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Fast Semi-Automated Filtration Method for Non-Targeted LC-
QTOF Data of Aged Nitroplasticizer Samples 
Kitmin Chen[a], Alexander S. Edgar[a], Dali Yang[a]* 

 

Abstract: A full dataset of aged nitroplasticizer (NP) is 
composed of more than 2000 unique mass-to-charges 
(m/z) when combining the non-targeted data obtained 
from both positive and negative electrospray ionization 
modes in time-of-flight mass spectrometry. Therefore, 
manual processing of these data often takes days, 
weeks, or even months to scrutinize for mechanistic in-
sights. To effectively extract meaningful signals that 
represent vital degradation intermediates in the early 
NP degradation mechanism, a semi-automated post-
processing workflow for data filtering, tailored to the ag-
ing experiment of NP, has been developed. The auto-
mated portion of this workflow is written in a Python 
code (using pandas, numpy, and matplotlib libraries), 

which removes more than 65% of potential false signals 
within seconds via four threshold-based adjustable fil-
ters: signal sensitivity, coefficient of variation, number of 
measurements, and retention time variability. As for the 
manual portion, a pattern-based inspection method is 
employed to reduce another 23% or more false posi-
tives, which greatly simplifies data visualization and re-
sults in less than 3% of potential candidate m/z needing 
in-depth data interpretation. As a positive control, 
known compounds are verified. Using this semi-auto-
mated data reduction method, the amount of time re-
quired is reduced to a matter of hours for data filtering 
in the non-targeted datasets of aged NP, which saves 
more time and effort for compound identification.   

 
Keywords: Nitroplasticizer (NP), Aging, Time-of-flight mass spectrometry (TOF-MS), Data automation, Python 

1 Introduction 
Nitroplasticizer (NP) is a binder component commonly 
used in energetic composites to reduce mechanical sen-
sitivity. The NP studied here is a eutectic mixture of 
bis(2,2-dinitropropyl) acetal/formal (BDNPA/F) (~1:1 wt. 
ratio), which also contains approximately 0.1 wt.% of n-
Phenyl-β-naphthylamine (PBNA) for scavenging NOx oxi-
dant species generated from NP decomposition. In a 44-
month thermal aging study of NP [1-4], the investigation 
of decomposition products is crucial to understand the 
life-time aging behavior of NP when it is in decades-long 
storage. To detect these unspecified compounds, liquid 
chromatography quadrupole time-of-flight mass spec-
trometry (LC-QTOF) has been applied by using infor-
mation-dependent acquisition (IDA), which performs a 
non-targeted survey scan of precursor ions and selects 
the candidate ions based on the preset criteria (e.g., in-
tensity threshold) for secondary fragmentation (via colli-
sion-induced dissociation) [5-8]. Subsequently, the rec-
orded mass-to-charges ratios (m/z) of precursor and frag-
ment ions in MS1 and MS2 (also called MS/MS) spectra 
are used to identify the detected compounds. Through the 
non-targeted MS data, major breakthroughs have been 
achieved in our previous works, including the 

identification of 2,2-dinitropropanol (DNPOH) [9,10], ni-
trated derivatives of PBNA and nitrophenols [11,12], and 
with the potential to carry out quantitation [12]. Leveraging 
the results of these previous studies, the depletion of di-
nitro-PBNA derivative is the transition point where NP 
degradation alters from nitrous acid (HONO) elimination 
into acid-catalyzed acetal/formal hydrolysis [11,13-17]. 
Considering other species may be involved in this altera-
tion of the NP degradation pathway, our attention turns to 
the early stage of NP aging (i.e., the time before NP hy-
drolysis occurs).  

 
Manual data processing and annotation are very time-

consuming because thousands of m/z are typically col-
lected in non-targeted data acquisition [18-20]. Besides 
the detected m/z of interest, which includes their corre-
sponding isotopes, different adducts, charge states, and 
in-source fragments, a portion of m/z can be originated 
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from false positives, such as contaminants (in sample, 
solvent, autosampler vials, etc.) and ionization-generated 
artefacts [18,20,21]. To eliminate the false positives, var-
ious filter-based automated tools have been developed 
for non-targeted metabolomics studies. For instance, the 
filtering method published by McMillan et al. used mass 
defect and retention time (TR) alignment to remove salt 
cluster artefacts in metabolomics data [20]. Another filter-
ing approach, the comprehensive peak characterization 
(CPC) algorithm was presented by Pirttila et al., which 
also removes noise artefacts and other false peaks based 
on the peak quality (e.g., signal-to-noise, peak width, and 
peak intensity) [18]. However, these algorithms are de-
signed for metabolomics applications and their implemen-
tation for our purpose may require deep knowledge in 
coding. Therefore, an automated method tailored to the 
aging study of NP is needed. Unlike “omics” studies, the 
aging study of NP monitors the changes in chemical com-
position on a time scale. Therefore, the changes in abun-
dance as a function of time provide a unique characteristic 
to investigate the outstanding decomposed products in 
the aging experiment. As an example, the patterns of rise 
and fall in the abundance of nitrated PBNA derivatives 
across 44 months of aging at different temperatures (38, 
45, 55, and 64°C) provide insights into how PBNA is con-
sumed in the aged NP samples in our work [11]. As op-
posed to non-targeted “omics” studies, the identification 
of a few but vital analytes is a faster alternative than pro-
filing all species. In addition, the identified few signals can 
be used to expand the search of other products by asso-
ciation. For example, nitrophenol and dinitrophenol were 
discovered based on the assumption that acid-catalyzed 
hydrolysis has occurred in the nitrated PBNA derivatives 
[11]. Additionally, the nitrated PBNA derivatives and nitro-
phenols were detected despite their abundance 

