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Fast Semi-Automated Filtration Method for Non-Targeted LC-
QTOF Data of Aged Nitroplasticizer Samples

Kitmin Chen!?, Alexander S. Edgar'®, Dali Yang!®*

Abstract: A full dataset of aged nitroplasticizer (NP) is
composed of more than 2000 unique mass-to-charges
(m/z) when combining the non-targeted data obtained
from both positive and negative electrospray ionization
modes in time-of-flight mass spectrometry. Therefore,
manual processing of these data often takes days,
weeks, or even months to scrutinize for mechanistic in-
sights. To effectively extract meaningful signals that
represent vital degradation intermediates in the early
NP degradation mechanism, a semi-automated post-
processing workflow for data filtering, tailored to the ag-
ing experiment of NP, has been developed. The auto-
mated portion of this workflow is written in a Python
code (using pandas, numpy, and matplotlib libraries),

which removes more than 65% of potential false signals
within seconds via four threshold-based adjustable fil-
ters: signal sensitivity, coefficient of variation, number of
measurements, and retention time variability. As for the
manual portion, a pattern-based inspection method is
employed to reduce another 23% or more false posi-
tives, which greatly simplifies data visualization and re-
sults in less than 3% of potential candidate m/z needing
in-depth data interpretation. As a positive control,
known compounds are verified. Using this semi-auto-
mated data reduction method, the amount of time re-
quired is reduced to a matter of hours for data filtering
in the non-targeted datasets of aged NP, which saves
more time and effort for compound identification.

Keywords: Nitroplasticizer (NP), Aging, Time-of-flight mass spectrometry (TOF-MS), Data automation, Python

1 Introduction

Nitroplasticizer (NP) is a binder component commonly
used in energetic composites to reduce mechanical sen-
sitivity. The NP studied here is a eutectic mixture of
bis(2,2-dinitropropyl) acetal/formal (BDNPA/F) (~1:1 wt.
ratio), which also contains approximately 0.1 wt.% of n-
Phenyl-B-naphthylamine (PBNA) for scavenging NOy oxi-
dant species generated from NP decomposition. In a 44-
month thermal aging study of NP [1-4], the investigation
of decomposition products is crucial to understand the
life-time aging behavior of NP when it is in decades-long
storage. To detect these unspecified compounds, liquid
chromatography quadrupole time-of-flight mass spec-
trometry (LC-QTOF) has been applied by using infor-
mation-dependent acquisition (IDA), which performs a
non-targeted survey scan of precursor ions and selects
the candidate ions based on the preset criteria (e.g., in-
tensity threshold) for secondary fragmentation (via colli-
sion-induced dissociation) [5-8]. Subsequently, the rec-
orded mass-to-charges ratios (m/z) of precursor and frag-
ment ions in MS' and MS? (also called MS/MS) spectra
are used to identify the detected compounds. Through the
non-targeted MS data, major breakthroughs have been
achieved in our previous works, including the

identification of 2,2-dinitropropanol (DNPOH) [9,10], ni-
trated derivatives of PBNA and nitrophenols [11,12], and
with the potential to carry out quantitation [12]. Leveraging
the results of these previous studies, the depletion of di-
nitro-PBNA derivative is the transition point where NP
degradation alters from nitrous acid (HONO) elimination
into acid-catalyzed acetal/formal hydrolysis [11,13-17].
Considering other species may be involved in this altera-
tion of the NP degradation pathway, our attention turns to
the early stage of NP aging (i.e., the time before NP hy-
drolysis occurs).

Manual data processing and annotation are very time-
consuming because thousands of m/z are typically col-
lected in non-targeted data acquisition [18-20]. Besides
the detected m/z of interest, which includes their corre-
sponding isotopes, different adducts, charge states, and
in-source fragments, a portion of m/z can be originated
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from false positives, such as contaminants (in sample,
solvent, autosampler vials, etc.) and ionization-generated
artefacts [18,20,21]. To eliminate the false positives, var-
ious filter-based automated tools have been developed
for non-targeted metabolomics studies. For instance, the
filtering method published by McMillan et al. used mass
defect and retention time (Tr) alignment to remove salt
cluster artefacts in metabolomics data [20]. Another filter-
ing approach, the comprehensive peak characterization
(CPC) algorithm was presented by Pirttila et al., which
also removes noise artefacts and other false peaks based
on the peak quality (e.g., signal-to-noise, peak width, and
peak intensity) [18]. However, these algorithms are de-
signed for metabolomics applications and their implemen-
tation for our purpose may require deep knowledge in
coding. Therefore, an automated method tailored to the
aging study of NP is needed. Unlike “omics” studies, the
aging study of NP monitors the changes in chemical com-
position on a time scale. Therefore, the changes in abun-
dance as a function of time provide a unique characteristic
to investigate the outstanding decomposed products in
the aging experiment. As an example, the patterns of rise
and fall in the abundance of nitrated PBNA derivatives
across 44 months of aging at different temperatures (38,
45, 55, and 64°C) provide insights into how PBNA is con-
sumed in the aged NP samples in our work [11]. As op-
posed to non-targeted “omics” studies, the identification
of a few but vital analytes is a faster alternative than pro-
filing all species. In addition, the identified few signals can
be used to expand the search of other products by asso-
ciation. For example, nitrophenol and dinitrophenol were
discovered based on the assumption that acid-catalyzed
hydrolysis has occurred in the nitrated PBNA derivatives
[11]. Additionally, the nitrated PBNA derivatives and nitro-

