A-7 shows the areal distribution of underground nuclear tests conducted at the NNSS.

The location of each underground nuclear test is classified as a corrective action site (CAS). These in turn have been grouped into five CAUs, according to the Federal Facility Agreement and Consent Order (FFACO; as amended), between the U.S. Department of Energy (DOE), the State of Nevada, and the U.S. Department of Defense. In general, the CAUs relate to the geographical UGTAs on the NNSS (Figure A-7).

The hydrogeology of the four main NNSS UGTAs is summarized in the following subsections. For detailed stratigraphic descriptions of geologic units at the NNSS (including each of the UGTAs), see Sawyer et al. (1994) and Slate et al. (1999).

Figure A-7. Locations of UGTA CAUs and historical underground nuclear tests (not including test locations at Buckboard Mesa [Area 18] and Dome Mountain [Area 30])

A.2.5.1 Frenchman Flat Underground Test Area

The Frenchman Flat CAU consists of ten CAs located in the northern part of NNSS Area 5 and southern part of Area 11 (Figure A-7). The detonations were conducted in vertical emplacement holes and two mined shafts. Most of the tests were conducted in alluvium above the water table (BN 2005).

Physiography – Frenchman Flat is a closed intermontane basin located in the southeastern portion of the NNSS. It is bounded on the north by Massachusetts Mountain and the Halfpint Range, on the east by the Buried Hills, on the south by the Spotted Range, and on the west by the Wahmonie volcanic center (Figure A-2). The sparsely vegetated valley floor slopes gently toward a central playa lakebed. Ground-level elevations range from 938 m (3,078 ft) above sea level at the playa, to over 1,463 m (4,800 ft) in the nearby surrounding mountains.

Geology Overview – The stratigraphic section for Frenchman Flat consists of (from oldest to youngest) Proterozoic and Paleozoic clastic and carbonate rocks, Tertiary sedimentary and tuffaceous sedimentary rocks, Tertiary volcanic rocks, and Quaternary and Tertiary alluvium (Slate et al. 1999). In the northernmost portion of Frenchman Flat, the middle to upper Miocene volcanic rocks that are derived from calderas located to the northwest of Frenchman Flat unconformably overlie Ordovician-age carbonate and clastic rocks. To the south, these volcanic units, including the Ammonia Tanks Tuff, Rainier Mesa Tuff, Topopah Spring Tuff, and Crater Flat Group, either thin considerably, interfinger with coeval sedimentary rocks, or pinch out altogether (BN 2005). Upper-middle Miocene tuffs, lavas, and debris flows from the Wahmonie volcanic center located just west of Frenchman Flat dominate the volcanic section beneath the western portion of the valley. To the south and southeast, most of the volcanic units are absent, and Oligocene to middle Miocene sedimentary and tuffaceous sedimentary rocks, which unconformably overlie the Paleozoic rocks in the southern portion of Frenchman Flat, dominate the Tertiary section (Prothro and Drellack 1997). In most of the Frenchman Flat area, upper Miocene to Holocene alluvium covers the older sedimentary and volcanic rocks (Slate et al. 1999). Alluvium thicknesses range from a thin veneer along the valley edges to perhaps as much as 1,158 m (3,800 ft) in north central Frenchman Flat (BN 2005).

Structural Setting – The structural geology of Frenchman Flat is complex. In the late Mesozoic era, the region was subjected to compressional deformation, which resulted in folding, thrusting, uplift, and erosion of the pre-Tertiary rocks (Barnes et al. 1982). Approximately 11 Ma, the region underwent extensional deformation, during which the present basin-and-range topography was developed, and the Frenchman Flat basin was formed (Ekren et al. 1968; BN 2005). In the immediate vicinity of Frenchman Flat, extensional deformation has produced northeast-trending, left-lateral strike-slip faults and generally north-trending normal faults that displace the Tertiary and pre-Tertiary rocks. Beneath Frenchman Flat, major west-dipping normal faults merge and are probably contemporaneous with strike-slip faults beneath the southern portion of the basin (Grauch and Hudson 1995). Movement along the faults has created a relatively deep, east-dipping, half-graben basin elongated in a northeasterly direction (Figure A-8).

Hydrogeology Overview – The hydrogeology of Frenchman Flat is fairly complex but is typical of the NNSS area. Many of the HGUs and HSUs building blocks developed for models of the NNSS vicinity are applicable to the Frenchman Flat basin. The strata in the Frenchman Flat area have been subdivided into four Quaternary/Tertiary alluvium and playa HSUs, nine Tertiary-age volcanic HSUs, and three pre-Tertiary HSUs to serve as layers for the UGTA Frenchman Flat CAU groundwater model (BN 2005). The dominant units are listed in Table A-6.

Water-Level Elevation and Groundwater Flow Direction – The depth to the static water level (SWL) in Frenchman Flat ranges from 210 m (690 ft) near the central playa to more than 350 m (1,150 ft) at the northern end of the valley (SNJV 2004a, 2006a). The SWL is generally located within the AA, the Timber Mountain welded-tuff aquifer (TMWTA), the Topopah Spring aquifer (TSA), the Wahmonie confining unit (WCU), or the lower tuff confining unit (LTCU). In the deeper, central portions of the basin, more than half of the alluvium section is saturated. Water-level elevation data in the AA indicate a very flat water table (Blout et al. 1994; SNJV 2004a, 2006a; NNES 2010a).

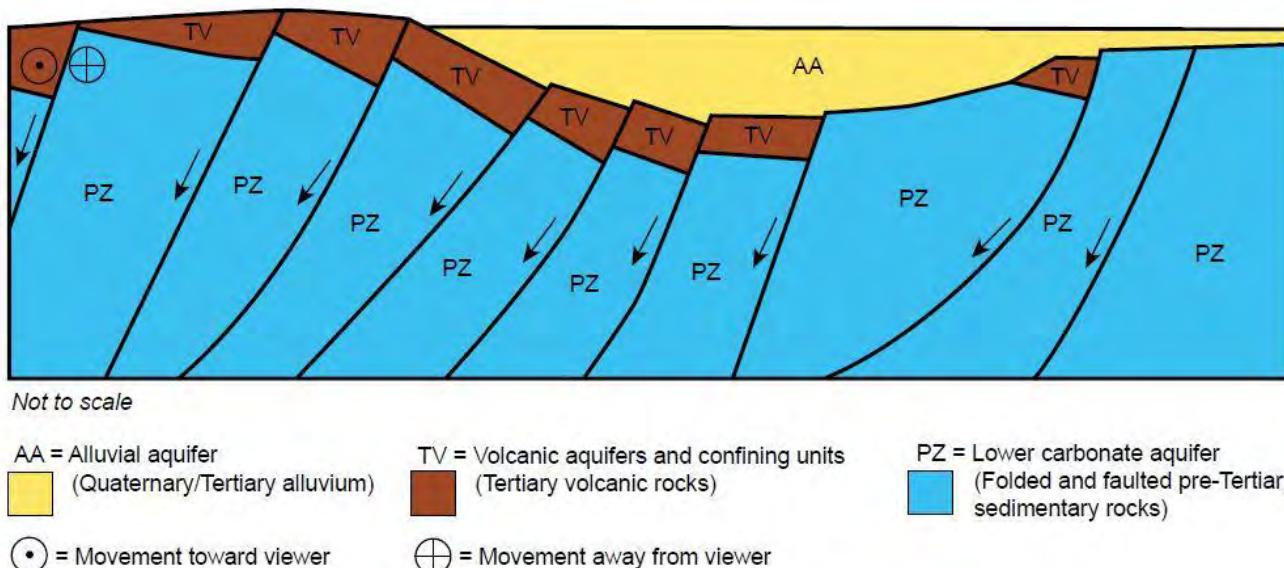


Figure A-8. Conceptual east-west cross section through Frenchman Flat

Table A-6. Dominant hydrostratigraphic units of the Frenchman Flat underground test area

Hydrostratigraphic Unit (Symbol)	Dominant Hydrogeologic Unit ^(a)	Typical Lithologies
Alluvial Aquifer (AA)	AA	Consists mainly of alluvium (gravelly sand) that fills extensional basins. Lower permeability layers, such as the older, altered alluvium and playa deposits, are differentiated as separate HSUs in the hydrogeologic models.
Timber Mountain Welded-Tuff Aquifer (TMWTA)	WTA, minor VTA	Welded ash-flow tuff and related nonwelded and ash-fall tuffs; vitric to devitrified
Timber Mountain Lower Vitric-Tuff Aquifer (TMLVTA)	VTA	Nonwelded ash-flow and bedded tuffs; vitric (unaltered)
Topopah Spring Aquifer (TSA)	WTA	Welded ash-flow tuff; vitric to devitrified
Wahmonie Confining Unit (WCU)	TCU, minor LFA	Ash-fall and reworked tuffs; debris and breccia flows; minor intercalated lava flows. Typically altered: zeolitic to argillitic
Lower Tuff Confining Unit (LTCU and LTCU1)	TCU	Zeolitic bedded tuffs, with interbedded but less significant zeolitic, nonwelded to partially welded ash-flow tuffs
Volcaniclastic Confining Unit (VCU)	TCU, minor AA	Diverse assemblage of interbedded volcanic and sedimentary rocks including tuffs, shale, tuffaceous and argillaceous sandstones, conglomerates, minor limestones
Upper Clastic Confining Unit (UCCU)	CCU	Argillite, quartzite; present only in northwest portion of model in the CP Basin
Lower Carbonate Aquifer (LCA)	CA	Dolomite and limestone; the "regional aquifer"
Lower Clastic Confining Unit (LCCU)	CCU	Quartzites and siltstones; the "hydrologic basement"

(a) See Table A-4 for descriptions of HGUs

Note: Adapted from BN (2005).

Water-level data for the LCA in the southern part of the NNSS are limited, but indicate a fairly low gradient in the Yucca Flat, Frenchman Flat, and Jackass Flats areas. This gentle gradient implies a high degree of hydraulic continuity within the aquifer, presumably due to high fracture permeability (Lacznak et al. 1996). Furthermore, the similarity of the water levels measured in Paleozoic rocks (LCA) in Yucca Flat and Frenchman Flat implies that, at least for deep interbasin flow, there is no groundwater barrier between the two basins. Inferred regional groundwater flow through Frenchman Flat is to the south-southwest toward discharge areas in Ash Meadows (Figure A-5). An increasing westward flow vector in southern NNSS (Figure A-7) may be due to preferential flow paths subparallel to the northeast-trending Rock Valley fault (Grauch and Hudson 1995) and/or a northward gradient from the Spring Mountain recharge area (IT 1996a, 1996b).

Groundwater elevation measurements for wells completed in the AA and the volcanic aquifers (e.g., TMWTA, TSA) are higher than those in the underlying LCA (IT 1996b; BN 2005; SNJV 2006a). This implies a downward gradient. This apparent semi-perched condition is believed to be due to the presence of intervening LTCU and VCU.

A.2.5.2 Yucca Flat/Climax Mine Underground Test Area

The Yucca Flat/Climax Mine CAU consists of several hundred CASs located in NNSS Areas 1, 2, 3, 4, 6, 7, 8, 9, and 10, and three CASs located in Area 15 (Figure A-7). These tests were typically conducted in vertical emplacement holes and a few related tunnels (Table A-1).

The Yucca Flat and Climax Mine UGTAs were originally defined as two separate CAUs (CAU 97 and CAU 100) in the FFACO because the geologic frameworks of the two areas are distinctly different. The Yucca Flat underground nuclear tests were conducted in alluvial, volcanic, and carbonate rocks, whereas the Climax Mine tests were conducted in an igneous intrusion (granite) in northern Yucca Flat. However, particle-tracking simulations performed during the regional evaluation (IT 1997) indicated that the local Climax Mine groundwater flow system merges into the much larger Yucca Flat groundwater flow system during the 1,000-year time period of interest, so the two areas were combined into the single CAU 97.

Yucca Flat was the most heavily used UGTA on the NNSS (Figure A-7). The alluvium and tuff formations provide many characteristics advantageous to the containment of nuclear explosions. They are easily mined or drilled. The high-porosity overburden (alluvium and vitric tuffs) will accept and depressurize any gas that might escape the blast cavity. The deeper tuffs are zeolitized, which creates a nearly impermeable confining unit. The zeolites also have adsorptive and “molecular sieve” attributes that severely restrict or prevent the migration of radionuclides (Carle et al. 2008). The deep water table (greater than 503 m [1,650 ft] depth) provides additional operational and environmental benefits.

This section provides brief descriptions of the geologic and hydrogeologic setting of the Yucca Flat/Climax Mine UGTA, as well as a discussion of the hydrostratigraphic framework. This summary was compiled from various sources, including Winograd and Thordarson (1975), Byers et al. (1989), Laczniak et al. (1996), Cole (1997), IT (2002), and BN (2006a), where additional information can be found.

Physiography – Yucca Flat is a topographically closed basin with a playa at its southern end. The geomorphology of Yucca Flat is typical of the arid, inter-mountain basins found throughout the Basin and Range province of Nevada and adjoining states. Faulted and tilted blocks of Tertiary-age volcanic rocks and underlying Precambrian and Paleozoic sedimentary rocks form low ranges around the basin (Figure A-2). These rocks also compose the “basement” of the basin, which is now covered by alluvium.

Ground elevation in the Yucca Flat area ranges from about 1,195 m (3,920 ft) above mean sea level at Yucca Lake (playa) in southern Yucca Flat to about 1,463 m (4,800 ft) in the northern portion of the valley. The highest regions of the surrounding mountains and hills range from less than 1,500 m (5,000 ft) in the south to over 2,316 m (7,600 ft) at Rainier Mesa in the northwest corner of the area. Yucca Flat is bounded by the Halfpint Range to the east, by Rainier Mesa and the Belted Range to the north, by the Eleana Range and Mine Mountain to the west, and by the CP Hills, CP Hogback, and Massachusetts Mountain to the south.

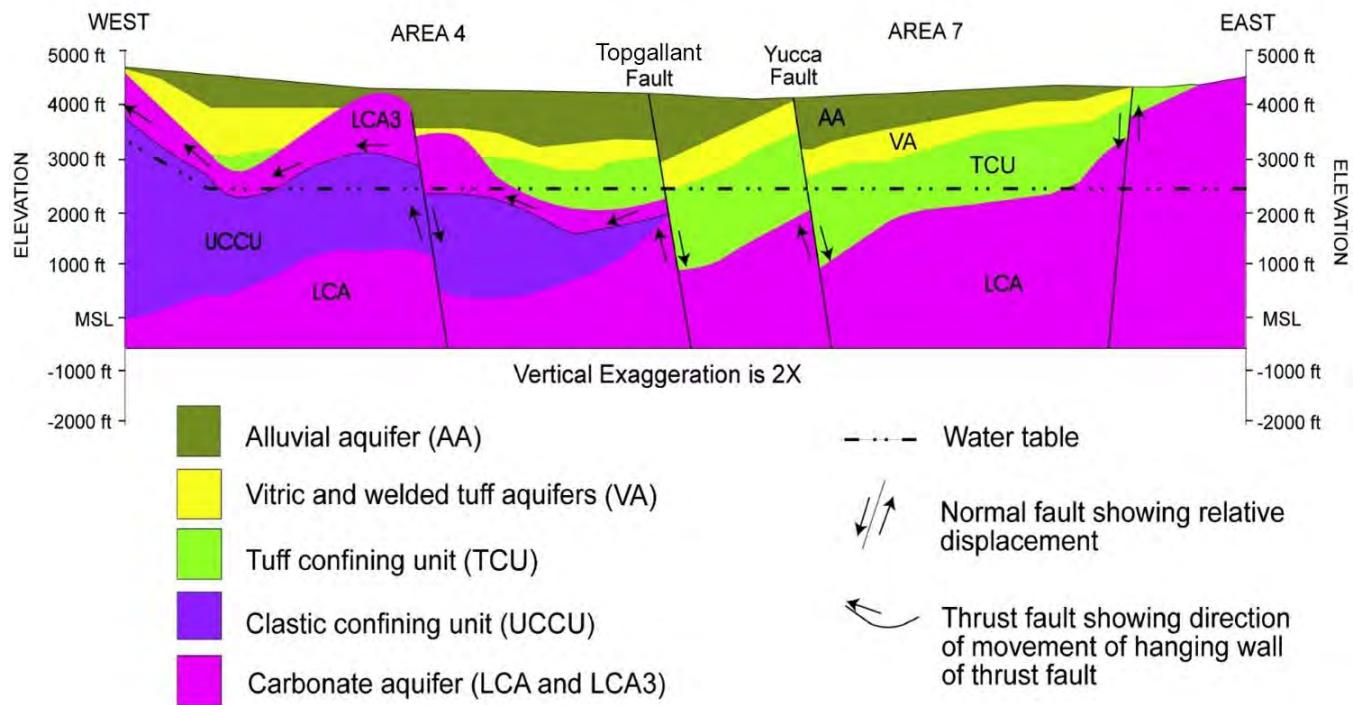
Geology Overview – The Precambrian and Paleozoic rocks of the NNSS area consist of approximately 11,300 m (37,000 ft) of carbonate and silicic clastic rocks (Cole 1997). These rocks were severely deformed by compressional movements during Mesozoic time, which resulted in the formation of folds and thrust faults (e.g., Belted Range and CP thrust faults). In the middle Late Cretaceous, granitic bodies (such as the Climax Stock in northern Yucca Flat) intruded these deformed rocks (Houser and Poole 1960; Maldonado 1977).

A total of 22 pre-Tertiary formations (including the Mesozoic granitic intrusives) has been recognized in the Yucca Flat region (Table A-3). These rocks range in age from Precambrian to Cretaceous and are the result of primarily carbonate and silicic shallow- to deep-water sedimentation near a continental margin. Some of these

units are widespread throughout southern Nevada and California, though complex structural deformation has created many uncertainties in determining the geometric relationships of these units around Yucca Flat.

In Cenozoic time, the sedimentary and intrusive rocks were buried by thick sections of volcanic material deposited in several eruptive cycles from source areas in the SWNVF. The Cenozoic stratigraphy of the Yucca Flat area, though not structurally complicated, is very complex. Most of the volcanic rocks of the Yucca Flat area were deposited during many eruptive cycles of the SWNVF (Section A.1.1). The source areas of most units (Volcanics of Oak Spring Butte, Tunnel Formation, Belted Range Group, Crater Flat Group, Calico Hills Formation, Paintbrush Group, and Timber Mountain Group) are located to the west and northwest of Yucca Flat; the Wahmonie source area is located southwest of Yucca Flat. Table A-2 includes the Tertiary stratigraphic units common to the Yucca Flat basin.

The volcanic rocks include primarily ash-flow tuffs, ash-fall tuffs, and reworked tuffs, whose thicknesses and extents vary partly due to the irregularity of the underlying depositional surface, and partly due to the presence of topographic barriers and windows between Yucca Flat and the source areas to the north and west.


Over the last several million years, gradual erosion of the highlands that surround Yucca Flat has deposited a thick blanket of alluvium on the tuff section. The alluvium in Yucca Flat, and throughout most of the NNSS, is a consolidated mixture of detritus derived from silicic volcanic and Paleozoic sedimentary rocks, ranging in particle size from clay to boulders. Sediment deposition is largely in the form of alluvial fans (debris flows, sheet wash, and braided streams) that coalesce to form discontinuous, gradational, and poorly sorted deposits. Eolian sand, playa deposits, and rare basalt flows are also present within the alluvium section of Yucca Flat. The alluvium thickness in Yucca Flat generally ranges from about 30 m (100 ft) to over 914 m (3,000 ft) (Drellack and Thompson 1990).

Structural Setting – The structure of the pre-Tertiary rocks in Yucca Flat is complex and poorly known (Cole 1997), but it is important because the pre-Tertiary section is very thick and extensive and includes units that form regional aquifers. The main pre-Tertiary structures in the Yucca Flat area are related to the east-vergent Belted Range thrust fault, which has placed Late Proterozoic to Cambrian-age rocks over rocks as young as Late Mississippian (Cole 1997; Cole and Cashman 1999). In several places along the western and southern portions of Yucca Flat, east-vergent structures related to the Belted Range thrust were deformed by younger west-vergent structural activity (Cole and Cashman 1999). This west-vergent deformation is related to the CP thrust fault, which also placed Cambrian and Ordovician rocks over Mississippian and Pennsylvanian-age rocks beneath western Yucca Flat (Caskey and Schweickert 1992).

Large-scale normal faulting began in Yucca Flat in response to regional extensional movements near the end of this period of volcanism. This faulting formed the Yucca Flat basin. As fault movement continued, blocks between faults were down-dropped and tilted, creating subbasins within the Yucca Flat basin.

The major basin-forming faults generally strike in a northerly direction, and relative offset is typically down to the east (e.g., Yucca, Topgallant, and Carpetbag faults). Movement along the Yucca fault in central Yucca Flat indicates deformation in the area has continued into the Holocene (Hudson 1992). Specific details regarding these faults are lacking because of the underground testing program's preference to avoid known and inferred faults during drilling of emplacement holes for underground nuclear tests.

The configuration of the Yucca Flat basin is illustrated on the generalized west-east cross section shown in Figure A-9. The cross section is simplified to show the positions of only the primary lithostratigraphic units in the region. This cross section provides a conceptual illustration of the irregular Precambrian and Paleozoic rocks overlain by the Tertiary volcanic units, and the basin-filling alluvium at the surface. The main Tertiary-age, basin-forming large-scale normal faults are also shown.

Figure A-9. Generalized west-east hydrogeologic cross section through central Yucca Flat
MSL=mean sea level

Hydrogeologic Overview – All the rocks of the Yucca Flat underground test area can be classified as one of eight HGUs (Table A-4), which include the AA, four volcanic HGUs, an intrusive unit, and two HGUs that represent the pre-Tertiary rocks.

The strata in Yucca Flat have been subdivided into 11 Tertiary-age HSUs (including the Tertiary/Quaternary alluvium), 1 Mesozoic intrusive HSU, and 6 Paleozoic HSUs (BN 2006a). These units are listed in Table A-7, and several of the more important HSUs are discussed in the following paragraphs. The alluvium and pre-Tertiary HSUs in Yucca Flat are as defined in Section A.2.3.2.

The hydrostratigraphy for the Tertiary-age volcanic rocks in Yucca Flat can be simplified into two categories: zeolitic tuff confining units and (nonzeolitic) volcanic aquifers.

The zeolitic TCUs in Yucca Flat have been grouped into three HSUs: the upper tuff confining unit (UTCU), the lower tuff confining unit (LTCU), and the Oak Spring Butte confining unit (OSBCU) (Table A-7). The LTCU and OSBCU are important HSUs in the Yucca Flat region (stratigraphically similar to the LTCU in Frenchman Flat) because they separate the volcanic aquifer units from the underlying regional LCA. Almost all zeolitized tuff units in Yucca Flat are grouped within the LTCU and OSBCU, which comprise mainly zeolitized bedded tuff (ash-fall tuff, with minor reworked tuff). The LTCU and OSBCU are saturated in much of Yucca Flat; however, measured transmissivities are very low.

The LTCU and OSBCU are generally present in the eastern two-thirds of Yucca Flat. They are absent over the major structural highs, where the volcanic rocks have been removed by erosion. Areas where the LTCU and OSBCU are absent include the “Paleozoic bench” in the western portion of the basin. In northern Yucca Flat, the LTCU and OSBCU tend to be confined to the structural subbasins. Outside the subbasins and around the edges of Yucca Flat, the volcanic rocks are thinner and are not zeolitized.

The unaltered volcanic rocks of Yucca Flat are divided into three Timber Mountain HSUs. The hydrogeology of this part of the geologic section is complicated by the presence of one or more ash-flow tuff units that are quite variable in properties both vertically and laterally.

Table A-7. Hydrostratigraphic units of the Yucca Flat underground test area

Hydrostratigraphic Unit (Symbol)	Dominant Hydrogeologic Units ^(a)	Typical Lithologies
Alluvial Aquifer (AA)	AA, minor LFA	Alluvium (gravelly sand); also includes one or more thin basalt flows, playa deposits and eolian sands
Timber Mountain Upper Vitric-Tuff Aquifer (TMUVTa)	WTA, VTA	Includes vitric nonwelded ash-flow and bedded tuff
Timber Mountain Welded-Tuff Aquifer (TMWTA)	WTA	Partially to densely welded ash-flow tuff; vitric to devitrified
Timber Mountain Lower Vitric-Tuff Aquifer (TMLVTA)	VTA	Nonwelded ash-flow and bedded tuff; vitric
Upper Tuff Confining Unit (UTCU)	TCU	Zeolitic bedded tuff
Topopah Spring Aquifer (TSA)	WTA	Welded ash-flow tuff; present only in extreme southern Yucca Flat
Belted Range Aquifer (BRA)	WTA	Welded ash-flow tuff
Belted Range Confining Unit (BRCU)	TCU	Zeolitic bedded tuffs
Pre-Grouse Canyon Tuff Lava-Flow Aquifer (Pre-Tbg-LFA)	LFA	Lava flow
Lower Tuff Confining Unit (LTCU)	TCU	Zeolitic bedded tuffs with interbedded but less significant zeolitic, nonwelded to partially welded ash-flow tuffs
Tub Spring Aquifer (TUBA)	WTA	Welded ash-flow tuff
Oak Spring Butte Confining Unit (OSBCU)	TCU	Zeolitic bedded tuffs with interbedded but less significant zeolitic, nonwelded to partially welded ash-flow tuffs
Argillic Tuff Confining Unit (ATCU)	TCU	Includes the argillic, lowermost Tertiary volcanic units and paleocolluvium that immediately overlie the pre-Tertiary rocks
Mesozoic Granite Confining Unit (MGCU)	GCU	Granodiorite and quartz monzonite
Upper Carbonate Aquifer (UCA)	CA	Limestone
Lower Carbonate Aquifer - Yucca Flat Upper Thrust Plate (LCA3)	CA	Limestone and dolomite
Lower Clastic Confining Unit - Yucca Flat Upper Plate (LCCU1)	CCU	Quartzite and siltstone
Upper Clastic Confining Unit (UCCU)	CCU	Argillite and quartzite
Lower Carbonate Aquifer (LCA)	CA	Dolomite and limestone; “regional aquifer”
Lower Clastic Confining Unit (LCCU)	CCU	Quartzite and siltstone; “hydrologic basement”

(a) See Table A-4 for description of HGUs.