combined being less than 0.1 wt.% in NP in the chemical 
composition, which suggests the vital decomposed prod-
ucts are comparatively higher in abundance as NP de-
composes over time. To apply the findings from previous 
works, a data filtration method using user-specified pa-
rameters is preferred. Thus, we can obtain a potential list 
of vital decomposed products in the early stage of NP ag-
ing, where each represents a unique m/z and retention 
time value and exhibits a meaningful correlation between 
its abundance and aging time. To achieve this objective, 
we explored the use of the Python programming lan-
guage. In this paper, we present a fast semi-automated 
data filtration method for the aging study of NP and a 
demonstrative evaluation of the real non-targeted da-
tasets obtained from large sets of aged NP samples.  
 

2 Experimental Section  

2.1 Evaluation of Data Quality 

Before testing the Python script on the dataset, an evalu-
ation of the aged NP data in both electrospray ionization 
modes (ESI +/−) was conducted through cross-examina-
tion of known compounds between the new and old meth-
ods. The optimization of the LC-QTOF parameters and 
the spectral quality (i.e., TR and mass accuracy) in ESI− 
are detailed in previous works [11,12]. By standardizing 
the sample preparation method [11] and instrumental cal-
ibration [12], the drawn curves (patterns) of the relative 
intensities are smoother in the new dataset (top row) than 
the old dataset (bottom row). Therefore, the new dataset 
can provide better data mining capabilities to find anoma-
lies and correlations. 
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Figure 1. Using the relative intensities of DNPOH and PBNA nitro derivatives, pattern comparison is conducted between new (top row) and old 
(bottom row) ESI− datasets in dry-aged NP from 0 to 44 months. 
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Though the previous improvements of ESI+ pro-
vided confirmation of a mononitro-PBNA derivative [11], 
the sensitivity for this compound is still 4-fold lower than 
its detection in ESI−. Therefore, most of the discoveries 
were conducted in ESI− [9,11]. However, this also 
means the ESI+ data may contain important mechanis-
tic insights that are not covered by the ESI− data (e.g., 
PBNA, despite being a known stabilizer in NP, it was 
not detected until ESI+ mode is employed [11]). There-
fore, the LC parameters for ESI+ acquisition was further 
optimized, as described in Table 1. With the starting 
composition of mobile phases changed from 30% B to 

60% B (where B = 0.1% formic acid in methanol) and 
the flow rate decreased from 0.35 mL/min to 0.30 
mL/min, the intensity in ESI+ has significantly improved: 
98-fold in PBNA, 22-fold in mononitro-PBNA (3 times 
the ESI− signal), 50-fold in dinitro-PBNA (2 times the 
ESI− signal), and 45-fold in trinitro-PBNA. The overall 
data quality is crucial to the semi-automated filtration 
analysis not only in the aspect of enhanced sensitivity, 
but also in the aspect of TR and mass defect, which 
maintained at less than 0.1 min and 5 ppm (<10 ppm in 
fragments).  

 
Table 1. LC Parameters (ExionLC AC) 

LC method  
components 

Old LC parameter in ESI+ mode New LC parameters in ESI+ mode LC parameters in ESI− mode 

Mobile phases 
A: 0.1% formic acid in water 
B: 0.1% formic acid in methanol 

A: 0.1% formic acid in water 
B: 0.1% formic acid in methanol 

A: 13 mM ammonium acetate in water, 
pH 6.0 
B: 13 mM ammonium acetate in 95:5 
(v/v) ACN, pH 6.0 

Needle rinse 
0.02% formic acid and 5% acetone 
in ACN 

0.02% formic acid and 5% acetone in 
ACN 

0.02% formic acid and 5% acetone in 
ACN 

Run time (min) 20 16 18 

Gradient  
program  
(%B, curvea)   