combined being less than 0.1 wt.% in NP in the chemical
composition, which suggests the vital decomposed prod-
ucts are comparatively higher in abundance as NP de-
composes over time. To apply the findings from previous
works, a data filtration method using user-specified pa-
rameters is preferred. Thus, we can obtain a potential list
of vital decomposed products in the early stage of NP ag-
ing, where each represents a unique m/z and retention
time value and exhibits a meaningful correlation between
its abundance and aging time. To achieve this objective,
we explored the use of the Python programming lan-
guage. In this paper, we present a fast semi-automated
data filtration method for the aging study of NP and a
demonstrative evaluation of the real non-targeted da-
tasets obtained from large sets of aged NP samples.

2 Experimental Section
2.1 Evaluation of Data Quality

Before testing the Python script on the dataset, an evalu-
ation of the aged NP data in both electrospray ionization
modes (ESI +/-) was conducted through cross-examina-
tion of known compounds between the new and old meth-
ods. The optimization of the LC-QTOF parameters and
the spectral quality (i.e., Tr and mass accuracy) in ESI-
are detailed in previous works [11,12]. By standardizing
the sample preparation method [11] and instrumental cal-
ibration [12], the drawn curves (patterns) of the relative
intensities are smoother in the new dataset (top row) than
the old dataset (bottom row). Therefore, the new dataset
can provide better data mining capabilities to find anoma-
lies and correlations.

phenols were detected despite their abundance
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Figure 1. Using the relative intensities of DNPOH and PBNA nitro derivatives, pattern comparison is conducted between new (top row) and old

(bottom row) ESI- datasets in dry-aged NP from 0 to 44 months.
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Though the previous improvements of ESI+ pro-
vided confirmation of a mononitro-PBNA derivative [11],
the sensitivity for this compound is still 4-fold lower than
its detection in ESI-. Therefore, most of the discoveries
were conducted in ESI- [9,11]. However, this also
means the ESI+ data may contain important mechanis-
tic insights that are not covered by the ESI- data (e.g.,
PBNA, despite being a known stabilizer in NP, it was
not detected until ESI+ mode is employed [11]). There-
fore, the LC parameters for ESI+ acquisition was further
optimized, as described in Table 1. With the starting
composition of mobile phases changed from 30% B to

Table 1. LC Parameters (ExionLC AC)

60% B (where B = 0.1% formic acid in methanol) and
the flow rate decreased from 0.35 mL/min to 0.30
mL/min, the intensity in ESI+ has significantly improved:
98-fold in PBNA, 22-fold in mononitro-PBNA (3 times
the ESI- signal), 50-fold in dinitro-PBNA (2 times the
ESI- signal), and 45-fold in trinitro-PBNA. The overall
data quality is crucial to the semi-automated filtration
analysis not only in the aspect of enhanced sensitivity,
but also in the aspect of Tr and mass defect, which
maintained at less than 0.1 min and 5 ppm (<10 ppm in
fragments).

LC method

Old LC parameter in ESI+ mode
components

New LC parameters in ESI+ mode

LC parameters in ESI- mode

A: 13 mM ammonium acetate in water,

Mobile phases

A: 0.1% formic acid in water
B: 0.1% formic acid in methanol

A: 0.1% formic acid in water
B: 0.1% formic acid in methanol

pH 6.0
B: 13 mM ammonium acetate in 95:5
(v/v) ACN, pH 6.0

Needle rinse

0.02% formic acid and 5% acetone
in ACN

0.02% formic acid and 5% acetone in
ACN

0.02% formic acid and 5% acetone in
ACN

Run time (min)

20

16

18

Gradient
program
(%B, curve?)

0.00 min (30.0%, -1), 10.0 min
(99.9%)

0.00 min (60.0%, -1), 10.0 min
(99.9%), 10.1 min (99.9%), 12.6 min
(99.9%), 12.7 min (60.0%)

0.00 min (20.0%), 3.00 min (60.0%), 10.0
min (60.0%), 10.1 min (99.9%), 14.0 min
(99.9%), 14.1 min (60.0%)

Column rinse
and equilibration
program

0.00 min (30% B), 0.01 min
(99.9%B), 4.05 min (99.9% B), 4.10
min (30% B), 10.0 min (30% B)

Combined with gradient program as a
single method

Combined with gradient program as a
single method

Flow rate
(mL/min)

Acquisition and equilibration = 0.35
Column rinse = 0.50

Acquisition and equilibration = 0.30
Column rinse = 0.50

Acquisition and equilibration = 0.35
Column rinse = 0.53

21f not specified, the curve is set to 0 or linear.