Note: Adapted from BN (2006a).

The Timber Mountain Group includes ash-flow tuffs that can be either WTAs or VTAs, depending on the degree of welding (refer to Sections A.2.3.1 and A.2.3.2). In Yucca Flat, these units are generally present in the central portions of the basin. They can be saturated in the deepest structural subbasins.

The AA is confined primarily to the basins of the NNSS. However, because the water table in the vicinity is moderately deep, the alluvium is generally unsaturated, except in the deep subbasins of some valleys. These sediments are porous and, thus, have high storage coefficients. Transmissivities may also be high, particularly in the coarser, gravelly beds.

The more recent large-scale extensional faulting in the Yucca Flat area is significant from a hydrologic perspective because the faults have profoundly affected the hydrogeology of the Tertiary volcanic units by controlling to a large extent their alteration potential and final geometry. In addition, the faults themselves may facilitate migration of potentially contaminated groundwater from sources in the younger (volcanic) rocks into the underlying regional aquifers. Final geometry of formations may be such that rocks of very different properties are now juxtaposed (e.g., altered volcanic rocks against a Paleozoic carbonate scarp).

Water-Level Elevation and Groundwater Flow Direction – Water-level data are abundant for Yucca Flat, as a result of more than 60 years of drilling in the area in support of the weapons testing program. However, water-level data for the surrounding areas are scarce. These data are listed in the potentiometric data package prepared for the UGTA regional-scale groundwater model (Hale et al. 1995; IT 1996b) and in the more recent Yucca Flat-CAU-specific data reports (Fenelon 2005; SNJV 2006b; Navarro-Intera [NI] 2013).

The SWL in the Yucca Flat basin is relatively deep, ranging in depth from about 183 m (600 ft) in extreme western Yucca Flat to more than 580 m (1,900 ft) in north-central Yucca Flat (Hale et al. 1995; Laczniak et al. 1996). Elevation of the water table within Yucca Flat proper is relatively flat and varies from 773 m (2,535 ft) in the north to 730 m (2,400 ft) at the southern end of Yucca Flat (Hale et al. 1995; Laczniak et al. 1996; Fenelon 2005; SNJV 2006b; Fenelon et al. 2012; NI 2013). Throughout much of the Yucca Flat area, the SWL typically is located within the lower portion of the volcanic section, in the LTCU and OSBCU. Beneath the hills surrounding Yucca Flat, the SWL can be within the Paleozoic-age units, while in the deeper structural subbasins of Yucca Flat, the Timber Mountain Tuff and the lower portion of the alluvium are also saturated. It is interesting to note that the water level just north of Yucca Flat in western Emigrant Valley is at an elevation of 1,340 m (4,400 ft), about 305 m (2,000 ft) higher than in Yucca Flat. This is due to a hydrologic barrier around the north end of Yucca Flat formed by the LCCU in the Halfpint Range and the Climax granite stock.

Water levels measured in wells completed in the AA and volcanic units in the eastern two-thirds of Yucca Flat are typically about 20 m (70 ft) higher than in wells completed in the LCA (Winograd and Thordarson 1975; IT 1996b; Fenelon 2005; SNJV 2006b). The hydrogeology of these units suggests that the higher elevation of the water table in the overlying Tertiary rocks is related to the presence of low permeability zeolitized tuffs of the LTCU and OSBCU (aquitards) between the Paleozoic and Tertiary aquifers (SNJV 2006b). Detailed water-level data indicate the existence of a groundwater trough along the axis of the valley. The semi-perched water within the AA and volcanic aquifers eventually moves downward to the carbonate aquifer in the central portion of the valley. Water-level elevations in western Yucca Flat are also well above the regional water level. The hydrology of western Yucca Flat is influenced by the presence of the Mississippian clastic rocks, which directly underlie the carbonate aquifer of the upper plate of the CP thrust (locally present), AA, and volcanic rocks west of the Topgallant fault. This geometry is a contributing factor in the development of higher (semi-perched) water levels in this area. The Climax Stock also bears perched water (Walker 1962; Laczniak et al. 1996) well above the regional water level.

The present structural interpretation for Yucca Flat depicts the LCCU at great depth, except in the northeast corner of the study area. The Zabriskie Quartzite and Wood Canyon Formation, which are both classified as clastic confining units, are exposed in the northern portion of the Halfpint Range. The high structural position of the LCCU there (and in combination with the Climax Stock) may be responsible for the steep hydrologic gradient observed between western Emigrant Valley and Yucca Flat.

Based on the existing data as interpreted from the UGTA regional-scale groundwater flow model (DOE/NV 1997) and the CAU-scale flow and transport model for Yucca Flat (NNES 2010a; NI 2013), the overall groundwater flow direction in Yucca Flat is to the south and southwest (Hershey and Acheampong 1997; Figure A-6). Groundwater ultimately discharges at Ash Meadows and Alkali Flat to the south and Death Valley to the southwest.

A.2.5.3 Pahute Mesa Underground Test Area

This section provides descriptions of the geologic and hydrologic settings of the Pahute Mesa UGTA. This summary was compiled from various sources, including Winograd and Thordarson (1975), Byers et al. (1976, 1989), Laczniak et al. (1996), Cole (1997), and BN (2002a), where additional information can be found. For detailed stratigraphic descriptions, see Sawyer et al. (1994) and Slate et al. (1999).

The Western and Central Pahute Mesa CAUs, encompassing Areas 19 and 20 of the NNSS, were the site of 85 underground nuclear tests (NNSA/NFO 2015) (Figure A-7). These detonations were all conducted in vertical emplacement holes (Table A-1). The Western Pahute Mesa CAU is separated from the Central Pahute Mesa CAU

by the Boxcar fault and is distinguished by a relative abundance of tritium (DOE/NV 1999). For hydrogeologic studies and modeling purposes, these two CAUs are treated together.

Hydrogeologically, these CAUs are considered to be part of a larger region that includes areas both within and outside the boundaries of the NNSS, designated as the Pahute Mesa–Oasis Valley (PM-OV) study area. Because most of the underground nuclear tests at Pahute Mesa were conducted near or below the SWL, test-related contaminants are available for transport via a groundwater flow system that may extend to discharge areas in Oasis Valley. Similar to the UGTAs of Frenchman Flat and Yucca Flat, a CAU-scale hydrostratigraphic framework model (BN 2002a) has been developed for the PM-OV study area to support modeling of groundwater flow and contaminant transport for the UGTA activity (SNJV 2006c, 2009; Jackson and Fenelon 2018).

Physiography – Pahute Mesa is a structurally high volcanic plateau in the northwest corner of the NNSS (Figure A-2). Ground-level elevations in the area range from below 1,650 m (5,400 ft) off the mesa to the north and south, to over 2,135 m (7,000 ft) on eastern Pahute Mesa. Pahute Mesa proper is composed of flat-topped buttes and mesas separated by deep canyons. This physiographic feature covers most of NNSS Areas 19 and 20, which are the second-most used testing real estate at the NNSS. Consequently, a substantial amount of subsurface geologic and hydrologic information is available from numerous drill holes (Warren et al. 2000a, 2000b; BN 2002a).

Geology Overview – Borehole and geophysical data from Pahute Mesa indicate the presence of several nested calderas (Figure A-2) that produced thick sequences of rhyolite tuffs and lavas. The older calderas are buried by ash-flow units produced from younger calderas. Most of eastern Pahute Mesa is capped by the voluminous Ammonia Tanks and Rainier Mesa ash-flow tuff units, which erupted from the Timber Mountain Caldera, located immediately to the south of Pahute Mesa (Byers et al. 1976). The western portion is capped by ash-flows of the Thirsty Canyon Group from the Black Mountain caldera (9.4 Ma). A typical geologic cross section for Pahute Mesa is presented in Figure A-10. For a more detailed geologic summary, see Ferguson et al. (1994), Sawyer et al. (1994), Warren et al. (2000b), and BN (2002a).

The most widespread and significant Quaternary and Tertiary (mainly volcanic) units of the Pahute Mesa area are included in Table A-2. Refer to Table A-3 for a list of Mesozoic (granitic), Paleozoic (sedimentary), and Precambrian (sedimentary and metamorphic) stratigraphic units.

Underlying the Tertiary-age volcanic rocks (exclusive of the caldera complexes) are Paleozoic and Proterozoic sedimentary rocks consisting of dolomite, limestone, quartzite, and argillite. In Precambrian and Paleozoic time, as much as 10,000 m (32,800 ft) of these marine sediments were deposited in the NNSS region (Cole 1997). For detailed stratigraphic descriptions of these rocks, see Slate et al. (1999). The only occurrence of Mesozoic age rocks in the Pahute Mesa area is the Gold Meadows Stock, a granitic intrusive mass located at the eastern edge of Pahute Mesa, north of Rainier Mesa (Gibbons et al. 1963; Snyder 1977).

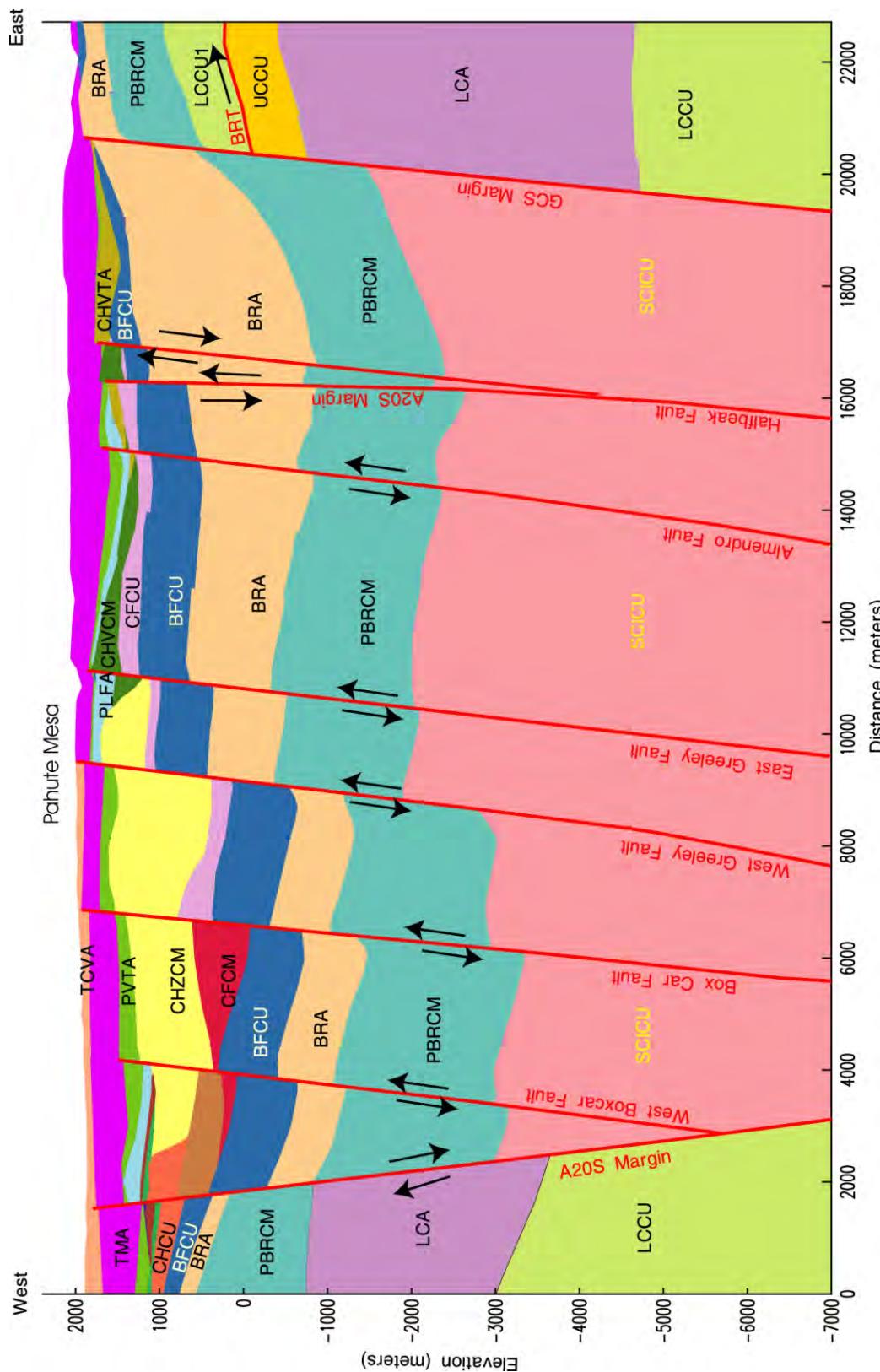
The Silent Canyon caldera complex (SCCC) lies beneath Pahute Mesa. This complex contains two of the older known calderas within the SWNVF, and is completely buried by volcanic rocks erupted from younger nearby calderas. It was first identified from gravity observations that indicated a deep basin below the topographically high Pahute Mesa. Subsequent drilling on Pahute Mesa indicated that the complex consists of at least two nested calderas, the Grouse Canyon caldera and younger Area 20 caldera (13.6 and 13.1 Ma, respectively) (Sawyer et al. 1994). For more information on the SCCC, see Ferguson et al. (1994), which is a comprehensive study of the caldera complex based on analysis of gravity, seismic refraction, drill hole, and surface geologic data.

Like the SCCC, the Timber Mountain caldera complex (TMCC) consists of two nested calderas: the Rainier Mesa caldera and the younger Ammonia Tanks caldera, 11.6 and 11.45 Ma, respectively (Sawyer et al. 1994). However, unlike the SCCC, the TMCC has exceptional topographic expression, consisting of an exposed topographic margin for more than half its circumference and a well-exposed central resurgent dome (Timber Mountain, the most conspicuous geologic feature in the western part of the NNSS). The complex truncates the older Claim Canyon caldera (12.65 Ma) (Sawyer et al. 1994), which is farther to the south. The calderas of the TMCC are the

sources of the Rainier Mesa and Ammonia Tanks Tuffs, which form important and extensive stratigraphic units at the NNSS and vicinity.

The Black Mountain caldera is a relatively small caldera in the northwest portion of the Pahute Mesa area. It is the youngest caldera in the area, formed as a result of the eruption, 9.4 Ma, of tuffs assigned to the Thirsty Canyon Group (Sawyer et al. 1994).

Deep gravity lows and the demonstrated great thickness of tuffs in the Pahute Mesa area suggest the presence of older buried calderas. These calderas would pre-date the Grouse Canyon caldera and, thus, could be the source of some of the pre-Belted Range units.


Structural Setting – The structural setting of the Pahute Mesa area is dominated by the calderas described in the previous paragraphs. Several other structural features are considered to be significant factors in the hydrology, including the Belted Range thrust fault (Section A.1.3), numerous normal faults related mainly to basin-and-range extension, and transverse faults and structural zones. However, many of these features are buried, and their presence is inferred from drilling and geophysical data. A typical geologic cross section for Pahute Mesa is presented in Figure A-10. For a more detailed geologic summary, see Ferguson et al. (1994), Sawyer et al. (1994), and BN (2002a).

Hydrogeology Overview – The hydrogeology of Pahute Mesa is complex. The thick section of volcanic rocks comprises a wide variety of lithologies that range in hydraulic character from aquifer to aquitard. The presence of several calderas and tectonic faulting further complicate the area, placing the various lithologic units in juxtaposition and blocking or enhancing the flow of groundwater in a variety of ways.

The general hydrogeologic framework for Pahute Mesa and vicinity was established in the early 1970s by U.S. Geological Survey geoscientists (Blankenagel and Weir 1973; Winograd and Thordarson 1975). As described in Section A.2.3, their work has provided the foundation for most subsequent hydrogeologic studies at the NNSS (e.g., IT 1996a; BN 2002a; NSTec 2009b; Jackson and Fenelon 2018).

All the rocks in the PM-OV study area can be classified as one of nine HGUs, which include the AA, four volcanic HGUs, two intrusive units, and two HGUs that represent the pre-Tertiary rocks (Table A-3).

The rocks within the PM-OV study area are grouped into 44 HSUs for the UGTA CAU-scale hydrogeology framework model (Table A-8; BN 2002a). The volcanic units are organized into 37 HSUs that include 13 aquifers, 13 confining units, and 11 composite units (comprising a mixture of hydraulically variable units). The underlying pre-Tertiary rocks are divided into six HSUs, including two aquifers and four confining units. HSUs that are common to several CAUs at the NNSS are briefly discussed in Section A.2.3.2.

See Section A.2.3.2 and Table A-8 of this attachment for definitions of hydrostratigraphic units.
1.5 x vertical exaggeration

Figure A-10. Generalized hydrostratigraphic cross section through the Silent Canyon complex, Pahute Mesa

A20S - Area 20 Caldera Structural Margin
BRT - Belted Range Thrust
GCS - Grouse Canyon Structural Margin

Table A-8. Hydrostratigraphic units of the Pahute Mesa-Oasis Valley area

Hydrostratigraphic Unit (Symbol)	Dominant Hydrogeologic Unit(s) ^(a)	Typical Lithologies
Alluvial Aquifer (AA)	AA	Alluvium (gravelly sand); also includes eolian sand
Younger Volcanic Composite Unit (YVCM)	LFA, WTA, VTA	Basalt, welded and nonwelded ash-flow tuff
Thirsty Canyon Volcanic Aquifer (TCVA)	WTA, LFA, lesser VTA	Partially to densely welded ash-flow tuff; vitric to devitrified
Detached Volcanics Composite Unit (DVCM)	WTA, LFA, TCU	Complex distribution of welded ash-flow tuff, lava, and zeolitic bedded tuff
Fortymile Canyon Composite Unit (FCCM)	LFA, TCU, lesser WTA	Lava flows and associated tuffs
Timber Mountain Composite Unit (TMCM)	TCU (altered tuffs, lavas) and unaltered WTA and lesser LFA	Densely welded ash-flow tuff; includes lava flows, and minor debris flows
Tannenbaum Hill Lava-Flow Aquifer (THLFA)	LFA	Rhyolitic lava
Tannenbaum Hill Composite Unit (THCM)	Mostly TCU lesser WTA	Zeolitic tuff and vitric, nonwelded to welded ash-flow tuffs
Timber Mountain Aquifer (TMA)	Mostly WTA, minor VTA	Partially to densely welded ash-flow tuff; vitric to devitrified
Subcaldera Volcanic Confining Unit (SCVCU)	TCU	Probably highly altered volcanic rocks and intruded sedimentary rocks beneath each caldera
Fluorspar Canyon Confining Unit (FCCU)	TCU	Zeolitic bedded tuff
Windy Wash Aquifer (WWA)	LFA	Rhyolitic lava
Paintbrush Composite Unit (PCM)	WTA, LFA, TCU	Welded ash-flow tuffs, rhyolitic lava and minor associated bedded tuffs
Paintbrush Vitric-tuff Aquifer (PVTA)	VTA	Vitric, nonwelded and bedded tuff
Benham Aquifer (BA)	LFA	Rhyolitic lava
Upper Paintbrush Confining Unit (UPCU)	TCU	Zeolitic, nonwelded and bedded tuff
Tiva Canyon Aquifer (TCA)	WTA	Welded ash-flow tuff
Paintbrush Lava-Flow Aquifer (PLFA)	LFA	Lava; lesser moderately to densely welded ash-flow tuff
Lower Paintbrush Confining Unit (LPCU)	TCU	Zeolitic nonwelded and bedded tuff
Topopah Spring Aquifer (TSA)	WTA	Welded ash-flow tuff
Yucca Mountain Crater Flat Composite Unit (YMCFCM)	LFA, WTA, TCU	Lava; welded ash-flow tuff; zeolitic, bedded tuff
Calico Hills Vitric-Tuff Aquifer (CHVTA)	VTA	Vitric, nonwelded tuff
Calico Hills Vitric Composite Unit (CHVCM)	VTA, LFA	Partially to densely welded ash-flow tuff; vitric to devitrified
Calico Hills Zeolitized Composite Unit (CHZCM)	LFA, TCU	Rhyolitic lava and zeolitic nonwelded tuff
Calico Hills Confining Unit (CHCU)	Mostly TCU, minor LFA	Zeolitic nonwelded tuff; minor lava
Inlet Aquifer (IA)	LFA	Lava
Crater Flat Composite Unit (CFCM)	Mostly LFA, intercalated with TCU	Lava and welded ash-flow tuff
Crater Flat Confining Unit (CFCU)	TCU	Zeolitic nonwelded and bedded tuff
Kearsarge Aquifer (KA)	LFA	Lava
Bullfrog Confining Unit (BFCU)	TCU	Zeolitic, nonwelded tuff
Belted Range Aquifer (BRA)	LFA and WTA, with lesser TCU	Lava and welded ash-flow tuff

Table A-8. Hydrostratigraphic units of the Pahute Mesa-Oasis Valley area

Hydrostratigraphic Unit (Symbol)	Dominant Hydrogeologic Unit(s) ^(a)	Typical Lithologies
Pre-Belted Range Composite Unit (PBRCM)	TCU, WTA, LFA	Zeolitic bedded tuffs with interbedded but less significant zeolitic, nonwelded to partially welded ash-flow tuffs
Black Mountain Intrusive Confining Unit (BMICU)	IICU	
Ammonia Tanks Intrusive Confining Unit (ATICU)	IICU	
Rainier Mesa Intrusive Confining Unit (RMICU)	IICU	
Claim Canyon Intrusive Confining Unit (CCICU)	IICU	These units are presumed to be present beneath the calderas of the SWNVF. Their actual character is unknown, but they may be igneous intrusive rocks or older volcanic and pre-Tertiary sedimentary rocks intruded to varying degrees by igneous rocks.
Calico Hills Intrusive Confining Unit (CHICU)	IICU	
Silent Canyon Intrusive Confining Unit (SCICU)	IICU	
Mesozoic Granite Confining Unit (MGCU)	GCU	Granodiorite and quartz monzonite; Gold Meadows Stock
Lower Carbonate Aquifer-Thrust Plate (LCA3)	CA	Limestone and dolomite
Lower Clastic Confining Unit-Thrust Plate (LCCU1)	CCU	Quartzite and siltstone
Upper Clastic Confining Unit (UCCU)	CCU	Argillite and quartzite
Lower Carbonate Aquifer (LCA)	CA	Dolomite and limestone; “regional aquifer”
Lower Clastic Confining Unit (LCCU)	CCU	Quartzite and siltstone; “hydrologic basement”

(a) See Table A-4 for definitions of HGUs

Note: Adapted from BN (2002b).

Water-Level Elevation and Groundwater Flow Direction – Water-level data are relatively abundant for the Pahute Mesa UGTA as a result of more than 30 years of drilling in the area in support of the Weapons Testing Program. However, water-level data for the outlying areas to the west and south are sparse. These data are listed in the potentiometric data package prepared for the UGTA regional-scale groundwater flow model (IT 1996b), the Pahute Mesa water table map (O’Hagan and Lacznak 1996), and recent work in support of flow modeling (SNJV 2004b, 2006c).

The SWL at Pahute Mesa is relatively deep, at about 640 m (2,100 ft) below the ground surface. Groundwater flow at Pahute Mesa is driven by recharge in the east and subsurface inflow from the north. Local groundwater flow is influenced by the discontinuous nature of the volcanic aquifers and the resultant geometry created by overlapping caldera complexes and high-angle basin-and-range faults (Lacznak et al. 1996). Potentiometric data indicate that groundwater flow direction is to the southwest toward discharge areas in Oasis Valley and, ultimately, Death Valley (see Figures A-5 and A-6).

A.2.5.4 Rainier Mesa/Shoshone Mountain

The Rainier Mesa/Shoshone Mountain CAU consists of 61 CAs on Rainier Mesa and 6 CAs on Shoshone Mountain, which are located in NNSS Areas 12 and 16, respectively (see Figure A-7). Together, these two mesas constitute the third major area used for underground nuclear explosive testing at the NNSS between 1957 and 1992. Underground nuclear tests were conducted in horizontal, mined tunnels within these mesas, and two tests were conducted in vertical drill holes. All tests were conducted above the regional water table. Underground geologic mapping data from the six large and several smaller tunnel complexes, and lithologic and geophysical data from dozens of exploratory drill holes, provide a wealth of geologic and hydrologic information for this relatively small underground test area.

Physiography – The Rainier Mesa UGTA includes Rainier Mesa proper and the contiguous Aqueduct Mesa. Rainier Mesa and Aqueduct Mesa form the southern extension of the northeast trending Belted Range (see Figure A-2). This high volcanic plateau cuts diagonally across Area 12 in the north-central portion of the NNSS. Ground-level elevations on Rainier Mesa are generally over 2,225 m (7,300 ft). The highest point on the NNSS, 2,341 m (7,679 ft), is on Rainier Mesa. Aqueduct Mesa has slightly rougher and lower terrain, generally above 1,920 m (6,300 ft) in elevation. The edges of the mesas drop off quite spectacularly on the west, south, and east sides.

Shoshone Mountain is located in the middle of the NNSS, southwest of Syncline Ridge and about 20 km (12 mi) south of Rainier Mesa (see Figures A-2 and A-7). Ground-level elevations range from 1,707 to 2,012 m (5,600 to 6,600 ft) but are generally above 1,830 m (6,000 ft). Tippipah Point, above the Area 16a Tunnel, has an elevation of 2,015 m (6,612 ft).