0.00 min (30.0%, -1), 10.0 min 
(99.9%) 

0.00 min (60.0%, -1), 10.0 min 
(99.9%), 10.1 min (99.9%), 12.6 min 
(99.9%), 12.7 min (60.0%) 

0.00 min (20.0%), 3.00 min (60.0%), 10.0 
min (60.0%), 10.1 min (99.9%), 14.0 min 
(99.9%), 14.1 min (60.0%) 

Column rinse 
and equilibration 
program 

0.00 min (30% B), 0.01 min 
(99.9%B), 4.05 min (99.9% B), 4.10 
min (30% B), 10.0 min (30% B) 

Combined with gradient program as a 
single method 

Combined with gradient program as a 
single method 

Flow rate 
(mL/min) 

Acquisition and equilibration = 0.35 
Column rinse = 0.50 

Acquisition and equilibration = 0.30 
Column rinse = 0.50 

Acquisition and equilibration = 0.35 
Column rinse = 0.53 

a If not specified, the curve is set to 0 or linear. 

2.2 Data Processing 

The processing procedure of MS data is divided into 
four components: peak finding, peak integration, data 
reduction, and data compilation. Using the peak finding 
and integration features of the default SCIEX OS soft-
ware, four testing datasets (ESI+/−) are obtained from 
aged NP in wet and dry environments. Non-targeted 
peak finding was performed at mid-exhaustive sensitiv-
ity to capture all plausible m/z between 2.0 and 7.5 min 
in ESI− and 1.0 and 8.5 min in ESI+. To minimize inte-
gration of baseline noises, the parameters of the se-
lected m/z in the SCIEX OS software were modified: the 
minimum peak height at 200 counts per second (cps), 
the signal-to-noise threshold at 10, the gaussian 
smoothing at 2.5, the baseline noise at 40%, the base-
line subtraction window at 1 min, and the peak splitting 
at 4 points. The semi-automated filtration method is 
composed of three steps: (1) using the first Python 
script, the anomalies are automatically removed by four 
adjustable filters, including the sensitivity of peak inten-
sity, the relative changes of intensities across the aging 

process, the minimal amount of measurements, and the 
TR variability; (2) from the filtered list of m/z, the relative 
intensities of each m/z are plotted against the sample 
names (i.e., approximated aging time) to allow visual 
inspection to be conducted; and (3) using the second 
Python script, the spectrometric information of the ac-
cepted m/z is automatically compiled as an Excel sum-
mary.  
 

3 Results and Discussion 
Combining both the ESI+ and the ESI− datasets, man-
ual cleaning of more than 2000 m/z is prone to introduc-
ing human error. As shown in the example in Figure 2, 
the ESI+ dataset alone contain 100464 rows of infor-
mation and there are 1695 unique m/z after data extrac-
tion. Using pandas, numpy, and matplotlib, the auto-
mated post-filtration process offers a fast, simple, and 
targeted approach for data reduction, which involves 
four different filters in a stepwise progression. It is worth 
noting that the initial number of m/z can be greatly 
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reduced with strict integration parameters and narrow 
time windows of peak screening, which also avoids 
counting impurities in the dead volume and column 
rinse. However, the peak finding and integration set-
tings in the SCIEX OS software were intentionally re-
laxed to obtain the maximum number of m/z, and thus 
the limitation of the Python script can be tested.  

As mentioned previously, our primary objective is to 
search for the vital decomposed products in the early 
stage of NP aging. Based on the knowledge gained 
from the low-abundant compounds (i.e., nitrated PBNA 
derivatives and nitrophenols), the first three filters de-
fine what is considered vital, that is, Filter 1, the 

measured maximum abundance (intensity) of decom-
position product must be comparable to the lowest de-
tected value obtained from the low-abundant com-
pounds if not higher; Filter 2, its abundance must 
change in response to NP degradation; and Filter 3, the 
change in abundance is expected to occur as a function 
of time, the rate of which can be potentially measured. 
In the last filter, TR alignment is used to minimize ran-
dom error. Consequently, the order of filters is arranged 
following this logic. However, because Filter 3 cannot 
determine whether the change in abundance is consec-
utive or random, visual inspection is applied.  

 

 
Figure 2. Snapshots of the data filtration workflow in JupyterLab. The raw non-targeted data of dry-aged NP are exported from SCIEX OS as a 
comma separated value (csv) file, which contains 100464 rows of data (left). Using the unique formulas (m/z + adduct) and the samples names of 
44-month thermal aging experiment of NP as the parameters for columns and rows, respectively, their corresponding intensity values are extracted 
into a table (right) that has a dimension of 56 rows and 1695 columns. The first three rows are displayed as an example.  