2.2 Data Processing

The processing procedure of MS data is divided into
four components: peak finding, peak integration, data
reduction, and data compilation. Using the peak finding
and integration features of the default SCIEX OS soft-
ware, four testing datasets (ESI+/-) are obtained from
aged NP in wet and dry environments. Non-targeted
peak finding was performed at mid-exhaustive sensitiv-
ity to capture all plausible m/z between 2.0 and 7.5 min
in ESI- and 1.0 and 8.5 min in ESI+. To minimize inte-
gration of baseline noises, the parameters of the se-
lected m/z in the SCIEX OS software were modified: the
minimum peak height at 200 counts per second (cps),
the signal-to-noise threshold at 10, the gaussian
smoothing at 2.5, the baseline noise at 40%, the base-
line subtraction window at 1 min, and the peak splitting
at 4 points. The semi-automated filtration method is
composed of three steps: (1) using the first Python
script, the anomalies are automatically removed by four
adjustable filters, including the sensitivity of peak inten-
sity, the relative changes of intensities across the aging

process, the minimal amount of measurements, and the
Tr variability; (2) from the filtered list of m/z, the relative
intensities of each m/z are plotted against the sample
names (i.e., approximated aging time) to allow visual
inspection to be conducted; and (3) using the second
Python script, the spectrometric information of the ac-
cepted m/z is automatically compiled as an Excel sum-
mary.

3 Results and Discussion

Combining both the ESI+ and the ESI- datasets, man-
ual cleaning of more than 2000 m/z is prone to introduc-
ing human error. As shown in the example in Figure 2,
the ESI+ dataset alone contain 100464 rows of infor-
mation and there are 1695 unique m/z after data extrac-
tion. Using pandas, numpy, and matplotlib, the auto-
mated post-filtration process offers a fast, simple, and
targeted approach for data reduction, which involves
four different filters in a stepwise progression. It is worth
noting that the initial number of m/z can be greatly
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reduced with strict integration parameters and narrow
time windows of peak screening, which also avoids
counting impurities in the dead volume and column
rinse. However, the peak finding and integration set-
tings in the SCIEX OS software were intentionally re-
laxed to obtain the maximum number of m/z, and thus
the limitation of the Python script can be tested.

As mentioned previously, our primary objective is to
search for the vital decomposed products in the early
stage of NP aging. Based on the knowledge gained
from the low-abundant compounds (i.e., nitrated PBNA
derivatives and nitrophenols), the first three filters de-
fine what is considered vital, that is, Filter 1, the

Sample  Area RT  Formula Observed mass Mass error Adduct type

0 3A-00 8800 1703 (162.02952) 163.0368 3.26 M+H+

71848 3A-00 4890 6270 {184.10917} 1851157 -0.93 M+H+

71792 3A-00 847060 6.187 {246.08029} 247.0868 M+H+

9856  3A-00 631.0 224 M+H+

{238.15518) 239.1619

71736 3A-00 NaN 0000 {360.16635} 0.0000 M+H+

66023 6A-44 NaN 0.000 {230.08191} 0.0000 M+H+

»

66079  6A-44 NaN 0000 {224.04963} 0.0000 M+H+

66135  6A-44 NaN 0000 {292.06839} 0.0000 M+H+

65519  6A-44 120390 5687 {535.13690} 536.1456 M+H+

100463 6A-44 32969.0 1592 (212.05434) 213.0612 M+H+

100464 rows x 7 columns

df_all_area = df_selected_variables.pivot_table(index=['Sample'],

measured maximum abundance (intensity) of decom-
position product must be comparable to the lowest de-
tected value obtained from the low-abundant com-
pounds if not higher; Filter 2, its abundance must
change in response to NP degradation; and Filter 3, the
change in abundance is expected to occur as a function
of time, the rate of which can be potentially measured.
In the last filter, Tr alignment is used to minimize ran-
dom error. Consequently, the order of filters is arranged
following this logic. However, because Filter 3 cannot
determine whether the change in abundance is consec-
utive or random, visual inspection is applied.

columns=[‘'Formula‘],
values ='Area').round(decimals = @)

display(df_all_area.head(3))

Formula {100.03311} {100.05278} {100.05294} {101.08420} {101.08428) {101.08435} {101.08441}

Sample
3A-00
3A-02

3A-04

52424.0 445.0 518.0 758.0 842.0 4398.0 853.0

68560.0 515.0 467.0 578.0 472.0 2279.0 1711.0

70345.0 648.0 336.0 623.0 874.0 1668.0 7920

3 rows x 1695 columns

Figure 2. Snapshots of the data filtration workflow in JupyterLab. The raw non-targeted data of dry-aged NP are exported from SCIEX OS as a
comma separated value (csv) file, which contains 100464 rows of data (left). Using the unique formulas (m/z + adduct) and the samples names of
44-month thermal aging experiment of NP as the parameters for columns and rows, respectively, their corresponding intensity values are extracted
into a table (right) that has a dimension of 56 rows and 1695 columns. The first three rows are displayed as an example.