Geology Overview – Both Rainier Mesa and Aqueduct Mesa are composed of Miocene-age ash-fall and ash-flow tuffs that erupted from nearby calderas to the west and southwest (NSTec 2007). As in Yucca Flat, these silicic volcanic tuffs were deposited unconformably on an irregular pre-Tertiary (upper Precambrian and Paleozoic age) surface of sedimentary rocks (Gibbons et al. 1963; Orkild 1963) and Mesozoic granitic rocks (at Rainier Mesa only). The stratigraphic units and lithologies are similar to those present in the subsurface of Yucca Flat (see Section A.2.5.2). The tunnel complexes used for underground nuclear testing at Rainier Mesa and Shoshone Mountain were excavated in zeolitized bedded tuff, though the upper part of this section is unaltered (vitric) in some areas. At both locations, the bedded tuffs are capped by a thick layer of welded ash-flow tuff. The Tertiary stratigraphic units and lithologies are similar to those present in the subsurface of Yucca Flat (see Section A.2.5.2).

Structural Setting – The geologic structure of the volcanic rocks of the Rainier Mesa is well documented. Several high-angle, normal faults have been mapped in the volcanic rocks. Faults with greater than about 30 m (100 ft) of displacement are notably absent in the volcanic rocks of Rainier Mesa. The Rainier and Aqueduct Mesa area was minimally extended during Basin and Range tectonism, thus accounting for the absence of larger faults and its relatively high elevation (NSTec 2007). At Shoshone Mountain, several faults have been mapped, but in general the structure is less well known there than at Rainier Mesa. The structure of the pre-Tertiary section at both locations is poorly known, though most workers agree on the framework in general, and that the trace of the Belted Range thrust fault is present in the pre-Tertiary rocks beneath Rainier Mesa. A broad synclinal feature mapped at the surface and in the tuffs of Rainier Mesa and Aqueduct Mesa roughly overlies the postulated location of the Belted Range thrust fault. It may reflect a paleo-topographic low or valley beneath the tuffs (Figure A-11), but the exact character of this feature is unknown.

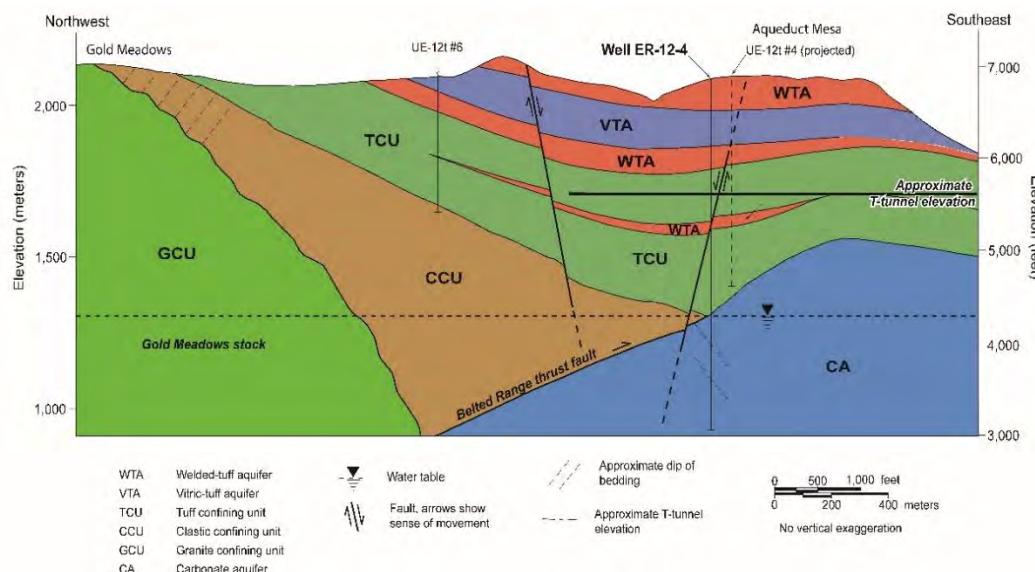


Figure A-11. Generalized hydrostratigraphic cross section through Aqueduct Mesa

Hydrogeology Overview – Construction of a UGTA CAU-scale hydrogeology model for the Rainier Mesa and Shoshone Mountain UGTAs was completed in 2007 (NSTec 2007). All the rocks in the Rainier Mesa–Shoshone Mountain (RM-SM) study area can be classified as one of nine HGUs, which include the AA, four volcanic HGUs, two intrusive units, and two HGUs that represent the pre-Tertiary rocks (see Table A-4). The geologic units within the RM-SM model area are grouped into 44 HSUs (NSTec 2007). Thirty Tertiary-age HSUs, including the Tertiary/Quaternary alluvium, older paleocolluvium, two caldera-related collapse breccias, five caldera-related intrusives, one Mesozoic intrusive HSU, and six Paleozoic/Precambrian HSUs, have been identified in the RM-SM CAU (Table A-9).

The hydrostratigraphy for the Tertiary-age volcanic rocks in the former UGTAs (Rainier Mesa, Aqueduct Mesa, and Shoshone Mountain) can be simplified into two categories: zeolitic, tuff confining units and (nonzeolitic) volcanic aquifers. Except for a few nomenclature complications due to embedded welded tuff aquifers, the TCUs belong to either the LTCU or the OSBCU HSU (similar to the hydrostratigraphic section in Yucca Flat; see Subsection A.2.5.2). The LTCU and OSBCU are important HSUs, as they separate the UGTAs from the underlying regional aquifer.

The hydrostratigraphy of the pre-Tertiary section at Shoshone Mountain is surmised from a single deep drill hole, Well ER-16-1 (NNSA/NSO 2006), and from surficial geology (Orkild 1963). From oldest to youngest, the hydrogeologic section for the Shoshone Mountain UGTA consists of the regional carbonate aquifer, the upper clastic confining unit, tuff confining units, vitric-tuff aquifers, and welded-tuff aquifers at the surface (Figure A-12). At Rainier Mesa, granitic rocks (GCU), related to the nearby Gold Meadows Stock, carbonate rocks (CA), silicic sedimentary rocks such as siltstone, and metamorphic rocks such as quartzite and schist (CCUs) have been encountered beneath the tuff section in the few existing drill holes that penetrate through the tuff section. This variability is indicative of the complex geology of the pre-Tertiary section, which is a consequence of the Gold Meadows intrusive and the Belted Range thrust fault.

Most of the tests in Shoshone Mountain and Rainier Mesa tunnels were conducted in the TCU, though a few were conducted in vitric bedded tuff higher in the stratigraphic section.

Table A-9. Hydrostratigraphic units of the Rainier Mesa-Shoshone Mountain area

Hydrostratigraphic Unit (Symbol)	Dominant Hydrogeologic Units ^(a)	Typical Lithologies
Alluvial aquifer (AA)	AA	Alluvium: Gravelly sand; also includes colluvium and older moat-filling sediments around the Timber Mountain caldera
Fortymile Canyon Composite Unit (FCCM)	LFA, TCU, lesser WTA	Lava flows, lesser ash-flow and bedded tuffs
Timber Mountain Upper Vitric-Tuff Aquifer (TMUVTA)	VTA, minor WTA	Includes vitric nonwelded to partially welded ash-flow and bedded tuff
Timber Mountain Welded-Tuff Aquifer (TMWTA)	WTA minor VTA	Partially to densely welded ash-flow tuff; vitric to devitrified, minor nonwelded tuff
Timber Mountain Lower Vitric-Tuff Aquifer (TMLVTA)	VTA	Nonwelded ash-flow and bedded tuff; vitric
Timber Mountain Composite Unit (TMCM)	TCU (altered tuffs, lavas) and unaltered WTA and lesser LFA	Welded ash-flow tuffs, lava flows
Rainier Mesa Breccia Confining Unit (RMBCU)	TCU/AA	Landslide breccias
Subcaldera Volcanic Confining Unit (SCVCU)	TCU	Highly altered pre-Tm volcanic units
Tiva Canyon Aquifer (TCA)	WTA	Welded ash-flow tuff
Paintbrush Vitric-Tuff Aquifer (PVTA)	VTA	Bedded tuff, vitric
Upper Tuff Confining Unit (UTCU)	TCU	Zeolitized bedded tuff
Topopah Spring Aquifer (TSA)	WTA minor VTA	Welded ash-flow tuff

Table A-9. Hydrostratigraphic units of the Rainier Mesa-Shoshone Mountain area

Hydrostratigraphic Unit (Symbol)	Dominant Hydrogeologic Units ^(a)	Typical Lithologies
Lower Vitric-Tuff Aquifer (LVTA)	VTA	Nonwelded and bedded tuff; vitric
Calico Hills Vitric-Tuff Aquifer (CHVTA)	VTA	Nonwelded and bedded tuff; vitric
Yucca Mountain Calico Hills Lava-Flow Aquifer (YMCHLFA)	LFA	Lava flow
Kearsarge Aquifer (KA)	LFA	Lava flow
Upper Tuff Confining Unit 2 (UTCU2)	TCU	Zeolitized bedded tuff
Stockade Wash Aquifer (SWA)	WTA minor VTA	Weakly welded ash-flow tuff
Lower Vitric-Tuff Aquifer 2 (LVTA2)	VTA	Nonwelded and bedded tuff; vitric
Bullfrog Confining Unit (BFCU)	TCU	Zeolitic nonwelded tuff
Upper Tuff Confining Unit 1 (UTCU1)	TCU	Zeolitized bedded tuff
Belted Range Aquifer (BRA)	LFA and WTA	Lava and welded ash-flow tuff
Lower Vitric-Tuff Aquifer 1 (LVTA1)	VTA	Bedded tuff; vitric
Belted Range Confining Unit (BRCU)	TCU	Zeolitized bedded tuff
Tub Spring Aquifer (TUBA)	WTA	Welded ash-flow tuff
Lower Tuff Confining Unit (LTCU)	TCU	Zeolitized bedded tuffs with interbedded but less significant zeolitized, nonwelded to partially welded ash-flow tuffs
Oak Spring Butte Confining Unit (OSBCU)	TCU	Devitrified to zeolitic nonwelded to partially welded tuffs and intervening bedded tuffs
Redrock Valley Aquifer (RVA)	WTA	Welded ash-flow tuff, devitrified
Redrock Valley Breccia Confining Unit (RVBCU)	TCU/AA	Landslide breccias
Lower Tuff Confining Unit 1 (LTCU1)	TCU	Zeolitized bedded tuffs
Twin Peaks Aquifer (TPA)	WTA	Welded ash-flow tuff
Argillic Tuff Confining Unit (ATCU)	TCU	Argillic bedded tuffs, minor paleocolluvium
Ammonia Tanks Intrusive Confining Unit (ATICU)	IICU	Intrusive (granite?) and altered, older host rocks
Rainier Mesa Intrusive Confining Unit (RMICU)	IICU	Intrusive (granite?) and altered, older host rocks
Calico Hills Intrusive Confining Unit (CHICU)	IICU	Intrusive (granite?) and altered, older host rocks
Silent Canyon Intrusive Confining Unit (SCICU)	IICU	Highly altered older volcanic rocks and pre-Tertiary sedimentary rocks and granitic intrusive masses.
Redrock Valley Intrusive Confining Unit (RVICU)	IICU	Highly altered injected/intruded country rock and granitic material
Mesozoic Granite Confining Unit (MGCU)	GCU	Granodiorite and quartz monzonite
Lower Clastic Confining Unit - Upper Thrust Plate (LCCU1)	CCU	Quartzite and siltstone
Lower Carbonate Aquifer - Upper Thrust Plate (LCA3)	CA	Limestone and dolomite
Upper Carbonate Aquifer (UCA)	CA	Limestone
Upper Clastic Confining Unit (UCCU)	CCU	Argillite and quartzite
Lower Carbonate Aquifer (LCA)	CA	Dolomite and limestone; “regional aquifer”
Lower Clastic Confining Unit (LCCU)	CCU	Quartzite and siltstone; “hydrologic basement”

(a) See Table A-4 for definitions of hydrogeologic units.

Note: Adapted from NSTec (2007).

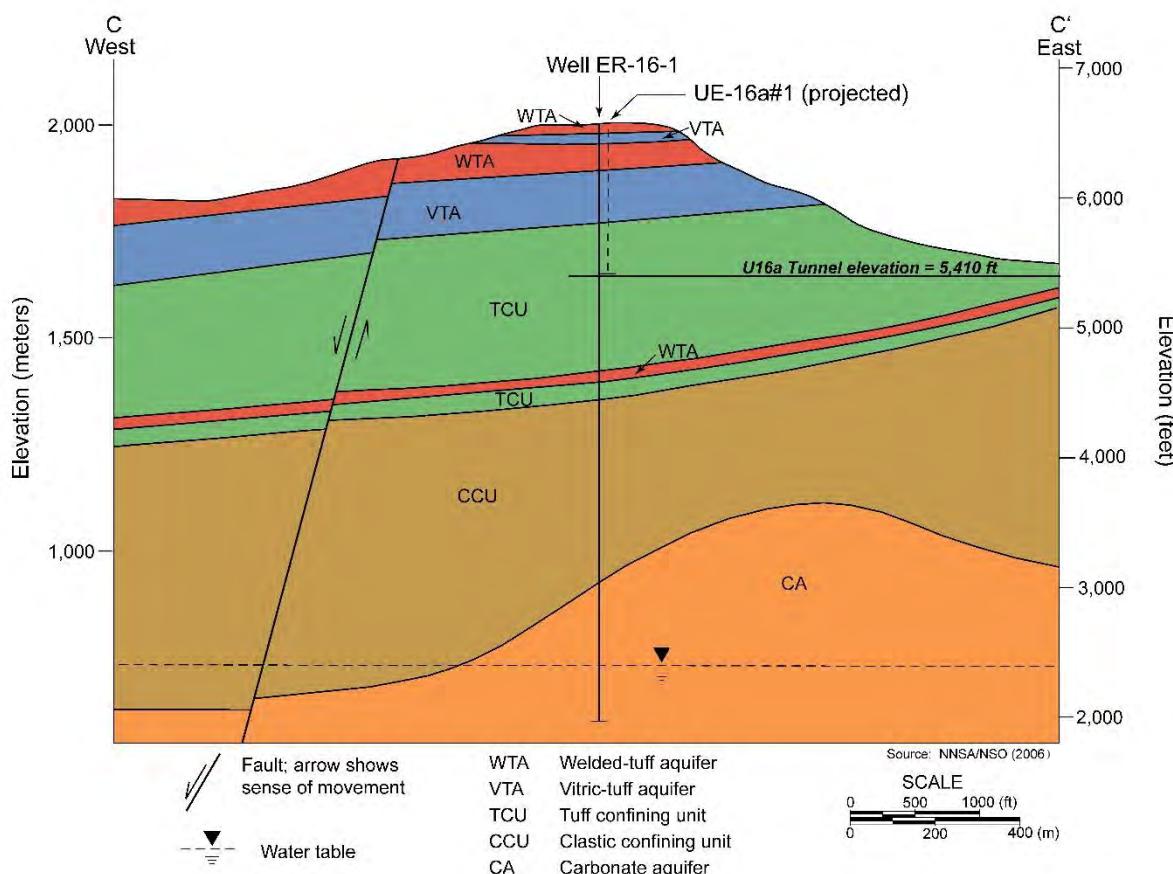


Figure A-12. West-east hydrogeologic cross section through Well ER-16-1

Water-level Elevation and Groundwater Flow Direction – Only a few boreholes on or in the vicinity of Rainier Mesa are deep enough to tag the regional water table. Most notable are UGTA Wells ER-12-3 (BN 2006b) and ER-12-4 (NNSA/NSO 2006 and BN 2006) located on Rainier Mesa and Aqueduct Mesa, respectively. The water levels in these wells are 949 m (3,114 ft) at ER-12-3 and 786 m (2,580 ft) at ER-12-4, or 1,302 m (4,271 ft) and 1,312 m (4,304 ft) elevation, respectively, in the thrusted Paleozoic-age carbonate rocks (LCA3) that underlie the volcanic section (Fenelon 2007). This is approximately 300 m (1,000 ft) below the average elevation of test locations in Rainier Mesa. The SWL, where measured in volcanic units at Rainier Mesa, is at an elevation of about 1,847 m (6,060 ft). This anomalously high water level relative to the regional water level reflects the presence of water perched above the regional aquifer within the tuff confining unit (Walker 1962; Lacznak et al. 1996; Fenelon et al. 2008). Water is present in the fracture systems of some of the tunnel complexes at Rainier Mesa. This water currently is permitted to flow from U12e Tunnel (also known as E-Tunnel); however, water has filled the open drifts behind barriers built near the portals of U12n and U12t Tunnels.

The water level at Shoshone Mountain was measured at 1,248 m (4,093 ft) true vertical depth from the mesa surface, or 761.7 m (2,499 ft) elevation, at UGTA Well ER-16-1 (NNSA/NSO 2006) in the Paleozoic-age carbonate rocks (LCA). This is the deepest water-level tag at the NNSS. No water was encountered during mining at Shoshone Mountain.

Regional groundwater flow from Rainier Mesa may be directed either toward Yucca Flat or, because of the intervening UCCU, to the south toward the Alkali Flat discharge area (Fenelon et al. 2008; see Figures A-5 and A-6). The groundwater flow direction beneath Shoshone Mountain is probably southward.

A.2.6 Conclusion

The hydrogeology of the NNSS and vicinity is complex and varied. Yet, the remote location, alluvial and volcanic geology, and deep water table of the NNSS provided a favorable setting for conducting underground nuclear explosive tests and containing radionuclides produced by the tests. Its arid climate and its setting in a region of closed hydrographic basins also are factors in stabilizing residual surficial contamination from atmospheric testing, and are considered positive environmental attributes for existing radioactive waste management sites.

Average groundwater flow velocities at the NNSS are generally slow, and flow paths to discharge areas or potential receptors (domestic and public water supply wells) are long. The water tables within local aquifers in the valleys and the underlying regional carbonate aquifer are relatively flat (low gradient). The zeolitic volcanic rocks (TCU) separating the shallower alluvial and volcanic aquifers and the regional carbonate aquifer (LCA) appear to form a viable aquitard (non-aquifer). Consequently, both vertical and horizontal flow velocities are low. Additionally, carbon-14 dates for water from NNSS aquifers are on the order of 10,000 to 40,000 years old (Rose et al. 1997). This indicates that there is considerable residence time in the aquifers, allowing contaminant attenuating processes such as matrix diffusion, sorption, and natural decay of radioactive isotopes to operate.

A.3 Climatology

Walter Schalk

Air Resources Laboratory, Special Operations and Research Division

The NNSS is located in the extreme southwestern corner of the Great Basin. Consequently, the climate is arid, with limited precipitation, low humidity, intense sunlight, and large daily temperature ranges. The climatological data presented here were developed from the NNSS monitoring networks described below.

A.3.1 Monitoring Networks

Meteorological and climatological data are collected on the NNSS by the National Oceanic and Atmospheric Administration (NOAA) Air Resources Laboratory, Special Operations and Research Division (ARL/SORD). Data are collected through the Meteorological Data Acquisition (MEDA) system, a network of 25 mobile meteorological towers that became operational in 1981. The network was updated in 2005, and was totally replaced and expanded in 2016 and 2018. A standard MEDA station consists of a portable 10-m (32.8-ft) tower, meteorological instrumentation, a micro-processor/datalogger, and a UHF radio transmitter, all powered by a battery and solar recharging system (Figure A-13). Locations of the MEDA stations are shown in Figure A-14. All towers were sited according to standards set by the Federal Meteorological Handbook No. 1 (NOAA 2005) and the World Meteorological Organization (2008) so as not to be influenced by natural or man-made obstructions or by heat dissipation and generation systems. The selection of MEDA station locations is based on effective site weather characterization, site safety, project support, physical accessibility, and line-of-sight radio availability.

MEDA station instrumentation is located on top of the tower and on booms oriented into the prevailing wind direction at a minimum distance of two tower widths from the tower. The station configuration measures three-dimensional winds, two levels of temperature and relative humidity, atmospheric pressure, incoming solar radiation, Global Positioning System (GPS) data, and precipitation. Wind direction and speed are measured at the 10-m (32.8-ft) level, in accordance with the specifications of the American National Standard for Determining Meteorological Information at Nuclear Facilities (ANSI/ANS-3.11-2015, American Nuclear Society 2015). Ambient temperature and relative humidity measurements are taken at the approximate heights of 8.7 m (28.5 ft) and 2 m (6.6 ft) to be within the surface boundary layer.

Figure A-13. Example of a typical MEDA station with a 10-meter tower

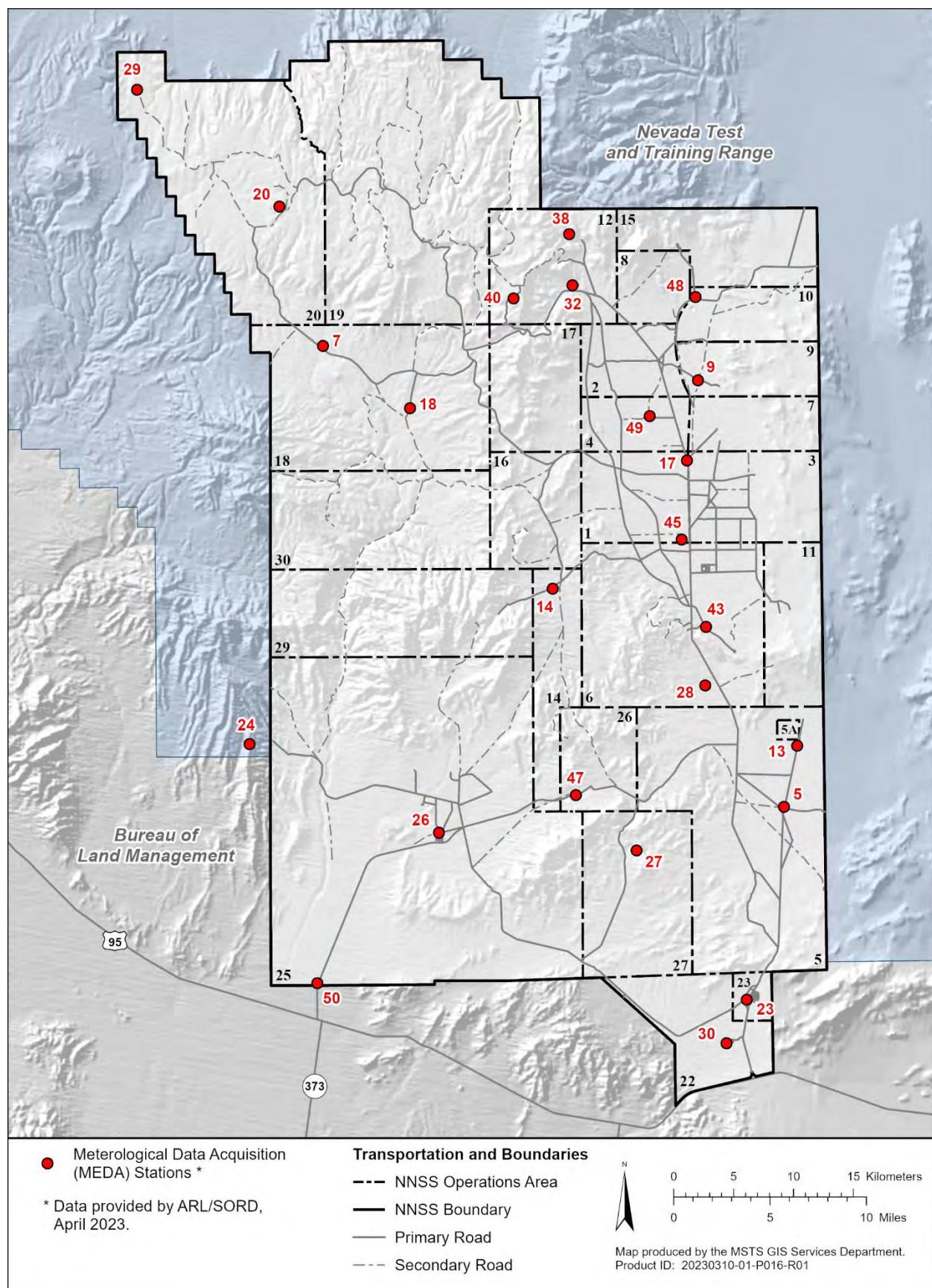


Figure A-14. MEDA station locations on the NNSS

Atmospheric pressure, solar radiation measurements, and GPS measurements are also taken in the surface boundary layer at a height of approximately 2 m (6.6 ft). In addition to the direct measured parameters, the datalogger calculates dew-point temperature, dT/dz (change in temperature with height), and total daily solar radiation. Wind data are 15-minute averages of speed and direction. The maximum and minimum wind speeds are the fastest and slowest, respectively, 3-second moving averages calculated within the 15-minute time interval. Temperature, relative humidity, solar radiation, and pressure are 15-minute averages. All observed and calculated parameters are collected and transmitted every 15 minutes on the quarter hours.

NOAA ARL/SORD also operates and maintains a climatological rain gauge network on the NNSS (Figure A-15). In 2022, the network consisted of 3 Belford Series 5-780 Universal Precipitation Gauges and 24 Hydrological Services America (HSA) TB3 Tipping Bucket Precipitation Gauges. The three Belford gauges are strip chart recorders that are manually read about once every 30 days. The HSA gauges are part of the MEDA network that report data every 15 minutes and are included in the ARL/SORD real-time weather database. Once read and certified, the strip chart data are entered into the SORD precipitation climatological database. Data are recorded as daily totals. Under special circumstances, 1- to 3-hour totals can be obtained.

MEDA data are used daily for operational support to a wide variety of projects on the NNSS and form the climatological database for the NNSS. The data are used in safety analysis reports, emergency response activities, radioactive waste remediation projects, environmental reports, and compliance assessments. For new NNSS projects and facility modifications that may produce radiological emissions, wind data from the MEDA stations are used to calculate potential radiological doses to members of the public. MEDA data are processed and archived in the NOAA ARL/SORD climatological database. An NNSS Climatological Report is posted on the NOAA ARL/SORD website, <https://www.sord.nv.doe.gov>, under the Climate section.