3.1 Filter 1 – Sensitivity 

The SCIEX OS software will integrate the baseline 
noises if an inadequate threshold is used. In addition, a 
minimum intensity in IDA-based method is required to 
perform MS2 scans, which produces the fragmentation 
pattern that can be used for structural elucidation to in-
crease identification confidence. When only an MS1 
spectrum is available, formulaic estimation is still 
achievable and the isotopic pattern can be used for con-
firmation of elemental composition. Ideally, obtaining 
the MS2 is preferred because the exact structure of the 
decomposed product is critical to trace its origin. There-
fore, the threshold setting in Filter 1 was calibrated us-
ing the lowest detected intensity for generating an MS2 
spectrum of the least sensitive known compound (i.e., 
trinitro-PBNA derivative in ESI+ and nitrophenol in 
ESI−). Using the improved ESI+ parameters, the num-
ber of m/z found in ESI+ is at least twice the number of 
m/z found in ESI−, as shown in Table 2. Therefore, the 
intensity threshold was set 3.5-fold higher in ESI+ data 
(35000 cps2) than in ESI− data (10000 cps2), as shown 
in Figure 3 (i.e., filter1_intensity in Python script), which 

removed more than 64% of ESI+ data and more than 
34% of ESI− data that are false positives.  

3.2 Filter 2 – Percentage of Variation 

Filter 2 discerns and removes the impurities and con-
taminants that could be mistakenly treated as valid m/z. 
As previously mentioned, similar to the nitrated PBNA 
derivatives in the thermal aging process, the concentra-
tions of intermediates are expected to change (increase 
or decrease) as a function of time in aging process. For 
species that exist in the baseline NP sample and do not 
break down or do not break down significantly through-
out 44 months of aging, especially at elevated temper-
atures (>55°C), they are identified either as impurities 
or production byproducts that are very persistent. For 
species that are detected at approximately the same in-
tensity in the solvent blank (ACN), the baseline NP 
sample, and all aged NP samples, they are identified as 
contaminants that likely originated from external 
sources, such as solvent, mobile phases, autosampler 
vials, etc. Using the coefficient of variation (CV) ex-
pressed in percentage (i.e., standard deviation ÷ mean 
× 100%), the second filter determines whether the in-
tensity changes are statistically significant. Although the 
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CV of mono, di, and trinitro-PBNA derivatives are meas-
ured at 82%, 63%, and 146% in ESI− and 77%, 50%, 
and 112% in ESI+ across 56 measurements of dry-
aged NP (excluded solvent blanks and standards), the 
CV of impurities typically fall between 10% and 40%. 
However, the CV threshold must also avoid false nega-
tives that could contribute to the alteration of NP degra-
dation, particularly intermediates that can be produced 
by minor reactions at low temperatures. Therefore, the 
change in intensity of nitrophenol across 44 months of 
aging at 38°C (i.e., 13 measurements) is examined be-
cause it is proposed as the minor hydrolyzed product of 
nitrated PBNA derivatives [11], which yields a CV of 
16%. Based on these results, a fixed 15% was imple-
mented as the CV threshold, as shown in Figure 3 (i.e., 
filter2_impurity in Python script). Consequently, about 
2% of false positives in ESI+ data and 8% or more of 
false positives in ESI− data are removed.  
 

3.3 Filter 3 – Number of Measurements 

Filter 3 minimizes the random species, including arte-
facts (e.g., ionization-generated artefacts) and species 
that do not contribute to the NP degradation pathway. 
In species that do contribute to the NP degradation 
pathway, their abundance typically changes as a func-
tion of time in a consecutive manner and their rate of 
change follows the time temperature superposition 
(TTS) principle. Therefore, multiple consecutive meas-
urements can be obtained (e.g., the rise and fall of ni-
trated PBNA derivatives and the formation rate of 
DNPOH as a key product of NP hydrolysis that are ac-
celerated by elevated temperatures [11]). Meanwhile, 
some species only occur at random occasions and 
therefore do not contribute to the NP degradation path-
way. To generate any pattern of relative changes in 

intensity at various temperatures, a minimum of eight 
measurements is required (i.e., two measurements per 
temperature). Using this estimated value as the thresh-
old, which is shown in Figure 3 (i.e., filter3_mini-
mal_measurements in Python script), 1%-2% and 2%-
7% false positives are removed in ESI+ and ESI− da-
tasets, respectively. Considering more than 20 meas-
urements in mono, di, and trinitro derivatives are ob-
tained across 56 aged NP samples in both ESI+ and 
ESI−, the minimum tolerance can be adjusted to a 
higher number for further data reduction if needed.  
 

