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Abstract—Long running applications often have varying be-
haviors, here called phases. While considerable work in computer
architecture has been done in identifying application phases
based on how the hardware is being exercised, comparatively less
work has been focused on identifying application phases based on
regions of source code being executed. In this paper we introduce
a new methodology and an efficient tool framework, IncProf,
for observing and capturing the time-varying source execution
behavior of applications, and for then deducing application
phases from the resulting data. Uses of this capability include
simply better understanding the varying behavior of long running
applications, and for efficiently tracking deployed application
performance in the future by providing information to identify
good instrumentation points.

Index Terms—high performance computing, application mon-
itoring, phase detection

I. INTRODUCTION

Many applications cycle through periods of different behav-
iors that we can call phases [1]. These can be very large scale
steps in an overall application, differing and configurable com-
putations, or might be smaller scale behaviors that are repeated
often. Being able to have, in deployment, tracking and perfor-
mance introspection of these phases would help in providing
developers and operations staff a better understanding of real-
world application performance. A view into their application
as it is used in deployment, broken down to the phase level,
can aid in resource utilization and customer experience, and
could elucidate places where application performance might
be improved.

Our goal in this work is to automatically identify the phases
of an application based on efficiently gathered data, and then
to identify the parts of the source code that are representa-
tive of that phase. These source code places could then be
used as places for efficient phase-identifying instrumentation,
which would be usable in deployment and would provide the
information needed to accomplish the above scenarios.

The main contribution of this paper is an algorithmic
methodology and a tool framework, IncProf, for automati-
cally identifying both the phases of an application and the
representative source code places that could be instrumented
to produce the phase logging data. This tool framework avoids
the high slowdown factors of heavyweight program analysis

tools, and thus can be used on runs of much more significant
size than just “toy” sizes; this enables phase identification that
will maintain its accuracy in production run sizes.

We also present a utilization of the phase discovery in
a prototype heartbeat instrumentation framework, AppEKG,
that efficiently collects data over the phases of an application.
The resulting heartbeat data can then be used to analyze the
performance of an application, or the system, on a per-phase
level, thus gaining an understanding of which parts of an
application are being used heavily, and which may need more
tuning or optimization. We show that phase-oriented heartbeats
can be utilized in production with very little overhead, with
the proper instrumentation and data collection framework.

These ideas are applied and exemplified in this paper using
applications in the realm of high performance computing
(HPC). Monitoring the execution of scientific programs is cru-
cial to the success of exascale computing, where the scale of
resource and power usage demand more visibility about what
is happening in the application and system during production
runs; such visibility will help both users and administrators to
work together to improve the usage and utility of their costly
HPC infrastructure.

Sections II and III discuss the concepts of phases and
heartbeats. Sections IV and V present the methodology, tools,
and analysis framework. Section VI presents experimental
results and their insight. Finally, Sections VII and VIII present
related work, concluding thoughts, and areas of future work.

II. PHASES

The idea of phases has taken different forms in the past, each
of which entailed different fundamental conceptions of what a
phase is. For example, hardware-based phase identification is
useful for performance evaluation and especially for speeding
up (“fast-forwarding”) hardware simulations for performance
predictions of novel architectures [2], [3], [4], [5], [6]. In this
case, a phase is distinguished by a pattern of how the hardware
is exercised, observed using on-chip hardware performance
counters.

Source-code phase identification, on the other hand, is
useful for understanding the time-varying behavior of the ap-
plication, for selecting instrumentation points that are efficient
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and yet cover the full execution, and for application-oriented
performance evaluations. In this case, a phase corresponds to
a pattern of code execution. Some of the hardware-oriented
work (e.g., [2]) uses application data (basic block sequences)
but still orients towards hardware optimization, and incurs very
high data collection overheads (e.g., slowdowns on the order
of 10X).

We are taking the program-centric view of phases, that of
code execution behavior, rather than the hardware-centric view.
We desire the defined phases to represent unique patterns
of the application, rather than unique profiles of hardware
execution. Previous work has shown a degree of overlap [7],
but in this work we need to be certain that we are identifying
application-centric behavior patterns. Thus since our approach
is to have phases that reflect application behavior instead of
the hardware performance behavior, we define a phase as a
unique execution behavior that is reflected in a unique code
execution profile. This unique profile can then be used to
identify instrumentation points in the application code that
relate to phases, which can then produce heartbeats that can
provide application phase performance information.