A.3.2 Precipitation

Two fundamental physical processes drive precipitation events on the NNSS: those resulting from cool-season, mid-tropospheric cyclones and those resulting from summertime convection. Cool-season precipitation is usually light and can consist of rain or snow. Although light, winter precipitation events can last for several days and result in significant precipitation totals per winter storm, especially in January and February. Summer is thunderstorm season. Precipitation from thunderstorms is usually light; however, some storms produce very heavy rain, flash floods, intense cloud-to-ground lightning, and strong surface winds. Thunderstorms generally occur in July and August when moist tropical air flows from the southeastern North Pacific Ocean and spreads over the desert southwest. This seasonal event is referred to as the southwestern U.S. monsoon.

Distinct winter and summer precipitation mechanisms produce a bimodal monthly precipitation cycle. Figure A-16 shows patterns of mean monthly precipitation recorded from 6 of the 25 climatological stations on the NNSS over the past 35+ years. Mean annual precipitation totals on the NNSS range from over 30 centimeters (cm) (11.97 inches [in.]) over the high terrain in the northwestern part of the NNSS to over 12 cm (4.79 in.) in Frenchman Flat. However, inter-annual variations can be significant. For example, annual totals of less than 2.54 cm (1.0 in., nearly a quarter of the average) have been measured on the lower elevations of the NNSS, but 24.6 cm (9.67 in., nearly double the average) occurred in Frenchman Flat in 1998, and 68.2 cm (26.87 in., over double the average) fell on Rainier Mesa in 1983. Daily precipitation totals can also be large and range from 5 to just over 9 cm (2 to over 3.5 in.). A storm-total precipitation amount of 8.9 cm (3.5 in.) is considered a 100-year, 24-hour, extreme precipitation event. Daily totals of 5.1 to 7.6 cm (2 to 3 in.) have been measured at several sites on the NNSS (Randerson 1997). The greatest daily precipitation event on the NNSS was 11.89 cm (4.68 in), which was measured in Jackass Flats on September 26–27, 2007.

Snow can fall on the NNSS any time between October and May. On Yucca Flat, the greatest daily snow depth measured was 25.4 cm (10 in.) in January 1974. The greatest daily depth measured at Desert Rock was 15.2 cm (6 in.) in February 1987. Maximum daily totals of 38 to 50 cm (15 to 20 in.) or more can occur on Pahute and Rainier Mesas. Hail, sleet, freezing rain, and fog are rare on the NNSS, but can cover the ground briefly during intense thunderstorms. Only 24 hailstorms have been observed on Yucca Flat between 1957 and 1978 (an average of about 1 event per year) and 9 at Desert Rock from 1978 to 2010 (an average of 1 event every 3 to 4 years). Manned observations ended on the NNSS in 2010.

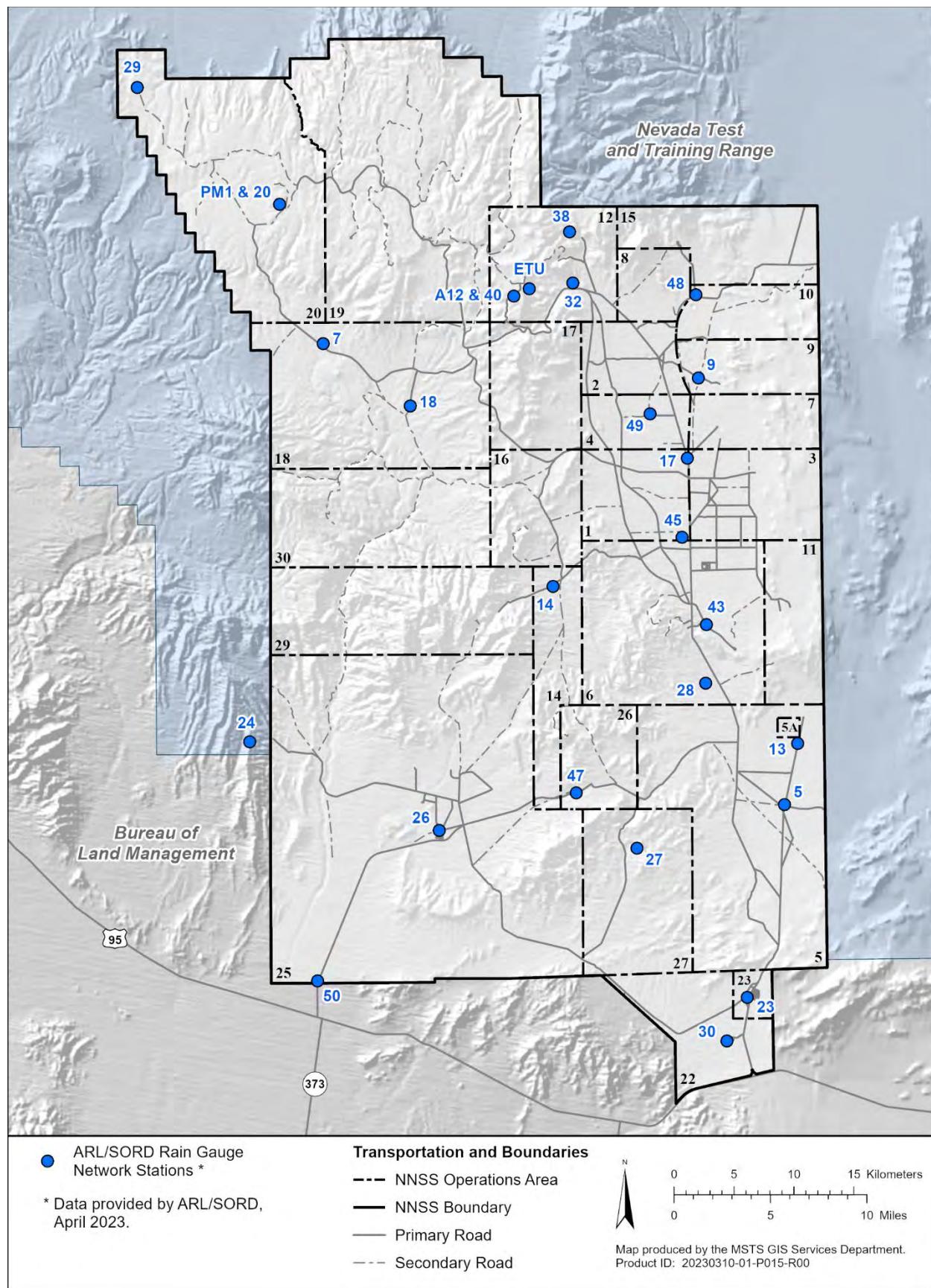


Figure A-15. Climatological rain gauge network on the NNSS

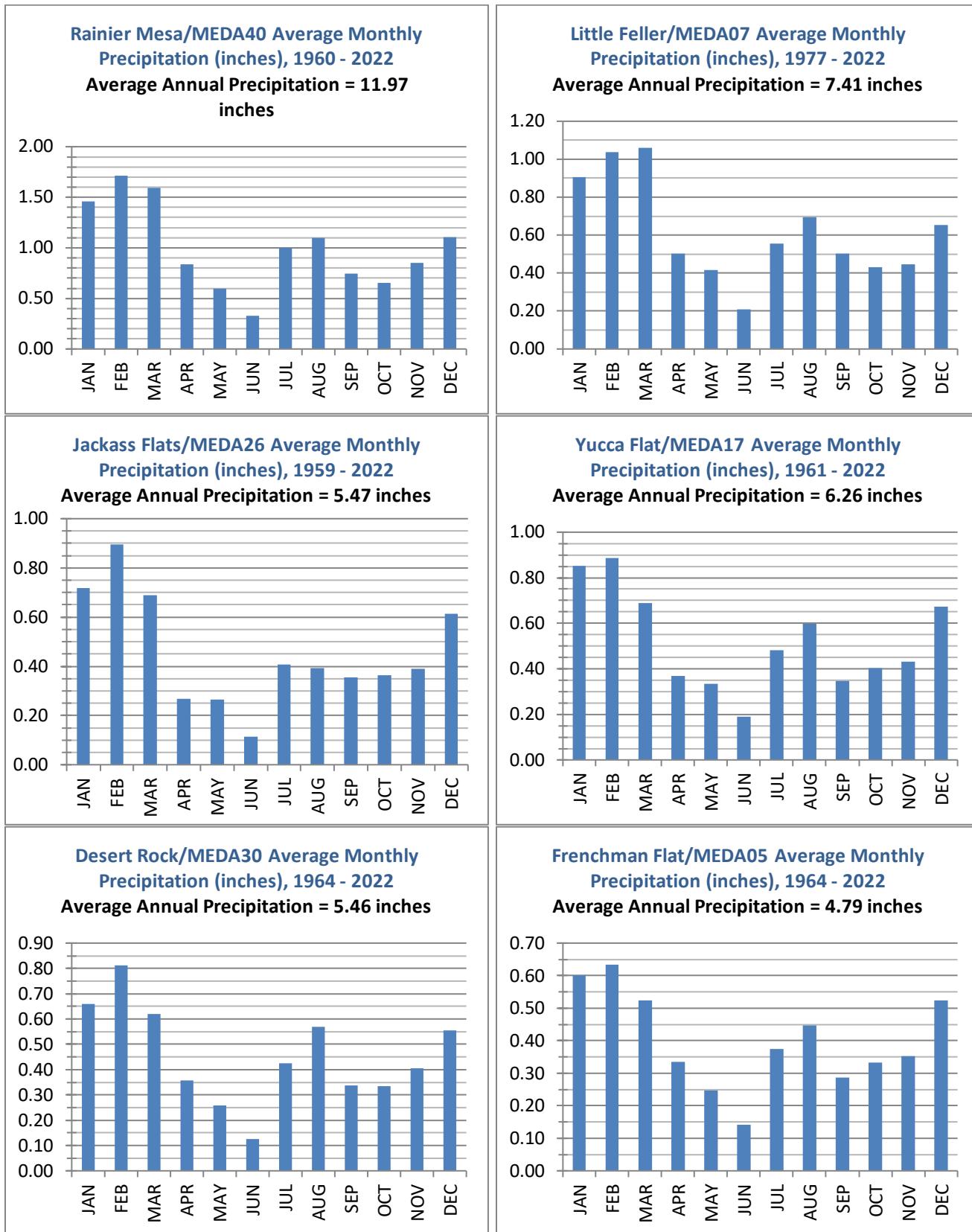


Figure A-16. Mean monthly precipitation at six NNSS rain gauge stations
(locations of numbered stations are shown in Figure A-14)

A.3.3 *Temperature*

As is typical of an arid climate, the NNSS experiences large daily and annual ranges in temperature. In addition, temperatures vary with elevation. Sites above 1,524 m (5,000 ft) mean sea level can be quite cold in the winter and fairly mild during the summer months. At lower elevations, summertime temperatures frequently exceed 37.7 degrees Celsius (°C) (100 degrees Fahrenheit [°F]). On the dry lakebeds, average normal daily low and high temperatures can vary by as much as 22°C (40°F), with very cold morning temperatures in the winter and very hot afternoon temperatures in the summer. These temperature characteristics are shown in Figure A-17. These annual temperature plots describe the temperature extremes and average maximums and minimums throughout the year at six locations on the NNSS.

In Frenchman Flat (MEDA 5), the average daily temperature minimum and maximum for January are -4.7°C and 13.8°C (24°F and 57°F), while in July they are 17.3°C and 38.6°C (63°F and 101°F). By contrast, on Rainier Mesa (MEDA 12/40), the minimum and maximum temperature for January are -3.8°C and 4.0°C (25°F and 39°F) and for July are 15.3°C and 26.7°C (60°F and 80°F). The highest maximum temperature measured on the NNSS is 46.1°C (115°F) in Frenchman Flat near Well 5B in July 1998 and in Jackass Flats near Lathrop Gate in July 2002. The coldest minimum temperature measured on the NNSS is -28.9°C (-20°F) in Area 19 in January 1970. The temperature extremes at Mercury are -11.7°C to 45°C (11°F to 113°F).

A.3.4 *Wind*

Complex topography, such as that on the NNSS, can influence wind speeds and directions. Furthermore, there is a seasonal as well as strong daily periodicity to local wind conditions. For example, in Yucca Flat, in the summer months, the wind direction is usually northerly (from the north) from 10 p.m. Pacific Daylight Time (PDT) to 8 a.m. PDT, and southerly from 10 a.m. PDT to 8 p.m. PDT. However, in January, the winds are generally from the north from 6 p.m. Pacific Standard Time (PST) to 11 a.m. PST, with some southerly winds developing between 11 a.m. PST and 5 p.m. PST. March through June tend to experience the fastest average wind speeds, 13 to 19 kilometers per hour (kph) (7 to 10 knots or 8 to 12 miles per hour [mph]), with the faster speeds occurring at the higher elevations. Peak wind gusts of 80 to 113 kph (43 to 61 knots or 50 to 70 mph) have occurred throughout the NNSS. Peak winds at Mercury have been as high as 135 kph (73 knots or 84 mph) during a spring wind storm. During the same windstorm, Frenchman Flat experienced wind gusts to 113 kph (61 knots or 70 mph). The peak wind speeds measured on the NNSS are above 145 kph (78 knots or 90 mph) on the high terrain with maximums of 204 kph (110 knots or 127 mph) at the Yucca Mountain Ridge-top (MEDA Station 24), and 185 kph (100 knots or 115 mph) on Tippipah Point in south-central Area 16 (former MEDA Station 19, which is no longer in service) during a wind event on February 13, 2008.

Wind speed and direction data have been summarized for all the meteorological sites (MEDAs) on the NNSS. These climatological summaries are referred to as wind roses. Annual wind roses for 16 stations on the NNSS for the years 2005 through 2022 are shown in Figure A-18. These wind roses describe the strong seasonal and diurnal effects on the surface air flow pattern across the NNSS as described above. In general, winter and pre-sunrise winds tend to be northerly, while summer and afternoon flow tends to be southerly.

A.3.5 *Relative Humidity*

The air over the NNSS tends to be dry. On average, June is the driest month, with the humidity ranging from 10% to 35%. Humidity readings of 35% to 70% are common in the winter. The reason for this variability is that relative humidity is temperature dependent. The relative humidity tends to be higher with cold temperatures and lower with hot temperatures. Consequently, there is not only a seasonal variation but also a marked diurnal rhythm. Early in the morning the humidity ranges from 25% to 70%, and in mid-afternoon it ranges from 10% to 40%, with the larger readings occurring in winter. Humidity readings of more than 75% are observed during thunderstorms and frontal passages with precipitation but are not otherwise common on the NNSS.

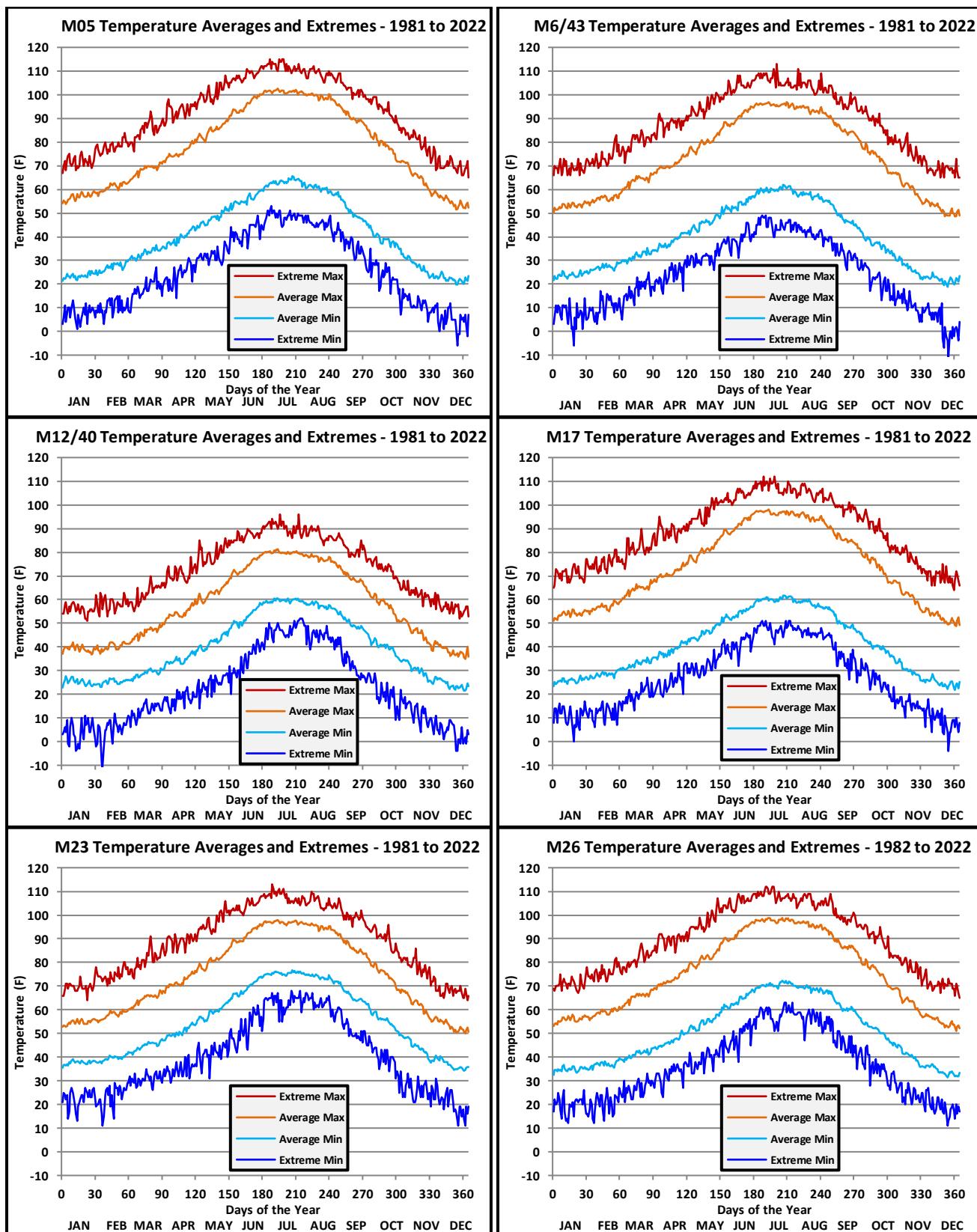


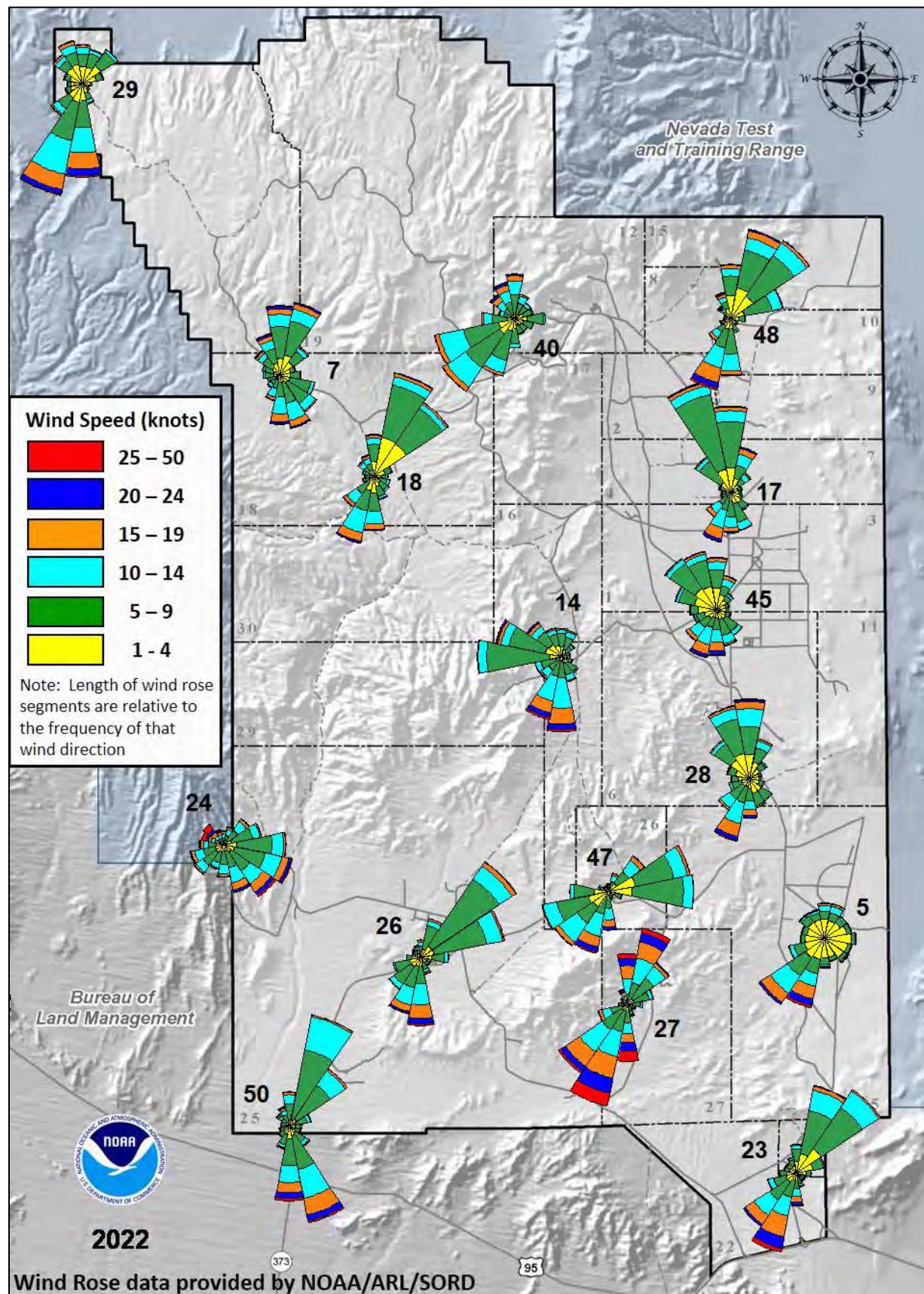
Figure A-17. Temperature extremes and average maximums and minimums at six NNSS MEDA stations (locations of numbered stations are shown in Figure A-14)

A.3.6 Atmospheric Pressure

Atmospheric pressure is measured at all the MEDA stations on the NNSS (Figure A-14). These measurements show that atmospheric pressure has marked annual and diurnal cycles. In addition, pressure decreases with elevation. Consequently, stations at high elevations have lower atmospheric pressures than do stations at lower elevations. Moreover, because pressure depends on temperature, the larger pressure readings occur during the winter months and the smaller readings in the summer months. The diurnal cycle is bimodal; it is driven by the diurnal tide of the entire atmosphere and by the diurnal heating/cooling cycle. In general, maximum daily surface pressure on the NNSS occurs between 8 and 10 a.m. PST (later in winter, earlier in summer), and minimum pressure tends to occur between 2 and 6 p.m. PST (earlier in winter, later in summer). Weaker secondary maxima occur at approximately midnight PST and minima near 3 a.m. PST. In Yucca Flat (elevation 1,195 m [3,920 ft]), the atmospheric pressure varies from 857 to 908 millibars (mb) annually; however, the daily variation is only approximately 3.4 mb in summer and 2.7 mb in winter.

A phenomenon referred to as atmospheric or barometric pumping can occur as atmospheric pressure decreases. When this happens, gases trapped below ground can seep upward through the soil and enter the atmosphere. Barometric pumping was observed on the NNSS following some underground nuclear tests, and small concentrations of noble gases from the tests were detected for several months afterwards. Barometric pumping also contributes to the release of naturally occurring radionuclides (e.g., radon) from terrestrial sources.

A.3.7 Dispersion Stability Categories


Determination of the stability of the atmosphere near the ground is a key input requirement for atmospheric dispersion models. Such models are used to estimate the impacts of hazardous materials that might be accidentally released into the atmosphere or become airborne from radioactively contaminated soil sites on the NNSS. The dispersion models commonly used for this purpose are Gaussian plume models that require the specification of stability categories to account for effects of atmospheric turbulence on the dispersion process. The mountain-valley topography on the NNSS makes it impossible to calculate a single set of values that characterizes atmospheric turbulent mixing on the NNSS. Consequently, the stability categories for the NNSS are calculated from the average hourly wind speeds for each MEDA station, the solar angle, and the hourly cloud-cover observations reported at the Desert Rock Meteorological Observatory. This procedure follows regulatory guidance provided by the U.S. Environmental Protection Agency (2000) and the American Nuclear Society (2015). The stability category concept makes use of the letters "A" through "F" to define different turbulence regimes. Category "A" specifies free convection in statistically unstable air, "D" represents neutral stability, and "F" is very stable (dispersion suppressed) with little turbulent mixing. In Yucca and Frenchman Flats, in winter, F-stability tends to persist from 4 p.m. PST until 8 a.m. PST the next morning, with an abrupt transition to C- or B-stability near 9 a.m. PST, followed by C- or B-stability during the afternoon. In summer, E- or F-stabilities occur between 7 p.m. PST and 6 a.m. the next morning, with a rapid change to B-stability at 7 a.m. PST and, generally, C- or B-stabilities and some D-stability in late afternoon.

A.3.8 Other Natural Phenomena

Wind speeds in excess of 97 kph (60 mph) occur annually. Additional severe weather in the region includes occasional severe thunderstorms, lightning, hail, and dust storms. Severe thunderstorms may produce high precipitation rates that may create localized flash flooding. Few tornadoes have been observed in the region and are not considered a significant threat.

Cloud-to-Ground (CG) lightning can occur throughout the year but occurs primarily between June and September. Maximum CG lightning activity on the NNSS occurs between 11 a.m. and 5 p.m. PST, while minimum activity occurs between 11 p.m. and 1 a.m. PST. For safety analyses, the mean annual flash density on the NNSS is 0.4 flashes per square km. Randerson and Sanders (2002) have characterized CG lightning activity on the NNSS.

Much of the information presented here can be reviewed on the SORD website, <https://www.sord.nv.doe.gov>.