3.1 Filter 1 — Sensitivity

The SCIEX OS software will integrate the baseline
noises if an inadequate threshold is used. In addition, a
minimum intensity in IDA-based method is required to
perform MS? scans, which produces the fragmentation
pattern that can be used for structural elucidation to in-
crease identification confidence. When only an MS'
spectrum is available, formulaic estimation is still
achievable and the isotopic pattern can be used for con-
firmation of elemental composition. Ideally, obtaining
the MS? is preferred because the exact structure of the
decomposed product is critical to trace its origin. There-
fore, the threshold setting in Filter 1 was calibrated us-
ing the lowest detected intensity for generating an MS?
spectrum of the least sensitive known compound (i.e.,
trinitro-PBNA derivative in ESI+ and nitrophenol in
ESI-). Using the improved ESI+ parameters, the num-
ber of m/z found in ESI+ is at least twice the number of
m/z found in ESI-, as shown in Table 2. Therefore, the
intensity threshold was set 3.5-fold higher in ESI+ data
(35000 cps?) than in ESI- data (10000 cps?), as shown
in Figure 3 (i.e., filter1_intensity in Python script), which

removed more than 64% of ESI+ data and more than
34% of ESI- data that are false positives.

3.2 Filter 2 — Percentage of Variation

Filter 2 discerns and removes the impurities and con-
taminants that could be mistakenly treated as valid m/z.
As previously mentioned, similar to the nitrated PBNA
derivatives in the thermal aging process, the concentra-
tions of intermediates are expected to change (increase
or decrease) as a function of time in aging process. For
species that exist in the baseline NP sample and do not
break down or do not break down significantly through-
out 44 months of aging, especially at elevated temper-
atures (>55°C), they are identified either as impurities
or production byproducts that are very persistent. For
species that are detected at approximately the same in-
tensity in the solvent blank (ACN), the baseline NP
sample, and all aged NP samples, they are identified as
contaminants that likely originated from external
sources, such as solvent, mobile phases, autosampler
vials, etc. Using the coefficient of variation (CV) ex-
pressed in percentage (i.e., standard deviation + mean
x 100%), the second filter determines whether the in-
tensity changes are statistically significant. Although the
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CV of mono, di, and trinitro-PBNA derivatives are meas-
ured at 82%, 63%, and 146% in ESI- and 77%, 50%,
and 112% in ESI+ across 56 measurements of dry-
aged NP (excluded solvent blanks and standards), the
CV of impurities typically fall between 10% and 40%.
However, the CV threshold must also avoid false nega-
tives that could contribute to the alteration of NP degra-
dation, particularly intermediates that can be produced
by minor reactions at low temperatures. Therefore, the
change in intensity of nitrophenol across 44 months of
aging at 38°C (i.e., 13 measurements) is examined be-
cause it is proposed as the minor hydrolyzed product of
nitrated PBNA derivatives [11], which yields a CV of
16%. Based on these results, a fixed 15% was imple-
mented as the CV threshold, as shown in Figure 3 (i.e.,
filter2_impurity in Python script). Consequently, about
2% of false positives in ESI+ data and 8% or more of
false positives in ESI- data are removed.

3.3 Filter 3 — Number of Measurements

Filter 3 minimizes the random species, including arte-
facts (e.g., ionization-generated artefacts) and species
that do not contribute to the NP degradation pathway.
In species that do contribute to the NP degradation
pathway, their abundance typically changes as a func-
tion of time in a consecutive manner and their rate of
change follows the time temperature superposition
(TTS) principle. Therefore, multiple consecutive meas-
urements can be obtained (e.g., the rise and fall of ni-
trated PBNA derivatives and the formation rate of
DNPOH as a key product of NP hydrolysis that are ac-
celerated by elevated temperatures [11]). Meanwhile,
some species only occur at random occasions and
therefore do not contribute to the NP degradation path-
way. To generate any pattern of relative changes in

_area.colunns[df _all_area.max() > 35000] #filter setting
cafilterl_intensity]
d(3))

Formula (100.03311) {105.02514) (106.04227) (110.10978) (114.06820) (116.03501) (116.04727) ({119.99934) (119.99960) (119.99986} ...

sample

3A-00 524240 NaN 574110

3A-02 685600 6340 281860

3A-04

intensity at various temperatures, a minimum of eight
measurements is required (i.e., two measurements per
temperature). Using this estimated value as the thresh-
old, which is shown in Figure 3 (i.e., filter3_mini-
mal_measurements in Python script), 1%-2% and 2%-
7% false positives are removed in ESI+ and ESI- da-
tasets, respectively. Considering more than 20 meas-
urements in mono, di, and trinitro derivatives are ob-
tained across 56 aged NP samples in both ESI+ and
ESI-, the minimum tolerance can be adjusted to a
higher number for further data reduction if needed.