3.4 Filter 4 – TR Variability 

Because the noise and artefacts are randomized de-
fects that tend to have varying TR, the fourth filter is a 
complementary layer to all three filters described 
above. Filter 4 removes any randomized defects that 
exhibits high variability in TR. Through meticulous con-
trol of the external factors (e.g., temperature, column 
equilibration time, and mobile phases) that could affect 
TR reproducibility, low TR variability of less than 3 s or 
0.05 min was achieved in the datasets of a previous 
study [11]. Because of a faster change of the mobile 
phase composition in the gradient program of the ESI− 
method (>7% B per min) than that of the ESI+ method 
(>4% B per min), stronger TR drift was observed in the 
early eluents of ESI− dataset, such as 0.032 min in 
DNPOH as opposed to 0.011 min in BDNPA/F [11]. 
Therefore, the cut-off for TR variability of Filter 4 was set 
to a slightly wider window (5 s) for the ESI− dataset 
whereas 3 s was selected for the ESI+ dataset, as 
shown in Figure 3 (i.e., filter4_RT_drift in Python 
script), which removes about 11%-16% of ESI− data 
and 5%-7% of ESI+ data that are false positives.  

 

 
Figure 3. Snapshots of the automated data filtering method in JupyterLab. Through the four filters, data are reduced from 1695 columns to 438 
columns, where each represents a unique m/z. The first three rows in the results of each filter are displayed as an example. 



 

F u l l  P a p e r  

 
Table 2. Semi-automated data filtration results 

 
m/z Quantity in 

dry-aged NP  

datasets 

m/z Quantity in 
wet-aged NP  

datasets 

Stages of semi- 
automated filtration 

ESI+ ESI−  ESI+ ESI− 

Initial number of m/z 1695 655 1635 775 

After Filter 1 601 428 551 437 

After Filter 2 569 351 524 374 

After Filter 3 552 308 496 361 

After Filter 4 438 205 408 272 

Total candidate m/z 11 9 33 17 

 
Through all four filters, the automated process re-

duced the initial number of m/z by more than 74% in the 
ESI+ datasets and 65% in the ESI− datasets. Because 
the objective of this process is to search for vital decom-
posed products that are high in abundance, the majority 
of the false positives must be removed by Filter 1. Using 
conservative settings, the contributions of Filters 2 and 
3 to the removal of false positives are merely 3%-4% in 
ESI+ dataset. When the settings are doubled in value 
(30% CV and 16 points of minimal measurements), 
their contributions are increased to 14% (6% by Filter 2 
and 8% by Filter 3) and the number of filtered m/z drop 

from 438 to 277: a significant difference of 161 m/z that 
does not require manual inspection. 
 

3.5 Visual Inspection of Abundance 
Change in m/z 

The visual inspection of abundance change in m/z is a 
pattern-based qualitative validation. The plots are dis-
played as a top-down list (ESI− signals first, then ESI+ 
signals) in the order of TR that matches the Excel check-
list (generated by Python script). The validation is gov-
erned by three principles and examples of false signals 
are illustrated in Figures 4 and 5: (1) any peaks with a 
pattern resembling baseline noise, system contami-
nants, and sample impurities are removed; (2) any 
peaks with a pattern that only occurs in the quadrants 
of elevated temperatures (≥ 55°C, after 4ACN) are 
known as high-temperature intermediates and are 
therefore removed since they do not contribute to the 
early aging of NP; and (3) isotopes and in-source frag-
ments are removed (or archived on a separate list), 
which exhibit the same pattern and TR as the monoiso-
topic mass. Following these basic criteria, more than 
23% and 30% false positives in ESI+ and ESI− datasets 
are removed, respectively.  

 

 

 
Figure 4. Plots of peak intensity (y-axis) versus the aged samples in the chronological order of aging months (x-axis) that is given by the last two 
digits (e.g., 02 = 2 months). These are example plots of baseline noise (first row), high-temperature intermediates (second row), random defects 
(third row), and impurity (fourth row). Each plot is divided into four quadrants by the ACN blanks (i.e., 3ACN, 4ACN, 5ACN, and 6ACN) from left to 
right, with each quadrant representing a temperature that is given by the first number of the sample name (i.e., 3 = 38°C, 4 = 45°C, 5 = 55°C, and 6 
= 64°C). The number displayed in the legend is the estimated mass of the chemical formula and not a m/z value. 
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Figure 5. The plots of dinitro-PBNA derivative (bottom), its isotope (middle), and in-source fragment (top). 

After the visual inspection process, a targeted 
search was performed in the SCIEX OS software to 
confirm the validity of m/z and retrieve the MS1 and MS2 
spectra. Although the chemical structure is a crucial 
property to understand the reaction mechanism, the in-
terpretation of MS2 features is a challenging and time-
consuming process, especially for chimeric spectra, 
which contain false fragment features from the precur-
sors of similar m/z that pass through the mass filter [22]. 