A.4 Ecology

Derek B. Hall and Jeanette A. Perry
Mission Support and Test Services, LLC

The NNSS lies on the transition between the Mojave and Great Basin deserts. As a result, elements of both deserts are found in a diverse and complex assemblage of flora and fauna (Ostler et al. 2000; Wills and Ostler 2001).

A.4.1 Flora

Biologists have identified over 800 species of vascular plants in ten major vegetation alliances and twenty associations (Figure A-19). Distributions of the Mojave Desert, transition zone, and Great Basin Desert ecoregions are linked to elevation, topography, temperature extremes, precipitation, and soil conditions.

Mojave Desert vegetation associations dominate about a third of the NNSS in the south, on hillsides and mountain ranges at elevations below about 1,200 m (4,000 ft). Creosote bush (*Larrea tridentata*) is the dominant shrub within these associations except where the mean temperature is below -1.9°C (28.5°F) and average rainfall is 18.3 cm (7.2 in.) or less (Beatley 1974). Between elevations of about 1,200 to 1,500 m (4,000 to 5,000 ft), dominant vegetation shifts in the transition zone (22% of the NNSS) and is a blackbrush-Nevada jointfir (*Coleogyne ramosissima-Ephedra nevadensis*) shrubland (Ostler et al. 2000). Above about 1,500 m (5,000 ft), the vegetation is characteristic of the Great Basin Desert. Dominant shrub species are basin big sagebrush (*Artemisia tridentata tridentata*) and black sagebrush (*A. nova*). Distribution of Great Basin Desert associations appears to be limited by mean maximum temperature and by minimum rainfall tolerances of cold desert species (Beatley 1975).

Above about 1,800 m (6,000 ft), singleleaf pinyon (*Pinus monophylla*) and Utah juniper (*Juniperus osteosperma*) mix with the sagebrush association where suitable moisture is present. Tree densities on the NNSS are often not high enough to create closed canopies but, rather, form an open woodland with a mix of shrub and tree cover.

A characterization of vegetation communities was established in the late 1950s, but botanical efforts began in earnest in the 1970s with the passing of the U.S. Department of the Interior, Endangered Species Act (ESA). Although none of the known plant species on the NNSS are listed as threatened or endangered under the ESA, numerous plants on the NNSS are considered sensitive by the Nevada Division of Natural Heritage (NDNH) and are included in the NDNH At-Risk Plant and Animal Tracking List (<https://heritage.nv.gov/documents/ndnh-current-tracking-list>), summarized in Table A-10. Sensitive species are those whose long-term viability is a concern to natural resource experts. Populations of sensitive plant species are well documented on the NNSS (Figure A-20) and the condition of those populations are monitored under the Ecological Monitoring and Compliance Program (Chapter 13 of the main report).

A.4.2 Fauna

At least 1,163 species of invertebrates within the phylum Arthropoda have been identified on the NNSS. Of the known arthropods, 78% are insects. Ants, termites, and ground-dwelling beetles are probably the most important groups of insects in regard to distribution, abundance, and functional roles. No native fish or amphibians are known to occur on the NNSS.

Among reptiles, the desert tortoise (*Gopherus agassizii*), 16 lizard species, and 17 snake species are known to occur on the NNSS (Wills and Ostler 2001). The rich reptile fauna is partly due to the overlapping ranges of plant species characteristic of the Mojave and Great Basin deserts. The most abundant, widely distributed lizards include the side-blotched lizard (*Uta stansburiana*), western whiptail (*Cnemidophorus tigris*), and desert horned lizard (*Phrynosoma platyrhinos*). The western shovel-nosed snake (*Chionactis occipitalis*) and gopher snake (*Pituophis catenifer*) are the most common snakes on the NNSS. There are four species of poisonous snakes: the Mohave Desert sidewinder (*Crotalus cerastes*), speckled rattlesnake (*Crotalus mitchellii*), night snake (*Hypsiglena torquata*), and Sonoran lyre snake (*Trimorphodon biscutatus*); the latter two pose no threat to humans.

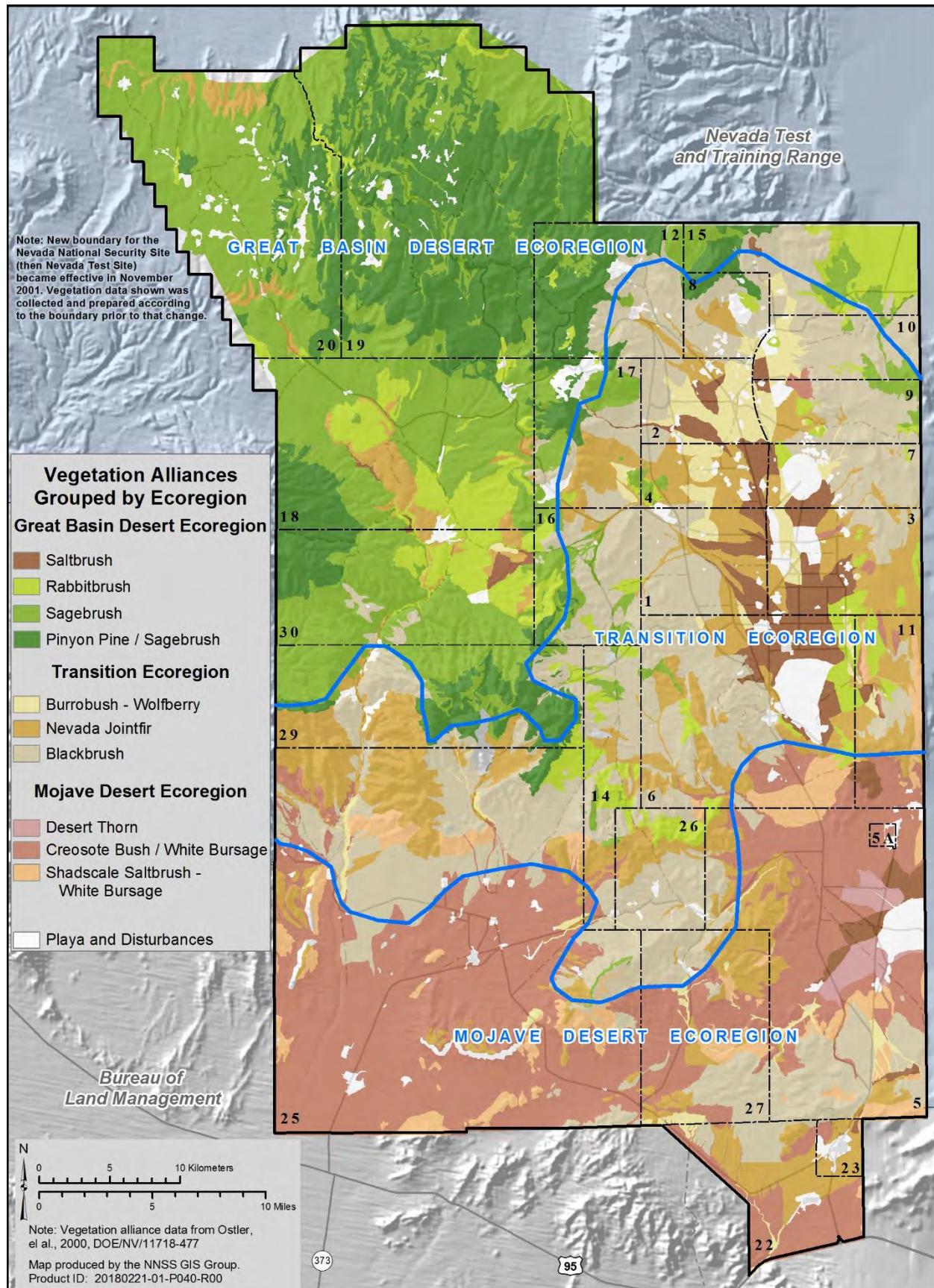


Figure A-19. Distribution of plant alliances on the NNSS

Table A-10. List of sensitive and protected/regulated plant and animal species known to occur on the NNSS

Plant Species	Common Names	Status ^a
Moss Species		
<i>Entosthodon planoconvexus</i>	Planoconvex cordmoss	S, H
Flowering Plant Species		
<i>Arctomecon merriamii</i>	White bearpoppy	S, M
<i>Astragalus beatleyae</i>	Beatley's milkvetch	S, H
<i>Astragalus funereus</i>	Black woollypod	S, H
<i>Astragalus oophorus</i> var. <i>clokeyanus</i>	Clokey eggvetch	S, W
<i>Chylismia megalantha</i>	Cane Spring suncup	S, M
<i>Cryptantha clokeyi</i>	Clokey's cryptantha	S, E
<i>Cymopterus ripleyi</i> var. <i>saniculoides</i>	Sanicle biscuitroot	S, W
<i>Eriogonum concinnum</i>	Darin buckwheat	S, M
<i>Eriogonum heermannii</i> var. <i>clokeyi</i>	Clokey buckwheat	S, W
<i>Frasera pahutensis</i>	Pahute green gentian	S, M
<i>Galium hilendiae</i> ssp. <i>kingstonense</i>	Kingston Mountains bedstraw	S, H
<i>Hulsea vestita</i> ssp. <i>inyoensis</i>	Inyo hulsea	S, W
<i>Ivesia arizonica</i> var. <i>saxosa</i>	Rock purpusia	S, H
<i>Penstemon fruticiformis</i> ssp. <i>amargosae</i>	Death Valley beardtongue	S, M
<i>Penstemon pahutensis</i>	Pahute Mesa beardtongue	S, W
<i>Penstemon palmeri</i> var. <i>macranthus</i>	Lahontan beardtongue	S, E
<i>Phacelia beatleyae</i>	Beatley scorpionflower	S, M
<i>Phacelia filiae</i>	Clarke phacelia	S, W
<i>Phacelia mustelina</i>	Weasel phacelia	S, W
<i>Agavaceae</i>	Yucca (3 species), Agave (1 species)	CY
<i>Cactaceae</i>	Cacti (17 species)	CY
<i>Juniperus osteosperma</i>	Utah juniper	CY
<i>Pinus monophylla</i>	Single-leaf pinyon	CY

Table A-10. List of sensitive and protected/regulated plant and animal species known to occur on the NNSS (continued).

Animal Species	Common Name	Status ^a
Mollusk Species		
<i>Pyrgulopsis turbatrix</i>	Southwest Nevada pyrg	S, A
Reptile Species		
<i>Plestiodon gilberti rubricaudatus</i>	Western red-tailed skink	S, IA
<i>Gopherus agassizii</i>	Desert tortoise	LT, S, NPT, A
Bird Species^b		
<i>Accipiter gentilis</i>	Northern goshawk	S, NPS, A
<i>Alectoris chukar</i>	Chukar	G, IA
<i>Aquila chrysaetos</i>	Golden eagle	EA, NP, A
<i>Asio flammeus</i>	Short-eared owl	S, NP, A
<i>Asio otus</i>	Long-eared owl	S, NP, A
<i>Callipepla gambelii</i>	Gambel's quail	G, IA
<i>Coccyzus americanus</i>	Western yellow-billed cuckoo	LT, S, NPS, IA
<i>Corvus brachyrhynchos</i>	American crow	G, IA
<i>Falco peregrinus</i>	Peregrine falcon	S, NPS, A
<i>Gymnorhinus cyanocephalus</i>	Pinyon jay	S, NP, IA
<i>Haliaeetus leucocephalus</i>	Bald eagle	EA, S, NPS, A
<i>Ixobrychus exillis hesperis</i>	Least bittern	S, NP, IA
<i>Lanius ludovicianus</i>	Loggerhead shrike	NPS, A
<i>Melanerpes lewis</i>	Lewis woodpecker	S, NP, IA
<i>Oreoscoptes montanus</i>	Sage thrasher	NPS, IA
<i>Riparia riparia</i>	Bank swallow	S, NP, IA
<i>Spinus pinus</i>	Pine siskin	S, NP, IA
<i>Spizella breweri</i>	Brewer's sparrow	NPS, IA
<i>Toxostoma lecontei</i>	LeConte's thrasher	S, NP, IA
Mammal Species		
<i>Antilocapra americana</i>	Pronghorn antelope	G, A
<i>Antrozous pallidus</i>	Pallid bat	NP, A
<i>Cervus elaphus nelsoni</i>	Rocky Mountain elk	G, IA
<i>Corynorhinus townsendii</i>	Townsend's big-eared bat	S, NPS, A

Table A-10. List of sensitive and protected/regulated plant and animal species known to occur on the NNSS (continued).

Animal Species	Common Name	Status ^a
<i>Equus asinus</i>	Burro	H&B, A
<i>Eptesicus fuscus</i>	Big brown bat	NP, A
<i>Equus caballus</i>	Horse	H&B, A
<i>Euderma maculatum</i>	Spotted bat	S, NPT, A
<i>Lasionycteris noctivagans</i>	Silver-haired bat	S, A
<i>Lasiurus blossevillii</i>	Western red bat	S, NPS, A
<i>Lasiurus cinereus</i>	Hoary bat	S, A
<i>Lynx rufus</i>	Bobcat	F, IA
<i>Microdipodops megacephalus</i>	Dark kangaroo mouse	NP, A
<i>Microdipodops pallidus</i>	Pale kangaroo mouse	S, NP, A
<i>Myotis californicus</i>	California myotis	NP, A
<i>Myotis ciliolabrum</i>	Western small-footed myotis	NP, A
<i>Myotis evotis</i>	Long-eared myotis	NP, A
<i>Myotis thysanodes</i>	Fringed myotis	S, NP, A
<i>Myotis volans</i>	Long-legged myotis	NP, A
<i>Myotis yumanensis</i>	Yuma myotis	NP, A
<i>Ovis canadensis nelsoni</i>	Desert bighorn sheep	G, A
<i>Odocoileus hemionus</i>	Mule deer	G, A
<i>Parastrellus hesperus</i>	Canyon bat	NP, A
<i>Puma concolor</i>	Mountain lion	G, A
<i>Sorex tenellus</i>	Inyo shrew	S, IA
<i>Sylvilagus audubonii</i>	Audubon's cottontail	G, IA
<i>Sylvilagus nuttallii</i>	Nuttall's cottontail	G, IA
<i>Tadarida brasiliensis</i>	Brazilian free-tailed bat	NP, A
<i>Urocyon cinereoargenteus</i>	Gray fox	F, IA
<i>Vulpes macrotis</i>	Kit fox	F, IA

^a Status Codes for Column 3Endangered Species Act, U.S. Fish and Wildlife Service

LT Listed Threatened

U.S. Department of InteriorH&B Protected under *Wild Free-Roaming Horses and Burros Act*EA Protected under *Bald and Golden Eagle Act*

^a Status Codes for Column 3

State of Nevada – Animals

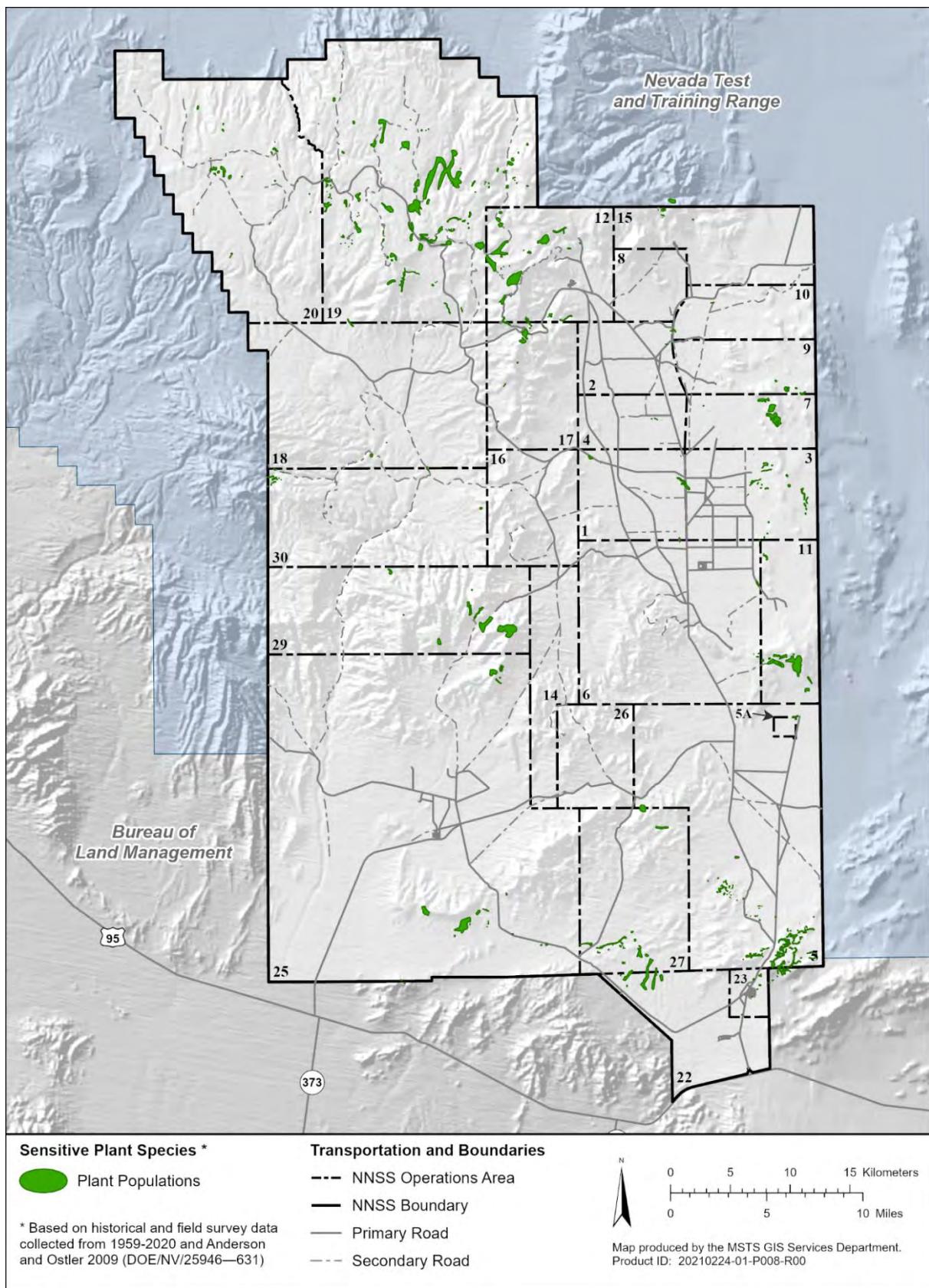
S	Nevada Division of Natural Heritage – At-Risk Plant and Animal Tracking List
NPT	Nevada Protected-Threatened, species protected under NAC 503
NPS	Nevada Protected-Sensitive, species protected under NAC 503
NP	Nevada Protected, species protected under NAC 503
G	Regulated as game species under NAC 503
F	Regulated as fur bearer species under NAC 503

State of Nevada – Plants

S	Nevada Division of Natural Heritage – At-Risk Plant and Animal Tracking List
CY	Protected as a cactus, yucca, or Christmas tree from unauthorized collection on public lands

NNSS Sensitive Plant Ranking

E	Evaluate
H	High
M	Moderate
W	Watch


Long-term Animal Monitoring Status for the NNSS

A	Active
IA	Inactive

^b All bird species on the NNSS are protected by the *Migratory Bird Treaty Act* except for chukar, Gambel's quail, English house sparrow, rock dove, Eurasian collared dove and European starling. Most bird species are also protected under NAC 503.

Sources used: NDNH 2023, NAC 2023, U.S. Fish and Wildlife Service (FWS) 2023

Figure A-20. Known locations of sensitive plant species on the NNSS (Anderson and Ostler 2009)

There are records of 246 species of birds observed on the NNSS (Hall and Perry 2022). Approximately 80% of the bird species are migrants or seasonal residents. To date, 26 species, including 9 raptor species (birds of prey), are known to breed on the NNSS. Raptors that breed on the NNSS include the golden eagle (*Aquila chrysaetos*), long-eared owl (*Asio otus*), red-tailed hawk (*Buteo jamaicensis*), Swainson's hawk (*Buteo swainsoni*), prairie falcon (*Falco mexicanus*), American kestrel (*Falco sparverius*), western burrowing owl (*Athene cunicularia hypugaea*), barn owl (*Tyto alba*), and great-horned owl (*Bubo virginianus*) (BN 2002b).

There are 44 terrestrial mammals and 15 bat species known to occur on the NNSS. Rodents account for about 40% of known mammals and, in terms of distribution and relative abundance, are the most important group of mammals on the NNSS (Wills and Ostler 2001). An apparent correlation exists between production by winter annual plants and reproduction in desert rodents on the NNSS. Larger mammals on the site include black-tailed jackrabbit (*Lepus californicus*), desert cottontail (*Sylvilagus audubonii*), feral horse (*Equus caballus*), mule deer (*Odocoileus hemionus*), pronghorn antelope (*Antilocapra americana*), Rocky Mountain elk (*Cervus elaphus nelsoni*), coyote (*Canis latrans*), kit fox (*Vulpes macrotis*), grey fox (*Urocyon cinereoargenteus*), badger (*Taxidea taxus*), bobcat (*Lynx rufus*), mountain lion (*Puma concolor*), feral burro (*Equus asinus*), and desert bighorn sheep (*Ovis canadensis nelsoni*). Mule deer herds occur mainly on the higher elevation, forested portions of the NNSS, and surrounding bajadas. A herd of 30–50 feral horses roams the north-central portion of the NNSS and a population of 50–60 pronghorn antelope are found primarily in Frenchman Flat and Yucca Flat. A reproducing population of about 30 desert bighorn sheep occurs in the Yucca Mountain/Fortymile Canyon area. A small number of feral burros are resident in Yucca Flat and Frenchman Flat, while a growing number inhabit Jackass Flats and Fortymile Canyon/Yucca Mountain areas. Elk are rare visitors to the high mesas.

The desert tortoise is the only resident species on the NNSS listed as threatened under the ESA. Habitat of the desert tortoise is in the southern third of the NNSS (Chapter 13). No other federally threatened or endangered animal is known to occur routinely on the NNSS. All bird species on the NNSS are protected by the Migratory Bird Treaty Act except for six species: English house sparrow (*Passer domesticus*), European starling (*Sturnus vulgaris*), Gambel's quail (*Callipepla gambelii*), chukar (*Alectoris chukar*), Eurasian collared dove (*Streptopelia decaocto*), and rock dove (*Columba livia*). Most non-rodent mammals of the NNSS are protected by the State of Nevada and managed as either game or furbearing mammals, and all 15 bats on the NNSS are considered sensitive or protected species. Table A-10 identifies the important animal species on the NNSS that are either classified as sensitive, protected, and/or regulated by state or federal agencies. They are the species commonly evaluated for inclusion in long-term monitoring activities on the NNSS.

A.4.3 Natural Water Sources

Biological communities on the NNSS that are associated with springs or other natural sources of water are important resources. They are rare, localized habitats that are important to regional wildlife and to isolated populations of water-loving plants and aquatic organisms. They include 16 springs and 12 seeps. In addition, there are 14 tank sites (natural rock depressions that catch and hold surface runoff), and 15 ephemeral ponds (Hall and Perry 2020) (Figure A-21). The ephemeral ponds occur in low elevation areas on playas or within natural drainages that may have been modified during historical NNSS operations (e.g., road construction, excavation), resulting in well-defined catchments for surface water runoff. Twelve of these occur on Frenchman Flat Playa and are referred to as earthen sumps.

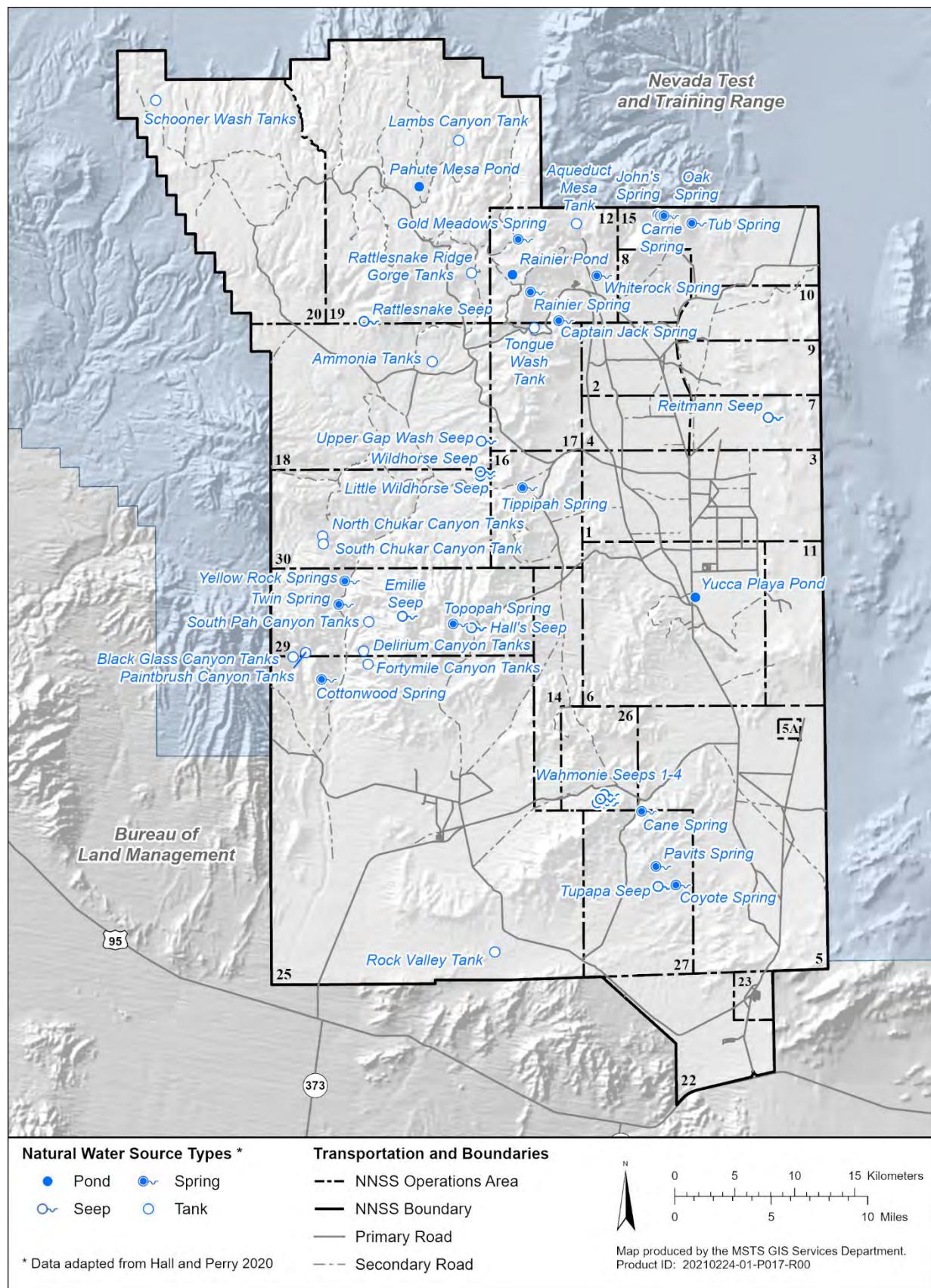


Figure A-21. Natural water sources on the NNSS
(Hall and Perry 2020)

A.5 Cultural Resources

Dave E. Rhode, Harold Drollinger, Maureen L. King, and Susan Edwards
Desert Research Institute

A.5.1 Cultural Resources Investigations on the NNSS

Archaeological and cultural research pertaining to the NNSS region has been conducted since at least the 1930s. The most notable are reconnaissance surveys of the area by S. M. Wheeler in 1940 and Richard Shutler in 1955, and the extensive early studies conducted by Frederick Worman for the Atomic Energy Commission (AEC) (Shutler 1961; Worman 1969). In the late 1970s, with strengthened federal laws and regulations supporting historic preservation, systematic cultural resources investigations on the NNSS were carried out on a regular basis. The Desert Research Institute (DRI) became the cultural resources support contractor at that time, and DRI has continued to perform many archaeological, historical, and architectural surveys and data recovery efforts ever since, as well as records management and curation of artifacts. Documentation and protection of Cold War-era structures and buildings on the NNSS have become a key part of the cultural resources program since the 1990s, with the increased recognition that Cold War-era nuclear testing and other activities carried out on the NNSS comprise a historic period of major national and international importance (Fehner and Gosling 2002, 2006; Titus 1986).