3.4 Filter 4 — Tr Variability

Because the noise and artefacts are randomized de-
fects that tend to have varying Tr, the fourth filter is a
complementary layer to all three filters described
above. Filter 4 removes any randomized defects that
exhibits high variability in Tr. Through meticulous con-
trol of the external factors (e.g., temperature, column
equilibration time, and mobile phases) that could affect
Tr reproducibility, low Tr variability of less than 3 s or
0.05 min was achieved in the datasets of a previous
study [11]. Because of a faster change of the mobile
phase composition in the gradient program of the ESI-
method (>7% B per min) than that of the ESI+ method
(>4% B per min), stronger Tr drift was observed in the
early eluents of ESI- dataset, such as 0.032 min in
DNPOH as opposed to 0.011 min in BDNPA/F [11].
Therefore, the cut-off for Tr variability of Filter 4 was set
to a slightly wider window (5 s) for the ESI- dataset
whereas 3 s was selected for the ESI+ dataset, as
shown in Figure 3 (i.e., filter4 RT drift in Python
script), which removes about 11%-16% of ESI- data
and 5%-7% of ESI+ data that are false positives.

Formula (100.03311) (105.02514) {106.04227) (110.10978} (114.06820) (116.03501) (116.04727) (119.99934) (119.99960} (119.99986) ...

sample
3A-00
3A.02

3A-04

- (a3 240
=

ormula (127.94391) (141.95791) (168.04004) (154.96693) (156.07685) (130.92313) (125.96248) (226.04646) (131.04066) (96.96172)
Sample

3a-00

302 1161260 265070 0o 2772 59610 4630 158840

3A-04 150858 57150

438 columns

Figure 3. Snapshots of the automated data filtering method in JupyterLab. Through the four filters, data are reduced from 1695 columns to 438
columns, where each represents a unique m/z. The first three rows in the results of each filter are displayed as an example.
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Table 2. Semi-automated data filtration results

m/z Quantity in m/z Quantity in
dry-aged NP wet-aged NP
datasets datasets
asltxigfnsa?:ds?i:?rlation ESI+ ESI- ESk+ ESI-
Initial number of m/z 1695 655 1635 775
After Filter 1 601 428 551 437
After Filter 2 569 351 524 374
After Filter 3 552 308 496 361
After Filter 4 438 205 408 272
Total candidate m/z 11 9 33 17

Through all four filters, the automated process re-
duced the initial number of m/z by more than 74% in the
ESI+ datasets and 65% in the ESI- datasets. Because
the objective of this process is to search for vital decom-
posed products that are high in abundance, the majority
of the false positives must be removed by Filter 1. Using
conservative settings, the contributions of Filters 2 and
3 to the removal of false positives are merely 3%-4% in
ESI+ dataset. When the settings are doubled in value
(30% CV and 16 points of minimal measurements),
their contributions are increased to 14% (6% by Filter 2
and 8% by Filter 3) and the number of filtered m/z drop

from 438 to 277: a significant difference of 161 m/z that
does not require manual inspection.

3.5 Visual Inspection of Abundance
Change in m/z

The visual inspection of abundance change in m/z is a
pattern-based qualitative validation. The plots are dis-
played as a top-down list (ESI- signals first, then ESI+
signals) in the order of Twr that matches the Excel check-
list (generated by Python script). The validation is gov-
erned by three principles and examples of false signals
are illustrated in Figures 4 and 5: (1) any peaks with a
pattern resembling baseline noise, system contami-
nants, and sample impurities are removed; (2) any
peaks with a pattern that only occurs in the quadrants
of elevated temperatures (= 55°C, after 4ACN) are
known as high-temperature intermediates and are
therefore removed since they do not contribute to the
early aging of NP; and (3) isotopes and in-source frag-
ments are removed (or archived on a separate list),
which exhibit the same pattern and Tr as the monoiso-
topic mass. Following these basic criteria, more than
23% and 30% false positives in ESI+ and ESI- datasets
are removed, respectively.