Therefore, only the chemical formulas with unspecified 
adducts are determined for the candidate m/z, as pre-
sented in Tables 3 and 4. In Table 5, 100% of the pre-
viously identified intermediates [9,11] are captured in 
the filtered lists. Beside using these known compounds 
as calibrants to optimize the filtration parameters for 
maximum effectiveness, which is discussed in detail 
above, they can also be used as a positive confirmation. 

 
Table 3. Filtered list of candidate m/z from ESI+ datasets for future structural interpretation 

TR (min) 
Observed m/z in 
dry-aged NP (Da) 

Observed m/z in 
wet-aged NP (Da) 

Estimated  
formula 

Observation 

2.080 ND 159.0442 C10H7O2
+   

2.182 273.0698 ND C8H11N5O6
+ 

Chimeric MS1/MS2;  

other possibility: C8H14N2O7Na+ 
2.631 ND 285.1045 C7H17N4O8

+ C7H13N3O8, [M + NH4]+ 
2.631 ND 290.0600 C7H13N3O8Na+ C7H13N3O8, [M + Na]+ 
2.643 ND 329.1306 C9H21N4O9

+ C9H17N3O9, [M + NH4]+ 
2.643 ND 334.0864 C9H17N3O9Na+ C9H17N3O9, [M + Na]+ 
2.996 ND 343.1101 C9H19N4O10

+ C9H15N3O10, [M + NH4]+ 
2.996 ND 348.0654 C9H15N3O10Na+ C9H15N3O10, [M + Na]+ 
3.015 ND 256.1164 C10H16N4O4

+  

3.052 ND 214.0504 C12H8NO3
+ Chimeric MS1/MS2 

3.087 ND 149.0922 C5H13N2O3
+ Chimeric MS1/MS2 

3.177 276.1192 276.1195 C10H18N3O6
+  

3.181 ND 287.0857 C9H13N5O6
+  

3.422 ND 268.1144 C8H18N3O7
+  

3.450 228.1961 ND C13H26NO2
+ Chimeric MS1/MS2 

3.735 ND 331.0987 C10H16N4O4
+  

3.929 250.0868 250.0863 C16H12NO2
+  

3.995 ND 225.1964 C13H25N2O+  

4.322 ND 247.0865 C16H11N2O+  

4.376 ND 248.1074 C17H14NO+  

4.717 ND 393.0875 C10H15N7O10
+ Chimeric MS1/MS2 

4.719 ND 489.1428  C13H25N6O14
+ Other possibility: C14H24N7O11Na+ 

5.111 ND 503.1590 C15H26N7O11Na+ Other possibility: C14H27N6O14
+ 

5.188 219.1043 219.1041 C16H13N+  

5.242 249.1027 249.1028 C16H13N2O+  

5.286 ND 249.1083 C9H17N2O6
+ Other possibility: C10H16N3O3Na+ 

5.878 ND 474.3064 C22H42N4O7
+ Other possibility: C25H43N2O5Na+ 
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6.466 276.0772 ND C16H10N3O2
+ Other possibility: C18H12O3

+ 
6.659 ND 274.1588 C20H20N+  

6.665 ND 233.1935 undetermined Low-intensity chimeric MS1/MS2 
7.051 ND 274.1593 C20H20N+   
ND = Not detected 

 
Table 4. Filtered list of candidate m/z from ESI− datasets for future structural interpretation 

TR (min) Observed m/z in dry-aged NP (Da) Observed m/z in wet-aged NP (Da) Estimated formula 
3.961 ND 233.0208 C10H5N2O5

− 
4.477 ND 182.0216 C6H4N3O4

− 
5.104 ND 244.0772 C17H10NO− 
5.114 ND 198.0197 C11H4NO3

− 
5.172 ND 370.1097 C9H18N6O10

− 
5.323 ND 349.0576 C17H9N4O5

− 
5.391 ND 258.0514 C12H8N3O4

− 
5.392 289.0618 289.0618 C17H9N2O3

− 
5.535 ND 384.0897 C12H14N7O8

− 
5.546 ND 222.0526 C9H8N3O4

− 

 
Table 5. Verification of known compounds found in the filtered list 

TR (min) ESI mode 
Estimated formula,  
adduct type 

Observed m/z in 
dry-aged NP (Da) 

Observed m/z in 
wet-aged NP (Da) 

Compound 

2.010 − C6H4N2O5, [M − H]− 183.0047 183.0048 dinitrophenol 

3.283 − C3H6N2O5, [M − CH3O]− 119.0101 119.0098 DNPOH (as in-source fragment) 