Cultural resources on the NNSS range from the earliest known prehistoric societies in North America ca. 13,000 years ago, through the millennia to historic times including Native American occupations, early Euroamerican exploration and emigration, mining booms and busts, ranching, military training, AEC and DOE nuclear weapons testing, and other nuclear experimentation for both military and peaceful purposes.

A.5.2 Prehistory

The oldest cultural remains discovered on the NNSS come from what is generically called the Paleoamerican period, about 13,000–10,000 years ago (Graf et al. 2013). In the Great Basin, this period is commonly called the Paleoindian or the Paleoarchaic, depending on how evidence for early subsistence activities is interpreted (Graf and Schmitt 2007; Davis et al. 2012). Archaeological sites dating to this period contain two major distinctive types of stone tool weaponry: first, fluted lanceolate bifacial spear points that are clearly related to the Clovis points of the Southwest and eastern North America, and secondly, a variety of spear point and knife forms having long stems for hafting that are collectively known as Western Stemmed points (Beck and Jones 1997). The two point types apparently represent different methods of stone tool production, and they may represent two different groups of early occupants in the region (Beck and Jones 2010, 2012; Davis et al. 2012). Only a few Clovis-like point fragments have been found on the NNSS, along the alluvial terraces of Forty-mile Canyon in Area 25, and in the upper reaches of the Forty-mile drainage system between Timber Mountain and Rainier Mesa (Jones and Edwards 1994; Reno 1985; Worman 1969). Western Stemmed points and sites are much more common in the region, occurring especially along Forty-mile Wash (Haynes 1996; Buck et al. 1998).

The basic economic strategy during this period was a wide-ranging hunting and gathering orientation, generalized in the collection of an array of animal and plant food resources and a common focus on the exploitation of resource-rich habitats such as shallow lakes, deltas, and marshes (Grayson 2011; Madsen 2002; Madsen et al. 2015; Warren and Crabtree 1986). No evidence indicates that the basins on the NNSS supported pluvial lakes (Grayson 2011; Mifflin and Wheat 1979), but they could have been filled with small seasonal wetlands. The Forty-mile Wash drainage, where Paleoamerican sites are most common, may have been used as a travel route between lowland marshy areas near Ash Meadows and highlands such as Pahute and Rainier Mesas where deer and elk could be procured (Pippin 1998). Archaeological sites dating to this time period often contain artifacts made of obsidian and other raw materials that were transported from very distant source areas, indicating people traveled very widely in their migrations (Jones et al. 2003). In the Paleoamerican period and unlike later periods, small seeds do not appear to have been a major part of subsistence pursuits, as very few seed-grinding tools such as grinding slabs (metates)

and handstones (manos) have been found at archaeological sites dating to this time period; such implements only become common after the Paleoindian interval comes to a close (Rhode et al. 2006).

After ca. 10,000 years ago, the climate became significantly warmer and dryer, with long periods of drought (Grayson 2011; Lachniet et al. 2017). Many regional wetlands dried up (Grayson 2011). Woodlands began to retreat upslope and were replaced in the lowlands by creosote bush and saltbush desert scrub (Rhode and Adams 2016; Spaulding 1990; Thompson 1990), and desert-adapted fauna replaced animals more suited to cooler climes (Grayson 2011; Hockett 2000). The middle Holocene period from ca. 8,000–4,500 years ago was marked by continued aridity (Antevs 1948; Grayson 2011; Lachniet et al. 2017; Wigand and Rhode 2002). As environmental conditions changed in the Great Basin, human population numbers appear to have declined in several areas, and some evidence suggests that entire areas were abandoned (Grayson 2011; Louderback et al. 2011; Warren and Crabtree 1986). The people in this period may have aggregated at springs and other dependable water sources, and only briefly entered more arid locales during times of greater effective moisture. In the NNSS area, higher elevation zones became an important part of the subsistence base. People expanded their food resource base to incorporate more abundant but more costly to process plant food resources such as small seeds (Rhode et al. 2006). This general trend appears to have occurred on the NNSS (Pippin 1998), but intensification of food-getting pursuits and expansion of the range of habitats exploited did not translate into permanent residential bases in the uplands. The small populations of people roaming the arid landscape apparently continued to be highly mobile, though likely tethered to the scattered springs throughout the region (Warren and Crabtree 1986).

The late Holocene period from ca. 4,500–1,900 years ago was cooler and wetter than the middle Holocene in the region (Wigand and Rhode 2002; Lachniet et al. 2017). Subsequent periods in the late Holocene fluctuated between dry and wet episodes, with notable arid episodes from 1,900–1,000 and 700–500 years ago (Wigand and Rhode 2002). Culturally, the late Holocene is marked by an increase in the number of people as indicated by the abundance of archaeological sites, and an even greater range of food resources exploited (Bettinger 1999; Grayson 2011). In some areas of the southern Great Basin, people began to inhabit large, semi-sedentary communities on valley floors with frequent seasonal use of the highlands (Pippin 1998). An increase in the frequency of grinding implements indicates a greater reliance on seeds than previously practiced (Warren and Crabtree 1986). Rock features interpreted as pine nut caches begin to appear in higher elevation woodlands on the NNSS (Pippin 1998), exhibiting a greater expenditure of effort and permanence in these sites than had occurred previously. This late Holocene intensification of the use of pinyon pine nuts has also been observed elsewhere in the southern Great Basin, notably Owens Valley to the west (Bettinger 1976, 1989; Madsen 1986a). One of the most conspicuous technological changes is the introduction of the bow and arrow, ca. 1,500 years ago (Bettinger 2013; Bettinger and Eerkens 1999). Examples of projectile points from the late Holocene period found on the NNSS are shown in Figure A-22. Another important technological introduction was brownware pottery (Figure A-23), ca. 700 to 1,000 before present (Lockett and Pippin 1990; Madsen 1986b; Pippin 1986; Rhode 1994), indicating a change in the way food was prepared and stored. Eerkens (2005) notes that pots were conducive to boiling over a fire and, based on residues found adhering to pot interiors, were used to boil seeds. They also served as private storage vessels for family groups, which may have resulted in greater private ownership of food stores and a stronger family-group economic orientation of the kind noted in historic times (Steward 1938), rather than a larger communal group pattern of sharing of public goods that might have prevailed in earlier times (Bettinger 1994, 1999).

A.5.3 Ethnohistoric American Indian

Early explorers and immigrants in the southern Great Basin during the nineteenth century encountered widely scattered groups of Numic-speaking hunters and gatherers currently known as Southern Paiute (Kelly and Fowler 1986) and Western Shoshone (Thomas et al. 1986). The areas traditionally claimed by these tribal entities encompassed a large region and were bound in territories of ethnic or political groups (Inter-Tribal Council of Nevada 1976; Stoffle et al. 1990, 2001). These territorial boundaries, even between subgroups, were stronger, with less mixing or movement between them prior to Euro-American intrusion into the region and its deleterious effects on the local native peoples. Subsistence strategies mainly revolved around movements between environmental zones (e.g., highlands and lowlands) within their territories according to seasonal availability of

food resources (Steward 1938; Wheat 1967). The normal range of travel for resources was up to 32 km (20 mi) of the primary residential base camp, but most could be found within a short distance of the camp. Criteria for the location of the primary residential base camp was proximity to stored or cached foods, availability of water, wood for fuel and house construction, and relatively warm winter temperatures like that found in canyon mouths or in the woodlands (Steward 1938).

The communal Western Shoshone group around Rainier Mesa and the southern end of the Belted Range ca. 1875–1880 was known as *Ēso* (little hill). The *Ēso* were closely linked linguistically with people to the east, but maintained close relationships with groups all around them, particularly to the north and west. They established winter residential camps at Captain Jack Spring, Oak Springs, Tippipah Springs (Figure A-24), Topopah Spring, White Rock Springs, and on Pahute and Rainier Mesas (Pippin 1997). Captain Jack Spring is named after One-eyed Captain Jack, who resided there at various times with his wives in the late 1800s and early 1900s (Steward 1938; Stoffle et al. 1990). At White Rock Springs lived *Wandagwana*, headman for the *Ēso*. He directed the annual fall rabbit drive in Yucca Flat, in which various camps from around the region gathered and interacted. Sweat houses, also serving as gathering places for local groups, were located at White Rock Springs and at Oak Springs. They were used by both women and men for smoking, gambling, sweating, and as dormitories.

Another Western Shoshone group, the *Ogwe'pi* (creek), lived primarily based in Oasis Valley to the west (Pippin 1997; Steward 1938; Stoffle et al. 1990). Most of their winter camps and residential bases were located north of Beatty, but their territory or use area extended eastward and included Pahute Mesa and Forty-mile Canyon, with the latter forming the boundary abutting the territory of the *Ēso* to the east and the Southern Paiute to the south. The *Ogwe'pi* had strong ties to the Timbisha people in Death Valley, and they traveled to the Grapevine and Funeral Mountains and valleys to the west and south for certain resources or when areas to the east were less productive.

A fandango, or group gathering festival, was usually held by the *Ēso* at the winter camp of *Wungiakuda* off the southeast edge of Pahute Mesa near Landmark Rock (Johnson et al. 1999; Steward 1938). The *Ogwe'pi* also hosted an annual regional fandango, alternating with the *Ēso*. This fandango was held in Oasis Valley instead of at *Wungiakuda*. The fandango lasted about 5 days and provided opportunity for the exchange of goods and information, as well as courtship and merry-making.

The southern portion of the NNSS, southward from Yucca and Shoshone Mountains, including the Cane Spring site, was part of the territory occupied by mixed Western Shoshone and Southern Paiute people centered on Ash Meadows (*Toi'oits*) (Kelly and Fowler 1986; Stoffle et al. 1990). The Ash Meadows group interacted with both Southern Paiutes to the south and east as well as Western Shoshone to the north and west. The Ash Meadows group practiced some horticulture at the spring sites to supplement their primary subsistence base of hunting and gathering; crops included maize, squash, bean, and sunflower (Steward 1938). At Cane Spring, the stubble of a corn field and a cache of squash were found by immigrants traveling through Death Valley in 1849 (Manly 1927). The only standing structure at the spring at that time was a wickiup. Steward (1938) documents a small family of five people living at Cane Spring ca. 1880. Today, there are remnants of two cabins and a corral at the spring (Jones 2001).

A.5.4 Euro-American Emigration, Exploration, and Settlement

Euro-American explorers and emigrants began entering the NNSS area by the late 1840s. A stone block with the name “R. J. BYOR” and the date “1847” carved in it was found and used in the fireplace of a stone cabin at Cane Spring. The name on the stone remains a mystery but may have been a member of the Mormon Battalion traveling from San Diego to Salt Lake City in that year.

More concrete evidence of Euro-American travelers passing through the NNSS are the diaries and publications of the famed Death Valley Expedition of 1849 (Long 1950; Manly 1927). Part of that expedition, deciding to follow a rumor of a shorter route than the Old Spanish Trail to southern California, found themselves in unknown territory of the NNSS. The group split in two at Papoose Lake, north of Indian Springs. One party, the Bennett-Arcanes, went southwest toward Skull Mountain, stopped at Cane Spring, and then continued south to Ash

Meadows. The other party, the Jayhawkers, headed west from Papoose Lake to Tippipah Spring, then split up again and followed two separate routes, one proceeding south between Skull Mountain and Fortymile Canyon and then on to the Amargosa Valley. The other offshoot (Reverend James Brier and family) traveled west of Tippipah Spring down Fortymile Canyon where the Briers had to abandon their wagons; they ultimately walked on foot down the canyon, found the trail of their fellow Jayhawkers, and all three parties ultimately reunited to follow Furnace Creek Canyon into Death Valley and endure many further tribulations (Long 1950; Manly 1927). Remains of the Brier's old abandoned wagons have been found in Fortymile Canyon (Worman 1969).

The great topographic and exploring surveys of the American West conducted by George Wheeler, John Wesley Powell, and others after the Civil War skirted the margins of the NNSS in southern Nevada (Winslow 1996). Subsequent Euro-American settlement in the NNSS area during the nineteenth and early twentieth century was scanty and involved ranching, wild horse hunting, mining, and relay stations for stage and freight lines. Initially ranching operations were small-scale individual settlements centered on the few springs in the region, but in the early twentieth century these were taken over by larger entities such as the Clay Spring Cattle Company and its successor the Naquinta Cattle Company. Ultimately, however, the poor quality of the rangeland prevented these larger operations from being profitable and ranching languished. Most of the springs bear remains of ranching operations and spring improvements.

A.5.5 Historic Mining on and near the NNSS

Around the beginning of the twentieth century, substantial gold and silver deposits were discovered in southwestern Nevada, with major strikes at Tonopah, Goldfield, and Rhyolite (Elliott 1966, 1973; McCracken 1992; Zanjani 1992). The overall population of Nevada doubled as a consequence. Within the confines of the NNSS no permanent settlement appeared, just marginal ranching and mining operations (Ball 1907). The great mining boom was short-lived, however, and quickly entered the bust phase. The Las Vegas and Tonopah rail line, constructed in 1906, lasted until 1918. The rails were removed in 1919, and the line was sold to the Nevada Department of Transportation for use as a highway (Myrick 1963). Still evident on the NNSS today are some of the abandoned ties reused for corrals and other structures at a number of the springs. Around the Beatty area, the ties were used in some of the later mining operations for shoring tunnels (McCracken 1992).

As mining explorations continued in the region, fanning out from the earlier strikes, small mining districts were founded (Cornwall 1972; Lincoln 1923; Tingley 1984). The mining town of Wahmonie around Mine and Skull Mountains was founded in 1928 (Jones et al. 1996; McLane 1995; Quade and Tingley 1984). It grew into a small town with boarding houses, tent stores, and cafes. The Silver Dollar Saloon and the Northern Club were but two of the enterprises (Long 1950). Most of the miners lived in small tents. George Wingfield, a well-known mine owner and banker in Nevada, became interested and incorporated the Wahmonie Mining Company. However, the strike was apparently not as rich as had first been thought, and by early 1929 optimism faded, and people began leaving. Small amounts of prospecting in the district continued into the 1930s and 1940s, but few ore deposits were ever discovered.

The Oak Spring mining district was located at the north edge of the NNSS (Drollinger 2003). Documents at the Recorder's Office in Tonopah indicate the first claims were by Antonio Aguayo and W.S. Bennett dating to 1886. Most of the early mining activity in the district, however, is from the early twentieth century and coincides with the Tonopah-Goldfield-Rhyolite mining boom (Ball 1907; Lincoln 1923; McLane 1995; Quade and Tingley 1984; Stager and Tingley 1988). Like other similar mining districts in the region during this time, the main objectives were gold and silver. Overall, the early Oak Spring mining district was not very productive and not rich enough to offset shipping costs to process the ores (Hall 1981).

B. M. Bower (a.k.a. Bertha Muzzy Sinclair), a noted author, with husband (Bud Cowan) and family, moved to Nevada from Los Angeles, California, in 1920 and took up residence at an abandoned silver mine near Oak Spring (Drollinger 2003; Engen 1973; McLane 1996). An accomplished and prolific writer, B. M. Bower published 57 novels as well as short stories and screenplays over a 40-year career, with many becoming the basis for early western-themed movies in Hollywood. While living at the camp (Figure A-25), Bower wrote 11 novels,

incorporating some of the surrounding geographic features, such as Oak Butte and the camp itself, into a few of the stories. The family formed the El Picacho Mining Company, with B. M. Bower serving as president, and filed assessment work for the claims from 1922 to 1928. The family moved to Las Vegas around 1926 and still worked the mining claims sporadically over the next couple years, but eventually the Great Depression forced them to move to Oregon. Fittingly, in keeping with the theme for some of the novels, the abandoned camp was used in the early 1930s by outlaws from Utah and Arizona whose escapades were later featured in a Death Valley Days radio episode narrated by Ronald W. Reagan. B. M. Bower died in Los Angeles 1940 and was inducted into the Western Writers of America Hall of Fame in 1994.

In 1937, a source of tungsten was discovered in the Oak Spring district (Kral 1951; Quade and Tingley 1984; Stager and Tingley 1988). Workings of the Climax tungsten mine included several mines, shafts, adits, trenches, an open pit, roads, and a processing mill. These operations ended when the area was closed with the founding of the bombing and gunnery range by the Federal government. The last known mining operation was from December 1956 to May 1957 involving a co-use agreement between the owners of the Climax Tungsten Corporation and the AEC, who now had control of the area for nuclear testing (Drollinger 2003; Quade and Tingley 1984).

A.5.6 The Cold War, Nuclear Testing, and Nuclear Research on the NNSS

A.5.6.1 The Cold War

The Cold War was a global conflict pivoting around themes of ideology, imperialism, strategic issues, and the nuclear arms race (Puzio 2013). It was a war fought via economic and cultural means, as well as a series of proxy wars by the United States and the former Soviet Union and their allies from 1947 to 1991 (Walker 1995; Gaddis 2005). After World War II, the United States and the former Soviet Union emerged as the only superpowers possessing intact heavy industry, large populations, and low international debt, as well as conflicting ideological outlooks (Gaddis 2005; Fink 2014). However, the United States was the only nuclear power in the world. This changed in August 1949 when the Soviets tested their first fission bomb. The U.S. response to the perceived Soviet threat was to expand production facilities and accelerate the development of nuclear weapons. On June 29, 1950, President Truman approved the development of a thermonuclear weapon, and then a plan for a test series in the Pacific (named Greenhouse) was initiated. However, while this plan was underway, the onset of the conflict in the Korean Peninsula began.

U.S. military involvement in Korea created technical and logistical problems for continuing with the Pacific test location. This led the AEC Chair Gordon Dean to declare that it was “wise to reexamine the question of a continental site with the objective of having available a definite and specific site which could be recommended for use” (Fehner and Gosling 2002). In December 1950, the U.S. Air Force approved a plan to allow the AEC to use the Las Vegas Bombing and Gunnery Range, a federal facility established in 1940 by President Roosevelt, for a proposed series of continental tests named Ranger (NNSS/NFO 2013). On December 18, 1950, President Truman approved the choice and construction began the following month. Camp Mercury, located at the southern end of the test area, was established as the main support, housing, and administrative base (Figure A-26). The new facility went through a series of name changes: Las Vegas Test Site in spring 1951; Nevada Test Site (NTS) on June 22, 1951; Nevada Proving Ground on February 25, 1952; and, finally reverting to the NTS on January 1, 1955. It remained the NTS throughout the rest of the Cold War until 2010, when the NTS was renamed to the current NNSS to reflect the diversity of nuclear, energy, and homeland security activities now conducted at the site. Additional land parcels were obtained under public orders and memorandums of agreement. A critical acquisition was made in August 1965, when Mercury and the nearby Camp Desert Rock were finally included in the NTS. Until then, they were still technically on land borrowed from the U.S. Air Force. This acquisition accounts for the southeastern boundary of the site, which extends out just enough to include these two facilities that were essential for site operations.

A.5.6.2 Nuclear Testing, Nuclear Research, and the Continental Test Site

The NNSS played a crucial role in the U.S. nuclear testing program during the Cold War with the former Soviet Union. An escalating arms race for nuclear weapons superiority led to numerous nuclear explosions worldwide by the U.S., the former Soviet Union, and other foreign nuclear powers. The AEC and the U.S. Department of Defense conducted these tests for the United States. Most of the tests occurred at the NNSS, where the operations included both atmospheric and underground tests. The major purposes of nuclear testing were weapons related (testing a device intended for a specific weapon system); weapons effects (evaluating the civil or military effects of a detonation); safety experiments (confirming a nuclear detonation would not occur from an accidental detonation of the high explosive associated with the device); joint U.S.–United Kingdom testing (storage-transportation); and Vela Uniform (improving the ability to detect, identify, and locate underground nuclear detonations) (NNSA/NFO 2015). In all, a total of 928 nuclear tests were conducted at the site, with 120 performed in the 1950s, and 808 after 1961 following a short moratorium between 1958 and 1961 agreed to by both the U.S. and the former Soviet Union (Friesen 1995). On August 5, 1963, the U.S. and former Soviet Union signed the Limited Test Ban Treaty. This treaty effectively banned testing of nuclear weapons in the atmosphere, ocean, or space, and atmospheric testing drew to an end, although there is evidence that some Soviet testing actually occurred after the treaty. In 1992, the U.S. established a second self-imposed moratorium on nuclear testing. In 1995, President Clinton announced a total ban on all critical U.S. nuclear weapons testing. In September 1996, the United Nations approved the Comprehensive Nuclear-Test-Ban Treaty, which prohibited any nuclear explosion. However, the U.S. Senate failed to ratify this treaty.

In addition to weapons testing, the NNSS served as the location for an array of notable non-defense related nuclear research and development programs. This other type of Cold War-era research ran the gamut from nuclear-powered space vehicles to experimental civil works projects to radiation dosimetry studies. In the mid-1950s, the AEC and the National Aeronautics and Space Administration (NASA) selected Jackass Flat as the site of the Nevada Rocket Development Station (NRDS) (Figure A-27) constructing a network of cutting-edge facilities interconnected by rail lines to develop and test nuclear thermal propulsion systems for missions to Mars and beyond (Dewar 2004). During the same period, the NNSS became a key component of the Eisenhower Administration’s Plowshare Program. The concept focused on using nuclear explosives for peaceful purposes such as nuclear excavation for massive civil engineering projects (dam, harbor, road cut, and waterway construction) and industrial applications (oil and gas stimulation, geothermal power, underground storage/waste disposal cavities) (Beck et al. 2011). The Nevada facility was also the site of several landmark dosimetry studies focused on determining radiation dose rates and allowing more accurate risk assessments and health monitoring of the survivors of the Hiroshima and Nagasaki bombings. The data gleaned from all of these programs continue to inform contemporary research studies providing a foundation for future investigations (Bennett 2018; Cullings et al. 2006; Kerr et al. 2015; Short 2004; Williams 2017).

Figure A-22. Prehistoric projectile points from the NNSS
(photo taken by DRI 1992)

Figure A-23. Brownware bowl recovered from archaeological excavations on Pahute Mesa
(photo taken by DRI 1992)

Figure A-24. Overview of the Tippipah Spring area
(photo taken by DRI 2004)

Figure A-25. Bower cabin on the NNSS
(photo taken by DRI 2001)

Figure A-26. The town of Mercury, Nevada
(photo taken by REECo May 1965)

Figure A-27. The NRDS Engine Maintenance and Disassembly Building
(photo taken by Remote Sensing Laboratory 2013)

A.6 References

Allen, B. M., S. L. Drellack, Jr., and M. J. Townsend, 1997. *Surface Effects of Underground Nuclear Explosions*, DOE/NV/11718--122, Bechtel Nevada, Las Vegas, NV.

American Nuclear Society, 2015. *American National Standard for Determining Meteorological Information at Nuclear Facilities*. Approved August 20, 2015, ANSI/ANS-3.11-2015; American Nuclear Society, 555 North Kensington Avenue, La Grange Park, IL.

Anderson, D. C. and W. K. Ostler, 2009. *Distribution of Sensitive Plants on the Nevada Test Site*. DOE/NV/25946--631, Las Vegas, NV.

Antevs, E., 1948. Climatic Changes and Pre White Man, In: *The Great Basin with Emphasis on Glacial and Postglacial Times*, pp. 168–191, University of Utah Bulletin 38(20), Salt Lake City, UT.

Ball, S. H., 1907. *Mines of Silver Peak Range, Kawich Range, and other Southern Nevada Districts*. Nevada Publications, Las Vegas.

Barnes, H., F. N. Houser, and F. G. Poole, 1963. *Geologic Map of the Oak Spring Quadrangle, Nye County, Nevada*, U.S. Geological Survey Map GQ-214, scale 1:24,000, Washington, D.C.