40000
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Figure 4. Plots of peak intensity (y-axis) versus the aged samples in the chronological order of aging months (x-axis) that is given by the last two
digits (e.g., 02 = 2 months). These are example plots of baseline noise (first row), high-temperature intermediates (second row), random defects
(third row), and impurity (fourth row). Each plot is divided into four quadrants by the ACN blanks (i.e., 3ACN, 4ACN, 5ACN, and 6ACN) from left to
right, with each quadrant representing a temperature that is given by the first number of the sample name (i.e., 3 = 38°C, 4 = 45°C, 5 =55°C, and 6
= 64°C). The number displayed in the legend is the estimated mass of the chemical formula and not a m/z value.
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Figure 5. The plots of dinitro-PBNA derivative (bottom), its isotope (middle), and in-source fragment (top).

After the visual inspection process, a targeted
search was performed in the SCIEX OS software to
confirm the validity of m/z and retrieve the MS' and MS?2
spectra. Although the chemical structure is a crucial
property to understand the reaction mechanism, the in-
terpretation of MS? features is a challenging and time-
consuming process, especially for chimeric spectra,
which contain false fragment features from the precur-
sors of similar m/z that pass through the mass filter [22].

Therefore, only the chemical formulas with unspecified
adducts are determined for the candidate m/z, as pre-
sented in Tables 3 and 4. In Table 5, 100% of the pre-
viously identified intermediates [9,11] are captured in
the filtered lists. Beside using these known compounds
as calibrants to optimize the filtration parameters for
maximum effectiveness, which is discussed in detail
above, they can also be used as a positive confirmation.

Table 3. Filtered list of candidate m/z from ESI+ datasets for future structural interpretation

T (min) Observed m/z in Observed m/z in Estimated Observation

dry-aged NP (Da) wet-aged NP (Da) formula
2.080 ND 159.0442 C1oH70,"

R Chimeric MS'/MS?;

2.182 273.0698 ND CaH1iNsOs other possibility: CaHiaN0:Na”
2.631 ND 285.1045 C7H17N4Og* C7H13N30g, [M + NH4]*
2.631 ND 290.0600 C7H13N303Na+ C7H13N3Og, [M + Na]*
2.643 ND 329.1306 CoH21N4Og* CoH17N30g, [M + NH4]*
2.643 ND 334.0864 CgH17N309Na+ CgH17N3Og, [M + Na]*
2.996 ND 343.1101 CoH1gN4O10" CoH15N30+0, [M + NH4]*
2.996 ND 348.0654 CgH15N301oNa+ CgH15N3O10, [M + Na]*
3.015 ND 256.1164 C1oH16N4O4"
3.052 ND 214.0504 C1,HsNO3* Chimeric MS'/MS?
3.087 ND 149.0922 CsH13N203" Chimeric MS'/MS?
3.177 276.1192 276.1195 C1oH1sN306"
3.181 ND 287.0857 CgH13Ns06"
3.422 ND 268.1144 CgH1sN3O7*
3.450 228.1961 ND Ci13H26NO,* Chimeric MS'/MS?
3.735 ND 331.0987 C1oH16N4O4"
3.929 250.0868 250.0863 CigH12NO,*
3.995 ND 225.1964 Ci3H2sN,0*
4.322 ND 247.0865 C16H11N2O*
4.376 ND 248.1074 C17H1sNO*
4.717 ND 393.0875 C1oH15N7010" Chimeric MS'/MS?
4.719 ND 489.1428 C13H25N6014+ Other possibility: C14H24N7O11Na*
5.111 ND 503.1590 C15H25N7O11Na+ Other pOSSIbIlIty C14H27N5()14+
5.188 219.1043 219.1041 CigH1sN*
5.242 249.1027 249.1028 C1sH13N20*
5.286 ND 249.1083 CgHwNzOe+ Other possibility: C10H16N303Na*
5.878 ND 474.3064 (:22H42N4()7+ Other pOSSIbIlIty (:25H43N2()5Na+
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6.466 276.0772 ND C15H10N302+ Other pOSSIbIlIty C13H12()3+
6.659 ND 274.1588 CaoHooN*

6.665 ND 233.1935 undetermined Low-intensity chimeric MS'/MS?
7.051 ND 274.1593 CaoHooN*

ND = Not detected

Table 4. Filtered list of candidate m/z from ESI- datasets for future structural interpretation

Tgr (Min) Observed m/z in dry-aged NP (Da) Observed m/z in wet-aged NP (Da) Estimated formula
3.961 ND 233.0208 C1oH5NO5~
4.477 ND 182.0216 CeHaN304~
5.104 ND 244.0772 C47H10NO™
5.114 ND 198.0197 C11HsNO5~
5.172 ND 370.1097 CoH1sNsO10~
5.323 ND 349.0576 C17HgN4Os~
5.391 ND 258.0514 C1oHgN3O4~
5.392 289.0618 289.0618 C17HgN,O5~
5.535 ND 384.0897 C1oH14N;Og”
5.546 ND 222.0526 CoHsN304~