3.974 − C6H5NO3, [M − H]− ND 138.0198 nitrophenol 

5.557 − C16H8N6O10, [M − H]− 443.0220 ND pentanitro-PBNA 

6.069 − C16H9N5O8, [M − H]− 398.0364 398.0381 tetranitro-PBNA 

6.102 − C16H12N2O2, [M − H]− 263.0817 263.0824 mononitro-PBNA 

6.106 − C16H11N3O4, [M − H]− 308.0667 308.0677 dinitro-PBNA 

6.212 − C16H10N4O6, [M − H]− 353.0521 353.0522 trinitro-PBNA 

4.923 + C16H11N3O4, [M + H]+ 310.0825 ND dinitro-PBNA 

4.909 + C16H11N3O4, [M]+ ND 309.0751 dinitro-PBNA 

4.912 + C16H11N3O4, [M + Na]+ ND 332.0647 dinitro-PBNA 

5.173 + C16H10N4O6, [M + H]+ 355.0687 355.0683 trinitro-PBNA 

5.248 + C16H12N2O2, [M + H]+ 265.1016 265.0976 mononitro-PBNA 

5.391 + C16H13N, [M + H]+ 220.0967 220.1035 PBNA 

 

4 Conclusion 
With less than 80 lines of Python code, the automation 
of data filtering is achieved. By applying simple filters 
and a pattern-based visual inspection, the semi-auto-
mated data filtration method simplifies the review pro-
cess of non-targeted data obtained from the aged NP 
samples, which allows a faster transition into the com-
pound identification stage. To extract spectrometric in-
formation of vital degradation intermediates that are 
mildly sensitive at low temperatures, the developed 
workflow effectively removes up to 97% of the false 
positives among the more than 2000 m/z detected in 
both ESI+ and ESI− modes. Based on the verification 
result of the previous identified compounds [9,11,12], 
the capability and performance of the Python code is 
demonstrated. Moreover, the four filters described 
above are adjustable and therefore can be further opti-
mized when we gain deeper knowledge of NP 

degradation or can be calibrated to suit specific study 
needs. However, this developed method may not apply 
to other non-targeted studies because it is specifically 
tailored to study the datasets collected from aged NP. 
Future focus should be on the expansion of data auto-
mation via Python, such as adding more filters to ac-
count for other variables (e.g., mass accuracy) and re-
placing the manual visual inspection process with math-
ematic algorithms (e.g., linear, quadratic, exponential, 
power, etc.) to evaluate the changes in relative intensi-
ties. 
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Supporting Information 

 

Fast Semi-Automated Filtration Method for Non-Targeted 
LC-QTOF Data of Aged Nitroplasticizer Samples 
Kitmin Chen[a], Alexander S. Edgar[a], Dali Yang[a]* 

MST-7: Engineered Materials Group, Materials Science and Technology Division, Los Alamos National Labora-
tory, Los Alamos, New Mexico 87545, United States. 
 
Python codes developed for this work; run by JupyterLab 3.0.14:  
## Semi-automated m/z filtration 
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
 
## Load csv file and reformat data presentation 
filename = "C:\\Users\\...dataset.csv" 
raw_data = pd.read_csv(filename, sep=',', header=1, index_col=0).reset_index() 
raw_data['Sample Name'] = raw_data['Sample Name'].str[4:] 
raw_data['Retention Time'] = raw_data['Retention Time'].str.replace('N/A', '0') 
raw_data['Retention Time'] = pd.to_numeric(raw_data['Retention Time']) 
raw_data['Found At Mass'] = raw_data['Found At Mass'].str.replace('N/A', '0') 
raw_data['Found At Mass'] = pd.to_numeric(raw_data['Found At Mass']) 
raw_data['Mass Error'] = raw_data['Mass Error'].str.replace('N/A', '0') 
raw_data['Mass Error'] = pd.to_numeric(raw_data['Mass Error']) 
raw_data = raw_data.set_index('Sample Name') 
#raw_data = raw_data.drop(index = ['ACN', 'Blank', 'CAL'], axis = 1) #Samples can be removed if needed 
raw_data = raw_data.reset_index().sort_values('Sample Name') 
 
df_selected_variables = raw_data[["Sample Name", "Area", "Retention Time", "Formula", "Found At Mass", "Mass Error", 

"Adduct/Charge"]].rename(columns = {"Sample Name":"Sample", "Retention Time":"RT", 
"Found At Mass":"Observed_mass", "Mass Error":"Mass_error", 
"Adduct/Charge":"Adduct_type"}) 

## filter 1: sensitivity setting 
df_all_area = df_selected_variables.pivot_table(index=['Sample'], columns=['Formula'], values ='Area').round(decimals = 0) 
filter1_intensity = df_all_area.columns[df_all_area.max() > 35000] #filter setting (cps2): 35000 for ESI+ and 10000 for ESI− 
df_filter1 = df_all_area[filter1_intensity] 
 