Barnes, H., E. B. Ekren, C. L. Rodgers, and D. C. Hedlund, 1982. *Geology and Tectonic Maps of the Mercury Quadrangle, Nye and Clark Counties, Nevada*, U.S. Geological Survey, Miscellaneous Geologic Investigations Series Map I-1197, scale 1:24,000.

Bath, G. D., C. E. Jahren, J. G. Rosenbaum, and M. J. Baldwin, 1983. *Geologic and Geophysical Investigations of Climax Stock Intrusive, Nevada: Magnetic Investigations*, U.S. Geological Survey Open-File Report 83-377, pp. 40–57, Denver, CO.

Beatley, J. C., 1974. *Effects of Rainfall and Temperature on the Distribution and Behavior of Larrea tridentata (creosote-bush) in the Mojave Desert of Nevada*, Ecology 55:245–261.

—, 1975. *Climates and Vegetation Pattern Across the Mojave/Great Basin Desert Transition of Southern Nevada*, American Midland Naturalist 93:53–70.

Bechtel Nevada, 2002a. *A Hydrostratigraphic Model and Alternatives for the Groundwater Flow and Contaminant Transport Model of Corrective Action Units 101 and 102: Central and Western Pahute Mesa, Nye County, Nevada*. DOE/NV/11718--706, Las Vegas, NV.

—, 2002b. *Ecological Monitoring and Compliance Program Fiscal Year 2002*, DOE/NV/11718--753, Las Vegas, NV.

—, 2005. *A Hydrostratigraphic Framework Model and Alternatives for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 98: Frenchman Flat, Clark, Lincoln and Nye Counties, Nevada*, DOE/NV/11718--1064, Las Vegas, NV.

—, 2006a. *A Hydrostratigraphic Model and Alternatives for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat-Climax Mine, Lincoln and Nye Counties, Nevada*, DOE/NV/11718--1119, Las Vegas, NV.

—, 2006b. *Completion Report for Well ER-12-3, Corrective Action Unit 99: Rainier Mesa-Shoshone Mountain*, DOE/NV/11718--1182, Las Vegas, NV.

Beck, C. and G. T. Jones, 1997. *The terminal Pleistocene/early Holocene archaeology of the Great Basin*. *Journal of World Prehistory* 11:161-236.

_____, 2010. Clovis and Western Stemmed: The meeting of two technologies in the Intermountain West. *American Antiquity* 75:81-116.

_____, 2012. The Clovis-last hypothesis: Investigating early lithic technology in the Intermountain West. In *Meetings at the Margins: Prehistoric Cultural Interactions in the Intermountain West*, edited by D. E. Rhode, pp. 23-46. University of Utah Press, Salt Lake City.

Beck, C. M., S. R. Edwards and M. L. King, 2011. *The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects, High Explosive Experiments, and High Explosive Construction Activities*. Technical Report No. 111, 3 volumes, Desert Research Institute, Division of Earth and Ecosystem Sciences, Las Vegas, NV.

Belcher, W. R., Sweetkind, D. S., Faunt, C. C., Pavelko, M. T., and Hill, M. C., 2017. *An update of the Death Valley regional groundwater flow system transient model, Nevada and California: U.S. Geological Survey Scientific Investigations Report 2016-5150*, 74 p., 1 pl. <https://doi.org/10.3133/sir20165150>.

Bennett, J., 2018, "NASA's Nuclear Thermal Engine is a Blast from the Cold War Past." *Popular Mechanics*. 21 February 2018. <https://www.popularmechanics.com/space/moon-mars/a18345717/nasa-ntp-nuclear-engines-mars/>

Bettinger, R. L., 1976. *The development of pinyon exploitation in central eastern California*. *Journal of California Anthropology* 3:81-95.

_____, 1989. *The Archaeology of Pinyon House, Two Eagles, and Crater Middens: Three Residential Sites in Owens Valley, Eastern California*. Anthropological Papers of the American Museum of Natural History vol. 67. New York.

_____, 1994. *How, when, and why Numic spread*. In *Across the West: Human Population Movement and the Expansion of the Numic*, edited by D. B. Madsen and D. E. Rhode, pp. 44-55. University of Utah Press, Salt Lake City.

_____, 1999. *What Happened in the Medithermal*. In *Models for the Millennium: Great Basin Anthropology Today*, edited by Charlotte Beck, pp. 62-74. University of Utah Press, Salt Lake City.

_____, 2013. *Effects of the Bow on Social Organization in Western North America*. *Evolutionary Anthropology* 22:118-123.

Bettinger, R. L., and J. Eerkens, 1999. *Point typologies, cultural transmission, and the spread of bow-and-arrow technology in the prehistoric Great Basin*. *American Antiquity* 64:231-242.

Blankenagel, R. K. and J. E. Weir, 1973. *Geohydrology of the Eastern Part of Pahute Mesa, Nevada Test Site, Nye County, Nevada*. U.S. Geological Survey Professional Paper 712-B.

Blout, D. O., D. P. Hammermeister, K. A. Zukosky, and K. D. Donnelson, 1994. *Site Characterization Data from the Area 5 Science Boreholes, Nevada Test Site, Nye County, Nevada*, Reynolds Electrical & Engineering Co., Inc., Las Vegas, NV.

BN, see Bechtel Nevada.

Borg, I. Y., R. Stone, H. B. Levy, and C. D. Ramspott, 1976. *Information Pertinent to the Migration of Radionuclides in Groundwater at the Nevada Test Site, Part 1: Review and Analysis of Existing Information*, UCRL-52078, Part 1, Lawrence Livermore National Laboratory, Livermore, CA.

Bright, D. J., S. A. Watkins, and B. A. Lisle, 2001. *Analysis of Water Levels in the Frenchman Flat Area, Nevada Test Site*, U.S. Geological Survey Water-Resources Investigations Report 00-4272, Carson City, NV.

Brikowski, T. H., 1991. *The Hydrology of Underground Nuclear Tests: The Effect of Collapse-Chimney Formation*, Desert Research Institute Publication #45090, DOE/NV/10845--10, UC-703, Las Vegas, NV.

Buck, P. E., W. T. Harwell, G. Haynes, and D. E. Rhode, 1998. *Investigations at Two Early Holocene Sites Near Yucca Mountain, Nye County, Nevada*. Topics in Yucca Mountain Archaeology Number 2. Desert Research Institute, Las Vegas.

Byers, F. M., Jr., W. J. Carr, P. P. Orkild, W. D. Quinlivan, and K. A. Sargent, 1976. *Volcanic Suites and Related Cauldrons of the Timber Mountain-Oasis Valley Caldera Complex, Southern Nevada*, U.S. Geological Survey Professional Paper 919, 70 p. Washington, D.C.

Byers, F. M., Jr., W. J. Carr, and P. P. Orkild, 1989. *Volcanic Centers of Southwestern Nevada: Evolution of Understanding, 1960-1988*, Journal of Geophysical Research, 94(5):5,908–5,924.

Carle, S. F., M. Zavarin, and G. A. Pawloski, 2008. *Spatial Variability of Reactive Mineral and Radionuclide K_d Distributions in the Tuff Confining Unit: Yucca Flat, Nevada Test Site*, LLNL-TR-402227-DRAFT, Lawrence Livermore National Laboratory, Livermore, CA.

Cashman, P. H. and J. H. Trexler, Jr., 1991. *The Mississippian Antler Foreland and Continental Margin in Southern Nevada: The Eleana Formation Reinterpreted*, In: J. D. Cooper and C. H. Stevens, eds., Paleozoic Paleogeography of the Western United States II, Society of Economic Paleontologists and Mineralogists, Pacific Section, 67:271–280.

Caskey, S. J. and R. A. Schweickert, 1992. *Mesozoic Deformation in the Nevada Test Site and Vicinity: Implications for the Structural Framework of the Cordilleran Fold and Thrust Belt and Tertiary Extension North of Las Vegas*, Tectonics, 11(6):1,314–1,331.

Chapman, J. B., 1994. *Classification of Groundwater at the Nevada Test Site*, Desert Research Institute Report 45069, DOE/NV/10384--28, Las Vegas, NV.

Chapman, J. B. and B. F. Lyles, 1993. *Groundwater Chemistry at the Nevada Test Site: Data and Preliminary Interpretations*, Desert Research Institute Report 45100, DOE/NV/10845--16.

Cole, J. C., 1992. U.S. Geological Survey. Written communication to S. L. Drellack, Raytheon Services Nevada, regarding thickness of Paleozoic units at the Nevada National Security Site.

—, 1997. *Major Structural Controls on the Distribution of Pre-Tertiary Rocks, Nevada Test Site Vicinity, Southern Nevada*, U.S. Geological Survey Open-File Report 97-533.

Cole, J. C. and P. H. Cashman, 1999. *Structural Relationships of Pre-Tertiary Rocks in the Nevada Test Site Region, Southern Nevada*, U.S. Geological Survey Professional Paper 1607, U.S. Geological Survey, Denver, CO.

Cornwall, H. R., 1972. *Geology and Mineral Deposits of Southern Nye County, Nevada*, Bulletin No. 77, Nevada Bureau of Mines and Geology, Mackay School of Mines, University of Nevada, Reno.

Cullings, H. M., S. Fujita, S. Funamoto, E. J. Grant, G. D. Kerr, and D. L. Preston, 2006. "Dose Estimation for Atomic Bomb Survivor Studies: Its Evolution and Present Status." *Radiation Research* 166, no. 1, pp. 219-54. <http://www.jstor.org/stable/4098767>.

Davis, L G., S. C. Willis and S. J. Macfarlan, 2012. *Lithic technology, cultural transmission, and the nature of the far western Paleoarchaic/Paleoindian co-tradition*. In Meetings at the Margins: Prehistoric Cultural

Interactions in the Intermountain West, edited by D. E. Rhode, pp. 47-64. University of Utah Press, Salt Lake City.

D'Agnese, F. A., C. C. Faunt, A. K. Turner, and M. C. Hill, 1997. *Hydrogeologic Evaluation and Numerical Simulation of the Death Valley Regional Ground-Water Flow System, Nevada and California*, U.S. Geological Survey Water-Resources Investigations Report 96-4300, Denver, CO.

Dewar, J. A., 2004. *To the End of the Solar System: The Story of the Nuclear Rocket*. University Press of Kentucky, Lexington.

DOE/NV, see U.S. Department of Energy, Nevada Operations Office.

Drellack, S. L., L. B. Prothro, K. E. Roberson, B. A. Schier, and E. H. Price, 1997. *Analysis of Fractures in Volcanic Cores from Pahute Mesa, Nevada Test Site*, DOE/NV/11718--160, Bechtel Nevada, Las Vegas, NV.

Drellack, S. L. and P. H. Thompson, 1990. *Selected Stratigraphic Data for Drill Holes in LANL Use Areas of Yucca Flat, NTS*, DOE/NV/10322-39, Fenix & Scisson, Inc., Las Vegas, NV.

Drollingen, H., 2003. *An Archaeological Investigation of the Bower Cabin Site, Nevada Test Site, Nye County, Nevada*, Cultural Resources Technical Report No. 100, Division of Earth and Ecosystem Sciences, Desert Research Institute, Las Vegas, NV.

Eerkens, J. W., 2005. *GC-MS analysis and fatty acid ratios of archaeological potsherds from the western Great Basin of North America*. *Archaeometry* 47(1):83-102.

Ekren, E. B., C. L. Rogers, R. E. Anderson, and P. P. Orkild, 1968. *Age of Basin and Range Normal Faults in Nevada Test Site and Nellis Air Force Range, Nevada*, In: Nevada Test Site: The Geological Society of America, Inc., Memoir 110, pp. 247-250.

Elliott, R. R., 1966. *Nevada's Twentieth Century Mining Boom: Tonopah, Goldfield, Ely*, University of Nevada Press, Reno, NV.

———, 1973. *History of Nevada*, University of Nevada Press, Reno, NV.

Elliott, P. E. and J. M. Fenelon, 2013. *Database of Groundwater levels and Hydrograph Descriptions for the Nevada Test Site Area, Nye County, Nevada* (version 4.0, November 2013). U.S. Geological Survey Data Series 533, 16 p. Reston, VA.

Engen, O. A., 1973. *Writer of the Plains: A Biography of B. M. Bower*. Pontine Press, Culver City, CA.

Faunt, C. C., 1998. *Effect of Faulting on Ground-Water Movement in the Death Valley Region, Nevada and California*, U.S. Geological Survey Report WRI 95-4132, U.S. Geological Survey, Denver, CO.

Fehner, T. R. and F. G. Gosling, 2002. *Origins of the Nevada Test Site*. Report DOE/MA-0518, U.S. Department of Energy, Washington, D.C.

———, 2006. *Atmospheric Nuclear Weapons Testing: 1951-963*. Report DOE/MA-0003, U.S. Department of Energy, Washington, D.C.

Fenelon, J. M., 2005. *Analysis of Ground-Water Levels and Associated Trends in Yucca Flat, Nevada Test Site, Nye County, Nevada, 1951-2003*, U.S. Geological Survey Scientific Investigations Report 2005-5171. Denver, CO.

———, 2007. *Database of Ground-Water Levels in the Vicinity of Rainier Mesa, Nevada Test Site, Nye County, Nevada, 1957-2005*, U.S. Geological Survey Data Series 190, Version 1.10, October 2007, 14 p.

Fenelon, J. M., R. J. Lacznak, and K. J. Halford, 2008. *Predevelopment Water-Level Contours for Aquifers in the Rainier Mesa and Shoshone Mountain Area of the Nevada Test Site, Nye County, Nevada*, Scientific Investigations Report 2008-5044, 38 p., Las Vegas, NV: U.S. Geological Survey.

Fenelon, J. M., D. S. Sweetkind, and R. J. Lacznak, 2010. *Groundwater Flow Systems at the Nevada Test Site, Nevada: A Synthesis of Potentiometric Contours, Hydrostratigraphy, and Geologic Structures*, U.S. Geological Survey Professional Paper 1771, 54 p., Reston, VA.

Fenelon, J. M., D. S. Sweetkind, P. E. Elliott, and R. J. Lacznak, 2012. *Conceptualization of the Predevelopment Groundwater Flow System and Transient Water-Level Responses in Yucca Flat, Nevada National Security Site, Nevada*. Scientific Investigations Report 20-12-5196, 61 p.
<https://pubs.er.usgs.gov/publication/sir20125196>.

Ferguson, J. F., A. H. Cogbill, and R. G. Warren, 1994. *A Geophysical-Geological Transect of the Silent Canyon Caldera Complex, Pahute Mesa, Nevada*, Journal of Geophysical Research 99 (33):4323–4339.

Fiero, B., 1986. *Geology of the Great Basin*, University of Nevada Press, Reno, NV, 197 p.

Fink, C. K., 2014. *Cold War: An International History*. Westview, Boulder, Colorado.

Friesen, H. N., 1995. *A Perspective on Atmospheric Nuclear Tests in Nevada: Fact Book*. Report DOE/NV 296. U.S. Department of Energy, Nevada Operations Office, Las Vegas, Nevada.

FWS, see U. S. Fish and Wildlife Service.

Gaddis, J. L., 2005. *The Cold War: A New History*. Penguin, New York.

Garber, M. S., 1971. *Hydraulic-Test and Quality-of-Water Data from Hole U-3cn PS#2, Bilby Site, Nevada Test Site*, U.S. Geological Survey Report USGS-474--102 (NTS-230), Denver, CO.

GeoTrans, Inc., 1995. *A Fracture/Porous Media Model of Tritium Transport in Underground Weapons Testing Areas, Nevada Test Site*, Boulder, CO.

Gibbons, A. B., E. N. Hinrichs, W. R. Hansen, and R. W. Lemke, 1963. *Geology of the Rainier Mesa Quadrangle, Nye County, Nevada*, U.S. Geological Survey Map GQ-215, scale 1:24,000, Washington, D.C.

Gillespie, D., J. D. Donithan, and P. R. Seaber, 1996. *NTS Water-Supply Wells*. DOE/NV/10845-56 (DRI Publication No. 45138), Desert Research Institute, Las Vegas, NV.

Graf, K. E., C. V. Ketron, and M. R. Waters (eds.), 2013. *Paleoamerican Odyssey*. Center for the Study of the First Americans, Texas A & M University, College Station.

Graf, K. E. and D. N. Schmitt (eds.), 2007. *Paleoindian or Paleoarchaic? Great Basin Human Ecology at the Pleistocene-Holocene Transition*. University of Utah Press, Salt Lake City.

Grauch, V. J. S. and M. R. Hudson, 1995. *Preliminary Analysis of Major Structures and Lithologic Boundaries for the Frenchman Flat Model Area*, U.S. Geological Survey, Denver, CO.

Grayson, D. K., 2011. *The Great Basin: A Natural History*. University of California Press, Berkeley.

Hale, G. S., D. A. Trudeau, and C. S. Savard, 1995. *Water-Level Data from Wells and Test Holes Through 1991, and Potentiometric Contours as of 1991 for Yucca Flat, Nevada Test Site, Nye County, Nevada*, Water-Resources Investigations Report 95-4177, U.S. Geological Survey, Denver, CO.

Hale, W. E., I. J. Winograd, and M. S. Garber, 1963. *Preliminary Appraisal of Close-in Aquifer Response to the Bilby Event, Yucca Flat, Nevada*, U.S. Geological Survey Technical Letter NTS-63. Denver, CO.

Hall, D. B. and J. A. Perry, 2020. *Ecological Monitoring and Compliance Program 2019 Report*. DOE/NV/03624--0854. Mission Support and Test Services, LLC, Las Vegas, NV.

Hall, D. B. and J. A. Perry, 2023. *Ecological Monitoring and Compliance Program 2022 Report*. DOE/NV/03624--xxxx. Mission Support and Test Services, LLC, Las Vegas, NV.

Hall, Shawn, 1981. *Preserving the Glory Days: Ghost Towns and Mining Camps of Nye County, Nevada*. University of Nevada Press, Reno, NV.

Harrill, J. R., J. S. Gates, and J. M. Thomas, 1988. *Major Groundwater Flow Systems in the Great Basin Region of Nevada, Utah, and Adjacent States*, Hydrological Investigations Atlas HA-694-C, scale: 1:1,000,000, U.S. Geological Survey, Denver, CO.

Haynes, G. M., 1996. *Evaluating Flake Assemblages and Stone Tool Distributions at a Large Western Stemmed Tradition Site near Yucca Mountain, Nye County, Nevada*, Journal of California and Great Basin Anthropology 18(1):104–130.

Hershey, R. L. and S. Y. Acheampong, 1997. *Estimation of Groundwater Velocities from Yucca Flat to the Amargosa Desert Using Geochemistry and Environmental Isotopes*, DOE/NV/11508--26, UC-703 (DRI Publication No. 45157), Desert Research Institute, Las Vegas, NV.

Hockett, B., 2000. *Paleobiogeographic changes at the Pleistocene-Holocene boundary near Pintwater Cave, southern Nevada*. Quaternary Research 53:263-269.

Houser, F. N. and F. G. Poole, 1960. *Preliminary Geologic Map of the Climax Stock and Vicinity, Nye County, Nevada*, U.S. Geological Survey Map I-328, scale 1:4,800, Washington, D.C.

Hudson, M. R., 1992. *Paleomagnetic Data Bearing on the Origin of Arcuate Structures in the French Peak-Massachusetts Mountain Area of Southern Nevada*, Geological Society of America Bulletin 104:581–594.

Inter-Tribal Council of Nevada, 1976. *Nuwuvi: A Southern Paiute History*. Inter-Tribal Council of Nevada, Reno.

International Technology Corporation, 1996a. *Regional Geologic Model Data Documentation Package (Phase I, Data Analysis Documentation, Volume I, Parts 1 and 2)*, ITLV/10972-181, Las Vegas, NV.

_____, 1996b. *Potentiometric Data Task Documentation Package (Phase I, Data Analysis Documentation, Volume II)*, ITLV/10972-181, Las Vegas, NV.

_____, 1996c. *Hydrologic Parameters Data Documentation Package (Phase I, Data Analysis Documentation, Volume IV)*, ITLV/10972-181, Las Vegas, NV.

_____, 1997. *Groundwater Flow Model Documentation Package (Phase I, Data Analysis Documentation, Volume VI)*, prepared for the U.S. Department of Energy, Nevada Operations Office, Las Vegas, NV.

_____, 2002. *Yucca Flat Hydrogeologic Investigation Wells Drilling and Completion Criteria*, ITLV/13052-164. Las Vegas, NV.

IT, see International Technology Corporation.

Jachens, R. C., 1999. Written communication, U.S. Geological Survey, Menlo Park, CA.

Jackson, T. R., and J. M. Fenelon, 2018. *Conceptual Framework and Trend Analysis of Water-Level Responses to Hydrologic Stresses, Pahute Mesa–Oasis Valley Groundwater Basin, Nevada, 1966–2016*. Scientific Investigations Report 2018-5064, 89 p. <https://doi.org/10.3133/sir20185064>.

Johnson, W. G., R. C. Jones, H. Drollinger, and A. DuBarton, 1999. *Archaeological Data Recovery at Site 26NY10133, Nevada Test Site, Nye County, Nevada*, Technical Report No. 95, Quaternary Sciences Center, Desert Research Institute, Las Vegas, NV.

Jones, G. T., C. Beck, E. E. Jones, and R. E. Hughes, 2003. *Lithic source use and Paleoarchaic foraging territories in the Great Basin*. American Antiquity 68:5-38.

Jones, R. C., 2001. *Results of Historic Research and Archaeological Investigations at Cane Spring, Nevada Test Site, Nye County, Nevada*. Cultural Resources Technical Report No. 98, Desert Research Institute, Las Vegas, Nevada.

Jones R. C., C. M. Beck, A. DuBarton, S. R. Edwards, N. Goldenberg, and J. Carroll, 1996. *A Class III Cultural Resources Reconnaissance of the Proposed Reentry Body Impact Fuze Flights (RBIFF), Area 26, Nevada Test Site, Nye County, Nevada*. Cultural Resources Reconnaissance Short Report No. SR121395-2, Desert Research Institute, Las Vegas, NV.

Jones, R. C. and S. R. Edwards, 1994. *A Clovis point on the Nevada Test Site*, Nevada Archaeologist 12:18–23.

Kelly, I. T. and C. S. Fowler, 1986. *Southern Paiute*. In *Handbook of North American Indians*, Volume 11, Great Basin, edited by W. L. d'Azevedo, pp. 135–148. Smithsonian Institution, Washington, D.C.

Kerr, G. D., S. D. Egbert, I. Al-Nabulsi, I. K. Bailiff, H. L Beck, I. G. Belukha, J. E. Cockayne, H. M. Cullings, K. F. Eckerman, E. Granovskaya, E. J. Grant, M. Hoshi, D. C. Kaul, V. Kryuchkov, D. Mannis, M. Ohtaki, K. Otani, S. Shinkarev, S. L. Simon, G.D. Spriggs, V.F. Stepanenko, D. Stricklin, J. F. Weiss, R. L. Weitz, C. Woda, P. R. Worthington, K. Yamamoto, and R. W. Young, 2015. “Workshop Report on Atomic Bomb Dosimetry—Review of Dose Related Factors for the Evaluation of Exposures to Residual Radiation at Hiroshima and Nagasaki.” *Health Physics*, Vol 109, issue 6, pp. 582–600.

Kral, V. E., 1951. *Mineral Resources of Nye County, Nevada*, Nevada Bureau of Mines and Geology Bulletin 50, 45(3), Mackay School of Mines, University of Nevada, Reno.

Lachniet, M., Y. Asmerom, V. Polyak and Rhawn Denniston, 2017. *Arctic cryosphere and Milankovitch forcing of Great Basin paleoclimate*. Nature Scientific Reports 7:12955.

Laczniak, R. J., J. C. Cole, D. A. Sawyer, and D. A. Trudeau, 1996. *Summary of Hydrogeologic Controls on Ground-Water Flow at the Nevada Test Site, Nye County, Nevada*, Water Resources Investigation Report 96-4109, U.S. Geological Survey, Carson City, NV.

Laczniak, R. J., J. L. Smith, P. E. Elliott, G. A. DeMeo, M. A. Chatigny, and G. J. Roemer, 2001. *Ground-Water Discharge Determined from Estimates of Evapotranspiration, Death Valley Regional Flow System, Nevada and California*, U.S. Geological Survey Water-Resources Investigations Report 01-4195, Carson City, NV.

Lincoln, F. C., 1923. *Mining Districts and Mineral Resources of Nevada*, Nevada Newsletter Publishing Co., Reno, NV.

Locke, G. L., and R. J. La Camera, 2003. *Selected Ground-Water Data for Yucca Mountain Region, Southern Nevada and Eastern California, January 2000–December 2002*, U.S. Geological Survey Open-File Report 03-387, Carson City, NV.

Lockett, C. L. and L. C. Pippin, 1990. *Re-examining brownware ceramics in the central and southern Great Basin*. In *Hunter-Gatherer Pottery from the Far West*, edited by J. M. Mack, pp. 67–82. Anthropological Papers No. 23, Nevada State Museum, Carson City, NV.

Long, M., 1950. *The Shadow of the Arrow*, Caxton Printers, Caldwell, ID.

Louderback, L. A., D. K. Grayson, and M. Llobera, 2011. *Middle-Holocene climates and human population densities in the Great Basin, western USA*. The Holocene 21:366-373.

Madsen, D. B., 1986a. *Great Basin nuts: A short treatise on the distribution, productivity and prehistoric use of pinyon*. In Anthropology of the Desert West – Essays in Honor of Jesse D. Jennings, edited by C. Stout and D. D. Fowler, pp. 23–41, University of Utah Press, Salt Lake City, UT.

_____, 1986b. *Prehistoric ceramics*. In Handbook of North American Indians, Volume 11, Great Basin, edited by W. L. d'Azevedo, pp. 206–214. Smithsonian Institution, Washington, D.C.