Table 5. Verification of known compounds found in the filtered list
. Estimated formula, Observed m/z in Observed m/z in

Tr(min) ESI mode Compound

adduct type

dry-aged NP (Da)

wet-aged NP (Da)

2.010 - CeHisN,Os, [M = H] 183.0047 183.0048 dinitrophenol
3.283 - C3HsN,0s, [M — CH;0]” 119.0101 119.0098 DNPOH (as in-source fragment)
3.974 - CsHsNO3, [M - H]” ND 138.0198 nitrophenol
5.557 - C1sHsNgO10, [M — HI 443.0220 ND pentanitro-PBNA
6.069 - C16HgN5Og, [M - H]~ 398.0364 398.0381 tetranitro-PBNA
6.102 - Ci16H12N205, [M = HI 263.0817 263.0824 mononitro-PBNA
6.106 - Ci16H11N3O4, [M = HI 308.0667 308.0677 dinitro-PBNA
6.212 - Ci6H10N4Os, [M — HI 353.0521 353.0522 trinitro-PBNA
4.923 + C1gH11N304, [M + HI* 310.0825 ND dinitro-PBNA
4.909 + CigH11N304, [M]* ND 309.0751 dinitro-PBNA
4.912 + Ci16H11N3O4, [M + NaJ* ND 332.0647 dinitro-PBNA
5.173 + Ci6H10N4Os, [M + H]* 355.0687 355.0683 trinitro-PBNA
5.248 + Ci16H12N203, [M + HI* 265.1016 265.0976 mononitro-PBNA
5.391 + CigHi1sN, [M + HJ* 220.0967 220.1035 PBNA

4 Conclusion

With less than 80 lines of Python code, the automation
of data filtering is achieved. By applying simple filters
and a pattern-based visual inspection, the semi-auto-
mated data filtration method simplifies the review pro-
cess of non-targeted data obtained from the aged NP
samples, which allows a faster transition into the com-
pound identification stage. To extract spectrometric in-
formation of vital degradation intermediates that are
mildly sensitive at low temperatures, the developed
workflow effectively removes up to 97% of the false
positives among the more than 2000 m/z detected in
both ESI+ and ESI- modes. Based on the verification
result of the previous identified compounds [9,11,12],
the capability and performance of the Python code is
demonstrated. Moreover, the four filters described
above are adjustable and therefore can be further opti-
mized when we gain deeper knowledge of NP

degradation or can be calibrated to suit specific study
needs. However, this developed method may not apply
to other non-targeted studies because it is specifically
tailored to study the datasets collected from aged NP.
Future focus should be on the expansion of data auto-
mation via Python, such as adding more filters to ac-
count for other variables (e.g., mass accuracy) and re-
placing the manual visual inspection process with math-
ematic algorithms (e.g., linear, quadratic, exponential,
power, etc.) to evaluate the changes in relative intensi-
ties.
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Supporting Information

Fast Semi-Automated Filtration Method for Non-Targeted
LC-QTOF Data of Aged Nitroplasticizer Samples

Kitmin Chen!?, Alexander S. Edgar'®, Dali Yang/®*

MST-7: Engineered Materials Group, Materials Science and Technology Division, Los Alamos National Labora-
tory, Los Alamos, New Mexico 87545, United States.

Python codes developed for this work; run by JupyterLab 3.0.14:

## Semi-automated m/z filtration
import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

## Load csv file and reformat data presentation
filename = "C:\\Users\\...dataset.csv"
raw_data = pd.read_csv(filename, sep='",', header=1, index_col=0).reset_index()
raw_data['Sample Name'] = raw_data['Sample Name'].str{4:]
raw_data['Retention Time'] = raw_data['Retention Time'].str.replace('N/A’, '0")
raw_data['Retention Time'] = pd.to_numeric(raw_data['Retention Time')
raw_data['Found At Mass'] = raw_data['Found At Mass'].str.replace('N/A', '0")
raw_data['Found At Mass'] = pd.to_numeric(raw_data['Found At Mass'])
raw_data['Mass Error'] = raw_data['Mass Error'].str.replace('N/A’, '0")
raw_data['Mass Error'] = pd.to_numeric(raw_data['Mass Error'])
raw_data = raw_data.set_index('Sample Name')

#Samples can be removed if needed
raw_data = raw_data.reset_index().sort_values('Sample Name')

df_selected_variables = raw_data[["Sample Name", "Area", "Retention Time", "Formula", "Found At Mass", "Mass Error",
"Adduct/Charge"]].rename(columns = {"Sample Name":"Sample", "Retention Time":"RT",
"Found At Mass":"Observed_mass", "Mass Error":"Mass_error",
"Adduct/Charge":"Adduct_type"})