## filter 2: percent change tolerance 
area_percent_change = df_filter1.std() / df_filter1.mean() *100 
filter2_impurity = df_filter1.columns[area_percent_change > 15] #filter setting (%) 
df_filter2 = df_filter1[filter2_impurity].replace(np.nan, 0) 
 
## filter 3: minimal number of measurements 
measurement_as_binary = df_filter2 != 0 
filter3_minimal_measurements = measurement_as_binary.sum() > 8 #filter setting 
df_filter3 = df_filter2[filter3_minimal_measurements.index[filter3_minimal_measurements]] 
 
## Filter 4: retention time drift 
df_all_RT = df_selected_variables.pivot_table(index=['Sample'], columns=['Formula'], values ='RT').round(decimals = 3).replace(0, np.nan) 
df_RT_in_filter3 = df_all_RT[df_filter3.columns] 
filter4_RT_drift = df_RT_in_filter3.columns[(df_RT_in_filter3.std().abs() * 60) <= 5] #filter setting (seconds) 
filters_combined = df_RT_in_filter3[filter4_RT_drift].mean().sort_values(ascending=True) 
 
#  ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
report_filtered_area_table = df_filter3[filters_combined.index] #for report use 
report_filtered_RT_table = df_RT_in_filter3[report_filtered_area_table.columns] #for report use 
# ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ 
 
## data compilation as report summary 
component1_RT = filters_combined.reset_index().rename(columns = {0:"avg_RT"}) 
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source_adduct_list = df_selected_variables[["Formula", "Adduct_type"]].set_index('Formula') 
component2_adducts = source_adduct_list.loc[filters_combined.index].reset_index() 
df_merged_components = pd.merge(component1_RT, component2_adducts, on = 'Formula', how = 'left').drop_duplicates() 
df_merged_components['avg_RT'] = df_merged_components['avg_RT'].round(decimals = 3) 
source_mass_list = df_selected_variables.pivot_table(index=['Sample'], columns=['Formula'], values ='Observed_mass') 
# ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ 
report_filtered_mass_table = source_mass_list[filters_combined.index].replace(0, np.nan) #for report use 
#  ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
component3_masses = report_filtered_mass_table.mean().round(decimals=4).reset_index().rename(columns = {0:"avg_mass"}) 
report_data_summary = pd.merge(df_merged_components, component3_masses, on = 'Formula', how = 'left').drop_duplicates() #for report 
use 
#  ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 
## data export 
with pd.ExcelWriter("Excel_Checklist.xlsx") as excel_file: 

report_data_summary.to_excel(excel_file, "Checklist for visual inspection") 
report_filtered_area_table.to_excel(excel_file, "peak area") 
report_filtered_mass_table.to_excel(excel_file, "observed mass") 
report_filtered_RT_table.to_excel(excel_file, "observed RT") 

 
## generate plots for visual inspection 
fig_height = min(len(report_filtered_area_table.columns) * 2.5, 900) 
fig_width = len(report_filtered_area_table.index) / 4.5 
xtick_max = len(report_filtered_area_table.index) 
report_filtered_area_table.plot(grid = True, marker='o', figsize = (fig_width, fig_height), 

subplots = True, sharex = False, xlim = 0, 
xticks = np.arange(0, xtick_max, 1), rot = 90) 

plt.tight_layout() 
plt.savefig('visual inspection.jpeg') 
print("Report/Checklist is now available!") 
 
 
## Load final candidates for data retrieval and summary 
filename2 = "C:\\Users\\...Selected_import.csv" 
accepted_data = pd.read_csv(filename2, sep=',', header=1, index_col='Formula') 
 
finalized_area_list = report_filtered_area_table[accepted_data.index] 
finalized_mass_list = report_filtered_mass_table[accepted_data.index] 
finalized_RT_list = report_filtered_RT_table[accepted_data.index] 
 
with pd.ExcelWriter("Finalized_POS_List.xlsx") as excel_file: 

accepted_data.to_excel(excel_file, "summary") 
finalized_area_list.to_excel(excel_file, "peak area") 
finalized_mass_list.to_excel(excel_file, "observed mass") 
finalized_RT_list.to_excel(excel_file, "observed RT") 

 
## generate final plots 
finalized_masses = finalized_area_list.reset_index() 
fig_height = min(len(report_filtered_area_table.columns) * 2.5, 900) 
fig_width = len(report_filtered_area_table.index) / 4.5 
xtick_max = len(report_filtered_area_table.index) 
finalized_masses.plot(grid = True, marker='o', figsize = (fig_width, fig_height), 

subplots = True, sharex = False, xlim = 0, 
xticks = np.arange(0, xtick_max, 1), rot = 90) 

plt.tight_layout() 
plt.savefig(‘final plot.jpeg') 
 