_____, 2002. *Great Basin peoples and late Quaternary aquatic history*. In Great Basin Aquatic Systems History, edited by R. Hershler, D. B. Madsen and D. R. Currey, pp. 387–405. Smithsonian Contributions to Earth Sciences 33. Smithsonian Institution Press, Washington DC.

Madsen, D. B., D. N. Schmitt, and D. Page, 2015. *The Paleoarchaic Occupation of the Old River Bed Delta*. University of Utah Anthropological Papers 128. Salt Lake City.

Maldonado, F., 1977. *Summary of the Geology and Physical Properties of the Climax Stock, Nevada Test Site*, U.S. Geological Survey Open-File Report 77-356, Denver, CO.

Manly, W. L., 1927. *Death Valley in '49*. R.R. Donnelley & Sons Company, Lakeside Press, Chicago, Illinois.

McCracken, R. D., 1992. *A History of Beatty, Nevada*, Nye County Press, Tonopah, NV.

McLane, A. R., 1995. *The Silent Land: History of Yucca Mountain and the Fortymile Canyon Country, Nye County, Nevada*, Manuscript on file, Quaternary Sciences Center, Desert Research Institute, Reno, NV.

_____, 1996. *El Picacho*. The Writing Cabin of B.M. Bower, Nevada 39(2):134–146.

Mifflin, M. D. and M. M. Wheat, 1979. *Pluvial Lakes and Estimated Pluvial Climates of Nevada*, Bulletin No. 94, Nevada Bureau of Mines and Geology, Mackay School of Mines, University of Nevada, Reno.

Mission Support and Test Services, LLC, 2022. *Nevada National Security Site Environmental Report 2021*, DOE/NV/03624--1486, Las Vegas, NV.

MSTS, see Mission Support and Test Services, LLC.

Myrick, D. F., 1963. *Railroads of Nevada and Eastern California*, Volume 2. Howell-North, Berkeley, CA.

NAC, see Nevada Administrative Code.

National Oceanic and Atmospheric Administration, 2005. *Surface Weather Observations and Reports*, FCM-H1-2005, U.S. Department of Commerce, Washington, D.C.

National Security Technologies, LLC, 2007. *A Hydrostratigraphic Model and Alternatives for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainier Mesa-Shoshone Mountain, Nye County, Nevada*, DOE/NV/25946--146, Las Vegas, NV.

_____, 2009a. *A Hydrostratigraphic System for Modeling Groundwater Flow and Radionuclide Migration at the Corrective Action Unit Scale, Nevada Test Site and Surrounding Areas, Clark, Lincoln, and Nye Counties, Nevada*, DOE/NV/25946--630, Las Vegas, NV.

_____, 2009b. *Observations on Faults and Associated Permeability Structures in Hydrogeologic Units at the Nevada Test Site*, DOE/NV/25946--690, Las Vegas, NV.

Navarro-Intera, 2013. *Phase I Flow and Transport Model Document for Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada National Security Site, Nye County, Nevada*, Revision 1, N-I/28091—080, Las Vegas, NV.

Navarro Nevada Environmental Services, LLC, 2010a. *Phase II Transport Model of Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nye County, Nevada*, Revision 1, N-I/28091--004, S-N/99205--122, Las Vegas, NV.

_____, 2010b. *Addendum to the Central and Western Pahute Mesa Phase II Hydrogeologic Investigation Wells Drilling and Completion Criteria*, Revision 0, N-I/28091--015-ADD, Las Vegas, NV.

Nevada Administrative Code, 2022. Chapter 503 - Hunting, Fishing and Trapping; Miscellaneous Protective Measures. Available at: <http://www.leg.state.nv.us/NAC/NAC-503.html>. Carson City, NV. [Accessed January 31, 2022]

Nevada Division of Natural Heritage, 2022. At-Risk Plant and Animal Tracking List, January 2022. Maintained by the Nevada Division of Natural Heritage Available at: https://heritage.nv.gov/assets/documents/2022-01-Track_List.pdf. Carson City, NV. [Accessed January 31, 2022]

NI, see Navarro-Intera.

NNES, see Navarro Nevada Environmental Services, LLC.

NDNH, see Nevada Division of Natural Heritage.

NNSA/NFO, see U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office.

NNSA/NSO, see U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office.

NOAA, see National Oceanic and Atmospheric Administration.

NSTec, see National Security Technologies, LLC.

O'Hagan, M. D. and R. J. Lacznak, 1996. *Ground-Water Levels Beneath Eastern Pahute Mesa and Vicinity, Nevada Test Site, Nye County, Nevada*, U.S. Geological Survey Water-Resources Investigations Report 96-4042, 1 sheet.

Orkild, P. P., 1963. *Geologic Map of the Tippipah Spring Quadrangle, Nye County, Nevada*, U.S. Geological Survey Map GQ-213, scale 1:24,000, Washington, D.C.

_____, 1983. *Geologic and Geophysical Investigations of Climax Stock Intrusive, Nevada: Summary of Geologic and Geophysical Investigations*, U.S. Geological Survey Open-File Report 83-377, pp. 79–82, Denver, CO.

Ostler, W. K., D. J. Hansen, D. C. Anderson, and D. B. Hall, 2000. *Classification of Vegetation on the Nevada Test Site*, DOE/NV/11718--477, Bechtel Nevada, Ecological Services, Las Vegas, NV.

Phelps, G. A., R. C. Jachens, B. C. Moring, and C. W. Roberts, 2004. *Modeling of the Climax Stock and Related Plutons Based on the Inversion of Magnetic Data, Southwest Nevada*, U.S. Geological Survey Open-File Report 2004-1345, 21 p.

Pippin, L. C., 1986. *An Overview of Cultural Resources on Pahute and Rainier Mesas on the Nevada Test Site, Nye County, Nevada*. Technical Report No. 45, Desert Research Institute Social Sciences Center, Desert Research Institute, Reno, NV.

_____, 1997. *Changing Adaptive Strategies of the Ethnohistoric Eso and Oawei': Hunter and Gatherers in the Southern Great Basin*. Technical Report No. 94, Quaternary Sciences Center, Desert Research Institute, Reno, Nevada.

_____, 1998. *Hunter-Gatherer Adaptations and Environmental Change in the Southern Great Basin: The Evidence from Pahute and Rainier Mesas*, Technical Report No. 92, Quaternary Sciences Center, Desert Research Institute, Reno, NV.

Prothro, L. B. and S. L. Drellack, 1997. *Nature and Extent of Lava-Flow Aquifers beneath Pahute Mesa, Nevada Test Site*, Bechtel Nevada, DOE/NV/11718--156, Las Vegas, NV.

Puzio, K., 2013. *Major Themes of the Cold War*. Electronic presentation, https://prezi.com/g_r04thwebuh/major-themes-of-the-cold-war.html, accessed June 16, 2016.

Quade, J. and J. V. Tingley, 1984. *A Mineral Inventory of the Nevada Test Site, and Portions of Nellis Bombing and Gunnery Range, Southern Nye County, Nevada*, Open File Report 84-2, Nevada Bureau of Mines and Geology, University of Nevada, Reno.

Randerson, D., 1997. *Analysis of Extreme Precipitation Events in Southern Nevada*, NOAA Technical Memorandum ERL ARL-221, Air Resources Laboratory, Silver Spring, MD.

Randerson, D. and J. B. Sanders, 2002. *Characterization of Cloud-to-Ground Lightning on the Nevada Test Site*, NOAA Technical Memorandum OAR ARL-242, Air Resources Laboratory, Silver Spring, MD.

Reiner, S. R., G. L. Locke, and L. S. Robie, 1995. *Ground-Water Data for the Nevada Test Site and Selected Other Areas in South-Central Nevada, 1992-1993*, U.S. Geological Survey Open-File Report 95-160, Las Vegas, NV.

Reno, R. L., 1985. *Clovis projectile points from Lahontan Reservoir and the Nevada Test Site, Nevada*. Nevada Archaeologist 5(1):7-9.

Rhode, D., 1994. *Direct dating of brown ware ceramics using thermoluminescence and its relation to the Numic spread*. In Across the West: Human Population Movement and the Expansion of the Numic, edited by D. B. Madsen and D. Rhode, pp. 124–130. University of Utah Press, Salt Lake City, UT.

Rhode, D. and K. D. Adams, 2016. *Paleoenvironmental Context for Lincoln County, Nevada*. Submitted to Bureau of Land Management, Caliente, NV, for Lincoln County Archaeological Initiative.

Rhode, D., D. B. Madsen, and K. T. Jones, 2006. *Antiquity of early Holocene consumption and processing at Danger Cave, Utah, USA*. Antiquity 80:328-339.

Robie, L. S., G. L. Locke, and S. R. Reiner, 1995. *Ground-Water Data for the Nevada Test Site, 1992, and for Selected Other Areas in South-Central Nevada, 1952-1992*, U.S. Geological Survey Open-File Report 95-284.

Rose, T. P., J. M. Kenneally, D. K. Smith, M. L. Davison, G. B. Hudson, and J. H. Rego, 1997. *Chemical and Isotopic Data for Groundwater in Southern Nevada*, Lawrence Livermore National Laboratory Report UCRL-ID-128000, Livermore, CA.

Sawyer, D. A., R. J. Fleck, M. A. Lanphere, R. G. Warren, and D. E. Broxton, 1994. *Episodic Caldera Volcanism in the Miocene Southwest Nevada Volcanic Field: Revised Stratigraphic Caldera Framework, ⁴⁰Ar/³⁹Ar Geochronology and Implications for Magnetism and Extension*, Geological Society of America Bulletin 67(10):1304–1318.

Short, N.M., 2004. “The Role of Nuclear Explosions in Studies of Impact Craters.” *Meteoritics & Planetary Science*, Vol 39, issue 8, pp. 1405-1408. <http://meteoritics.org>

Shutler, R. Jr., 1961. *Lost City, Pueblo Grande de Nevada*, Anthropological Papers No. 5, Nevada State Museum, Carson City, NV.

Slate, J. L., M. E. Berry, P. D., Rowley, C. J. Fridrich, K. S. Morgan, J. B. Workman, O. D. Young, G. L. Dixon, V. S. Williams, E. H. McKee, D. A. Ponce, T. G. Hildenbrand, WC Swadley, S. C. Lundstrom, E. B. Ekren, R. G. Warren, J. C. Cole, R. J. Fleck, M. A. Lanphere, D. A. Sawyer, S. A. Minor, D. J. Grunwald, R. J. Laczniak, C. M. Menges, J. C. Yount, and A. S. Jayko, 1999. *Digital Geologic Map of the Nevada Test Site and Vicinity, Nye, Lincoln, and Clark Counties, Nevada, and Inyo County, California*, U.S. Geological Survey Open-File Report 99B554BA.

SNJV, see Stoller-Navarro Joint Venture.

Snyder, R. P., 1977. *Geology of the Gold Meadows Stock, Nevada Test Site*, U.S. Geological Survey Report 474-179, Denver, CO.

Spaulding, W. G., 1990. *Vegetational and climatic development of the Mojave Desert: The last glacial maximum to the present*. In *Packrat Middens: The Last 40,000 Years of Biotic Change*, edited by J. L. Betancourt, T. R. Van Devender, and P. S. Martin, pp. 166-199. University of Arizona Press, Tucson.

Stager, H. K. and J. V. Tingley, 1988. *Tungsten Deposits in Nevada*, Bulletin No. 105, Nevada Bureau of Mines and Geology, Reno, NV.

State of Nevada Engineers Office, 1974. *Static Groundwater Levels of Nevada*, Division of Water Resources, State Engineers Office, Carson City, NV.

Steward, J. H., 1938. *Basin-Plateau Aboriginal Sociopolitical Groups*, Bureau of American Ethnology Bulletin 120, Smithsonian Institution, Washington, D.C.

Stoffle, R. W., D. B. Halmo, J. E. Olmsted, and M. J. Evans, 1990. *Native American Cultural Resource Studies at Yucca Mountain, Nevada*. Institute for Social Research, the University of Michigan, Ann Arbor.

Stoffle, R. W., M. N. Zedeno, and D. B. Halmo, 2001. *American Indians and the Nevada Test Site: A Model of Research and Consultation*. DOE/NV Report 13046-2001-001, Office of Scientific and Technical Information, Oak Ridge, Tennessee.

Stoller-Navarro Joint Venture, 2004a. *Phase II Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 98: Frenchman Flat, Nye County, Nevada*, S-N/99205-032, Rev. 0, Las Vegas, NV.

—, 2004b. *Hydrologic Data for the Groundwater Flow and Contamination Transport Model of CAU Units 101 and 102: Central and Western Pahute Mesa, Nye County, Nevada*, S-N/99205-002, Shaw/13052-204, Rev. 0, Las Vegas, NV.

—, 2006a. *Phase II Groundwater Flow Model of Corrective Action Unit 98: Frenchman Flat, Nye County, Nevada*, S-N/99205--074, Las Vegas, NV.

—, 2006b. *Phase I Hydrologic Data for Corrective Action Unit 97: Yucca Flat-Climax Mine, Lincoln and Nye County, Nevada*, S-N/99205--077, Las Vegas, NV.

—, 2006c. *Groundwater Flow Model of Corrective Action Units 101 and 102: Central and Western Pahute Mesa, Nevada Test Site, Nye County, Nevada*, S-N/99205--076, Rev. 0, Las Vegas, NV.

—, 2007. *An Addendum to the Phase II Groundwater Flow Model of Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nye County, Nevada*, S-N/99205--074, Las Vegas, NV.

_____, 2009. *Phase I Transport Model of Corrective Action Units 101 and 102: Central and Western Pahute Mesa, Nevada Test Site, Nye County, Nevada*, S-N/99205--111, Rev. 1, Las Vegas, NV.

Thomas, D. H., L. S. A. Pendleton, and S. C. Cappannari, 1986. *Western Shoshone*. In *Handbook of North American Indians, Volume 11, Great Basin*, edited by W. L. d'Azevedo, pp. 262–283. Smithsonian Institution, Washington, D.C.

Thompson, R.S., 1990. *Late Quaternary vegetation and climate in the Great Basin*. In *Packrat Middens: The Last 40,000 Years of Biotic Change*, edited by J. L. Betancourt, T. R. Van Devender, and P. S. Martin, pp. 200–239. University of Arizona Press, Tucson.

Thordarson, W. and B. P. Robinson, 1971. *Wells and Springs in Calif. And Nevada within 100 Miles of the Point 37° 15' N., 116° 25' W. on the Nevada Test Site*. U.S. Geological Survey Report USGS-474-85 (NTS-227). Denver, CO.

Tingley, J. V., 1984. *Trace Element Associations in Mineral Deposits, Bare Mountain (Flourine) Mining District, Southern Nye County, Nevada*, Report No. 39, Nevada Bureau of Mines and Geology, Reno, NV.

Titus, A. C., 1986. *Bombs in the Backyard: Atomic Testing and American Politics*. University of Nevada Press, Reno.

Trexler, J. H., Jr., J. C. Cole, and P. H. Cashman, 1996. *Middle Devonian-Mississippian Stratigraphy on and near the Nevada Test Site: Implications for Hydrocarbon Potential*, American Association of Petroleum Geologists Bulletin 80(11):1736–1762, Tulsa, OK.

Trexler, J. H., Jr., P. H. Cashman, J. C. Cole, W. S. Snyder, R. M. Tosdal, and V. I. Davydov, 2003. *Widespread Effects of Middle Mississippian Deformation in the Great Basin of Western North America*, Geological Society of America Bulletin 115(10):1278–1288.

U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office, 2013. *Nuclear Timeline Fact Sheet*. NNSA/NFO Office of Public Affairs DOE/NV--1243.

_____, 2015. *United States Nuclear Tests, July 1945 through September 1992*, DOE/NV-209-REV 16, Las Vegas, Nevada.

U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2008. *Groundwater Protection Program Plan for the National Nuclear Security Administration Nevada Field Office*, DOE/NV/25946--557, Las Vegas, NV.

_____, 2006. *Completion Report for Well ER-16-1 Corrective Action Unit 99: Rainier Mesa - Shoshone Mountain*. DOE/NV-1180, Las Vegas, NV.

U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, and Bechtel Nevada., 2006. *Completion Report for Well ER-12-4. Corrective Action Unit 99: Rainier Mesa-Shoshone Mountain*, DOE/NV--1128, Las Vegas, NV.

U.S. Department of Energy, Nevada Operations Office, 1996. *Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada*, Volume 1, Chapters 1–9, DOE/EIS--0243, Las Vegas, NV.

_____, Nevada Operations Office, 1997. *Regional Groundwater Flow and Tritium Transport Modeling and Risk Assessment of the Underground Test Area, Nevada Test Site, Nevada*, DOE/NV-477, Las Vegas, NV.

_____, 1999. *Corrective Action Investigation Plan for Corrective Action Units 101 and 102: Central and Western Pahute Mesa, Nevada Test Site, Nevada*, DOE/NV-516, Las Vegas, NV.

U.S. Environmental Protection Agency, 2000. *On-Site Meteorological Program Guidance for Regulatory Modeling Applications*, EPA-450/4-87 013, Office of Air Quality Planning and Standards, Research Triangle Park, NC.

U.S. Fish and Wildlife Service. 2022. Endangered Species Program Home Page. Maintained at: <http://www.fws.gov/endangered>. [Accessed January 31, 2022]

Waddell, R. K., J. H. Tobison, and R. K. Blankenagel, 1984. *Hydrology of Yucca Mountain and Vicinity, Nevada-California Investigative Results through Mid-1983*, U.S. Geological Survey Water-Resources Investigation Report 84-4267, Denver, CO.

Walker, G. E., 1962. *Groundwater in the Climax Stock, Nevada Test Site, Nye County, Nevada*, U.S. Geological Survey Trace Element Investigations Report TEI-813, Washington, D.C.

Walker, M., 1995. *The Cold War: A History*. Owl, New York.

Warren, C. N. and R. H. Crabtree, 1986. *Prehistory of the southwestern area*. In *Handbook of North American Indians*, Volume 11, Great Basin, edited by W. L. d'Azevedo, pp. 183–193. Smithsonian Institution, Washington, D.C.

Warren, R. G., G. L. Cole, and D. Walther, 2000a. *A Structural Block Model for the Three-Dimensional Geology of the Southwestern Nevada Volcanic Field*, Los Alamos National Laboratory Report LA-UR-00-5866.

Warren, R. G., D. A. Sawyer, F. M. Byers, Jr., and J. C. Cole, 2000b. *A Petrographic/Geochemical Database and Stratigraphic and Structural Framework for the Southwestern Nevada Volcanic Field*, Internet address: <http://www.pggdb-swnvf.lanl.gov/>, as accessed on September 20, 2004, LANL Report LA-UR-00-3791.

—, 2003. *A Petrographic/Geochemical and Geophysical Database, and Stratigraphic Framework for the Southwestern Nevada Volcanic Field*, LANL Report LA-UR-03-1503.

Wheat, M. M., 1967. *Survival Arts of the Primitive Paiutes*. University of Nevada Press, Reno.

Wigand, P. E. and D. Rhode, 2002. *Great Basin vegetation history and aquatic systems: The last 150,000 years*. In *Great Basin Aquatic Systems History*, edited by R. Hershler, D.B. Madsen, and D. R. Currey, pp. 309–368. Smithsonian Contributions to the Earth Sciences 33. Smithsonian Institution Press, Washington DC.

Williams, M., 2017. “NASA Reignites Program for Nuclear Thermal Rockets.” *Universe Today* 11 August 2017. <https://www.universetoday.com/136752/nasa-reignites-program-nuclear-thermal-rockets/>

Wills, C. A. and W. K. Ostler, 2001. *Ecology of the Nevada Test Site: An Annotated Bibliography, with Narrative Summary, Keyword Index, and Species List*, DOE/NV/11718--594, Bechtel Nevada, Ecological Services, Las Vegas, NV.

Winograd, I. J. and W. Thordarson, 1975. *Hydrogeologic and Hydrochemical Framework South-Central Great Basin, Nevada-California, with Special Reference to the Nevada Test Site*, U.S. Geological Survey Professional Paper 712-c, U.S. Government Printing Office, Washington, D.C.

Winslow, D. L., 1996. *Restricted Reconnaissance: Wheeler's Nye County Explorations*, M.A. thesis, Department of Anthropology, University of Nevada, Las Vegas.

World Meteorological Organization, 2008. *WMO Guide to Meteorological Instrumentation and Methods of Observation*, WMO No. 8 (7th Edition), Secretariat of the World Meteorological Organization, Geneva, Switzerland.

Worman, F. C. V., 1969. *Archaeological Investigations at the U.S. Atomic Energy Commission's Nevada Test Site and Nuclear Rocket Development Station*, Report LA4125, University of California Los Alamos Scientific Laboratory, Los Alamos, NM.

Zanjani, S., 1992. *Goldfield: The Last Gold Rush on the Western Frontier*, Ohio University Press, Athens.

Document Availability

Available for sale to the public from:

**U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road
Alexandria, Virginia 22312**

Phone: **1-800-553-6847**

Fax: **(703) 605-6880**

E-mail: **info@ntis.gov; customerservice@ntis.gov**

Downloadable (no charge) at: **<https://classic.ntis.gov/search/>**

Available electronically (no charge) at: **<http://www.osti.gov>**,
<https://nnss.gov/publication-library/environmental-publications/>

Available, in paper, for a processing fee to the U.S. Department of Energy and its contractors from:

**U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, Tennessee 37831-0062**

Phone: **(865) 576-8401**

Fax: **(865) 576-5728**

E-mail: **reports@osti.gov**

**Work performed under
contract number:**

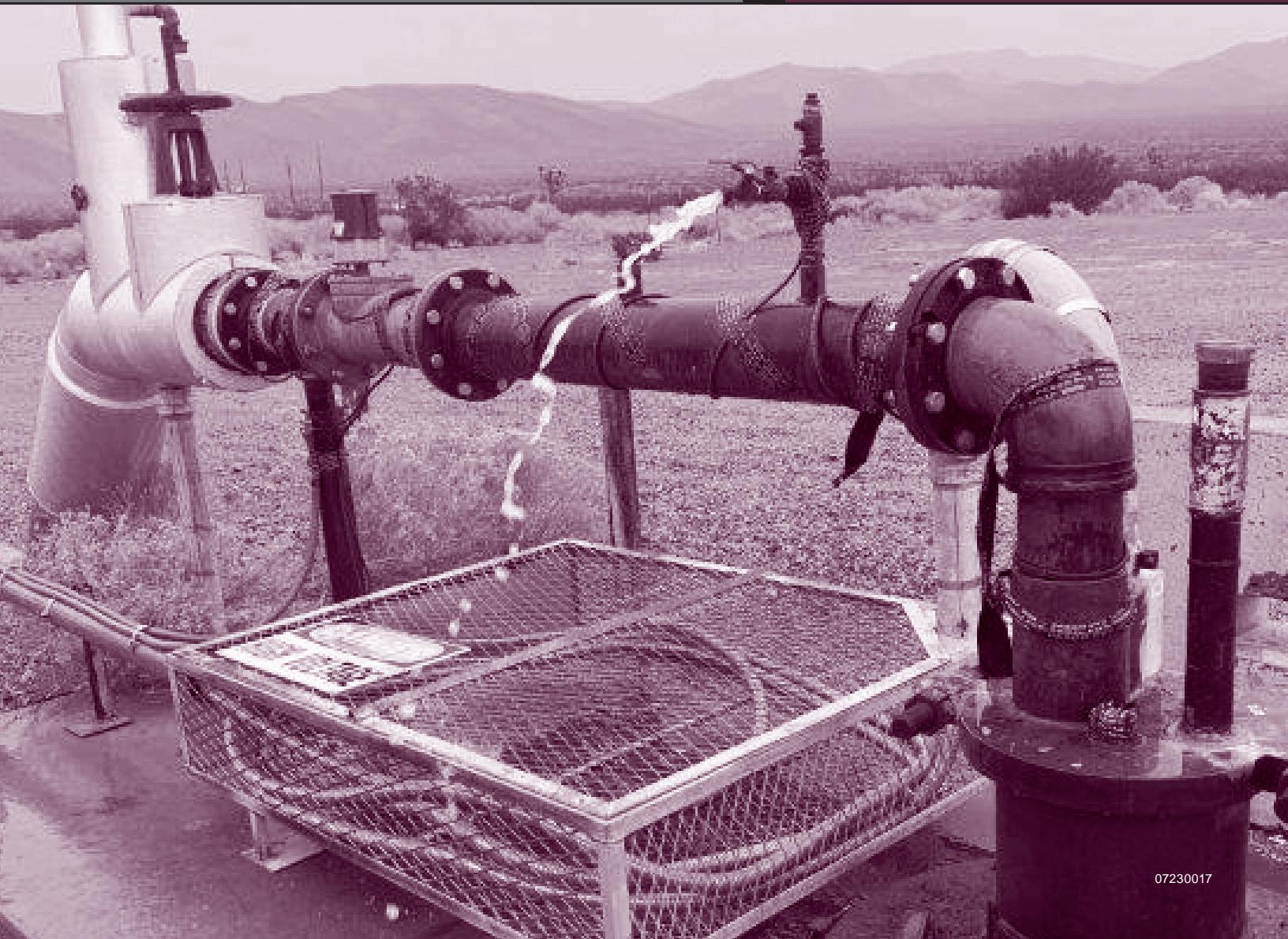
DE-NA0003624

This report was prepared for:

**U.S. Department of Energy
National Nuclear Security Administration
Nevada Field Office**

By:

**Mission Support and Test Services LLC
P.O. Box 98521
Las Vegas, Nevada 89193-8521**


Disclaimer

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof.

For more information, contact:

**U.S. Department of Energy
National Nuclear Security Administration
Nevada Field Office
Office of Public Affairs
P.O. Box 98518
Las Vegas, Nevada 89193-8518**

**Phone: (702) 295-3521
Fax: (702) 295-0154
E-mail: nevada@nnsa.doe.gov**
<http://www.nNSS.gov>