## filter 1: sensitivity setting

df_all_area = df_selected_variables.pivot_table(index=['Sample"], columns=['Formula'], values ='Area').round(decimals = 0)

filter1_intensity = df_all_area.columns[df_all_area.max() > 35000] #filter setting (cps?): 35000 for ESI+ and 10000 for ESI-

df_filter1 = df_all_area(filter1_intensity]

## filter 2: percent change tolerance

area_percent_change = df_filter1.std() / df_filter1.mean() *100

filter2_impurity = df_filter1.columns[area_percent_change > 15] #filter setting (%)
df_filter2 = df_filter1[filter2_impurity].replace(np.nan, 0)

## filter 3: minimal number of measurements

measurement_as_binary = df_filter2 1=0

filter3_minimal_measurements = measurement_as_binary.sum() > 8 #filter setting
df_filter3 = df_filter2[filter3_minimal_measurements.index[filter3_minimal_measurements]]

## Filter 4: retention time drift

df_all_RT = df_selected_variables.pivot_table(index=['Sample'], columns=['Formula’], values ='RT').round(decimals = 3).replace(0, np.nan)
df_RT_in_filter3 = df_all_RT[df_filter3.columns]

filter4_RT_drift = df _RT_in_filter3.columns[(df_RT_in_filter3.std().abs() * 60) <= 5] #filter setting (seconds)

filters_combined = df_RT_in_filter3[filter4_RT_drift].mean().sort_values(ascending=True)

#
report_filtered_area_table = df_filter3[filters_combined.index] #for report use

report_filtered_RT_table = df RT_in_filter3[report_filtered_area_table.columns] #for report use
#

## data compilation as report summary
component1_RT = filters_combined.reset_index().rename(columns = {0:"avg_RT"})
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source_adduct_list = df_selected_variables[["Formula", "Adduct_type"]].set_index('Formula')

component2_adducts = source_adduct_list.loc[filters_combined.index].reset_index()

df_merged_components = pd.merge(component1_RT, component2_adducts, on = 'Formula’, how = 'left').drop_duplicates()
df_merged_components['avg_RT'] = df_merged_components['avg_RT'].round(decimals = 3)

source_mass_list = df_selected_variables.pivot_table(index=['Sample'], columns=['Formula'], values ='Observed_mass')

#

report_filtered_mass_table = source_mass_list[filters_combined.index].replace(0, np.nan) #for report use
#

component3_masses = report_filtered_mass_table.mean().round(decimals=4).reset_index().rename(columns = {0:"avg_mass"})
report_data_summary = pd.merge(df_merged_components, component3_masses, on = 'Formula’, how = 'left').drop_duplicates() #for report
use

#

## data export

with pd.ExcelWriter("Excel_Checklist.xIsx") as excel_file:
report_data_summary.to_excel(excel_file, "Checklist for visual inspection")
report_filtered_area_table.to_excel(excel_file, "peak area")
report_filtered_mass_table.to_excel(excel_file, "observed mass")
report_filtered_RT_table.to_excel(excel_file, "observed RT")

## generate plots for visual inspection

fig_height = min(len(report_filtered_area_table.columns) * 2.5, 900)

fig_width = len(report_filtered_area_table.index) / 4.5

xtick_max = len(report_filtered_area_table.index)

report_filtered_area_table.plot(grid = True, marker='o', figsize = (fig_width, fig_height),
subplots = True, sharex = False, xlim =0,
xticks = np.arange(0, xtick_max, 1), rot = 90)

plt.tight_layout()

plt.savefig('visual inspection.jpeg’)

print("Report/Checklist is now available!")

#t Load final candidates for data retrieval and summary
filename2 = "C:\\Users\\...Selected_import.csv"
accepted_data = pd.read_csv(filename2, sep=",', header=1, index_col="Formula')

finalized_area_list = report_filtered_area_table[accepted_data.index]
finalized_mass_list = report_filtered_mass_table[accepted_data.index]
finalized_RT _list = report_filtered_RT_table[accepted_data.index]

with pd.ExcelWriter("Finalized_POS_List.xIsx") as excel_file:
accepted_data.to_excel(excel_file, "summary")
finalized_area_list.to_excel(excel_file, "peak area")
finalized_mass_list.to_excel(excel_file, "observed mass")
finalized_RT_list.to_excel(excel_file, "observed RT")

## generate final plots

finalized_masses = finalized_area_list.reset_index()

fig_height = min(len(report_filtered_area_table.columns) * 2.5, 900)

fig_width = len(report_filtered_area_table.index) / 4.5

xtick_max = len(report_filtered_area_table.index)

finalized_masses.plot(grid = True, marker='0', figsize = (fig_width, fig_height),
subplots = True, sharex = False, xlim =0,
xticks = np.arange(0, xtick_max, 1), rot = 90)

plt.tight_layout()

plt.savefig(‘final plot.jpeg')