III. HEARTBEATS

Mechanisms and analyses for observing and evaluating the
performance of systems and applications have been around
since the beginning of computing, and in systems that are
more complex and distant from the user—grid, cloud, and
HPC clusters—observation capabilities are both more crucial
and also harder to devise and deploy. For example, most HPC
deployed monitoring systems focus on system performance
and ignore any measure of application performance (e.g., [8]).
Application heartbeats [9], [10], [11] were proposed as a
lightweight mechanism for applications to be able to output
information about their continued liveness, progress, and per-
formance. In the original proposed form the heartbeat idea
was connected with autonomic and autotuning ideas, where
the application would publish target heartbeat rates and the
autonomic environment would monitor the actual heartbeat
and manage the application in order to try to keep it at the
desired heartbeat rate.

Our idea here is much simpler—that applications would
simply record heartbeats from their application phases, without
any preconceived target rate or any autonomic computation
steering. Monitoring tools will record at some level of detail
the actual application heartbeat rates over the repeated use of
the application by users, and as a history of an application is
built up this data can be used to identify when the application
is running poorly and when it is running well. Correlating
the application heartbeat data with system data could help
identify when system issues caused the poor performance.
Others have also looked at using application heartbeats for
application performance analysis [12].

In the HPC environment, many commonly used large appli-
cations do output their own logs, often including application-
specific performance information. The advantage of a heart-
beat framework over this is that it is a generic concept across

all applications and thus analyses can be developed that can
be shared widely.

A. Heartbeat Instrumentation

Our ultimate goal of this work is to have in-production
observability of the performance of applications, at the phase
level. Production-side instrumentation, by definition, must be
minimally intrusive and low overhead. We have begun creating
a heartbeat instrumentation framework for binary applications
(i.e., compiled to native machine code) that is integrated into
the LDMS data collection framework [13], which is used in
high performance computing systems and is proven to be an
efficient and scalable data collector. Our framework, AppEKG,
is based on a heartbeat instrumentation API and can be used
in a stand-alone fashion as well, without LDMS.

After experimenting with a simple, single “impulse” heart-
beat capability, our design evolved into a two-step be-
gin/end heartbeat API: a beginHeartbeat(ID) and an end-
Heartbeat(ID); each unique heartbeat ID represents a unique
phase of the application. Separating the begin/end events of
a heartbeat allows analysis of heartbeat durations as well as
the rate of heartbeat occurrences. Other than an initialization
call, no other instrumentation is needed. The framework does
not record every individual heartbeat but rather accumulates
the number of heartbeats and their average duration during
a specified collection interval; at the end of the interval, this
data is then written out. Doing this controls the amount of I/O
and allows the heartbeat framework to operate very efficiently,
while still providing a record of the dynamic behavior of the
software.

Such heartbeat data can be used in myriad ways, and our fu-
ture work in AppEKG will involve researching effective ways
of deriving performance results from this data. Section VI
contains example figures and data from AppEKG.

IV. INCPROF: AN INCREMENTAL PROFILING TOOL

Observing and capturing the time-varying behavior of an
application is often a very costly exercise. Quite a number
of development-oriented tools can capture extremely detailed
trace data regarding a program, but this often comes at a
very high cost. For example, Pin [14] is widely used for
detailed data collection, but Pin analyses typically have a 60-
100X slowdown of the application. With this kind of overhead,
obviously only very small runs can be used to capture data.
Valgrind [15] is similar when detailed analyses are being
performed. Various instrumentation techniques can instrument
functions/methods for call tracing, and while more efficient
than the above tools, these can generate very voluminous
program traces.

On the other hand, some very efficient tools have been
around for a long time. These tools, for efficiency reasons, do
not capture detailed data but still capture useful insight into
program execution. One of these is gprof [16], an efficient and
ubiquitous call graph-based program profiling tool. Although
the work in this paper uses gprof for its data collection, the



methodology developed can be applied to data collected from
other tools.1

Gprof uses program counter sampling and function entry
instrumentation to efficiently construct an accurate model
of per-function performance, also breaking this down into
parent and child function call performance statistics. Gprof
has known limitations due to sampling (and sampling rate)
and its blindness to I/O and other such performance effects,
yet it continues to provide many users valuable insight into
their applications.

Manual inspection of the Gnu implementation of gprof
revealed that its runtime instrumentation support is included
in the standard C library, and that it has one function that
is responsible for writing out the data file.2 We utilize this
function by creating a preloadable shared library, that we call
IncProf, that runs its own thread in a sleep/wakeup cycle, and
at each wakeup it calls the gprof write function, renames the
file to a unique sample name, and goes back to sleep. Figure 1
shows the process for collecting and reducing application
profile data.

The application, of course, must be compiled with the “-
pg” compiler option for gprof to be active, but other than this
no further application instrumentation is needed during the
data collection process. The application incurs gprof overhead,
which is typically low, plus the overhead of our thread waking
up, writing out the data file, and renaming the data file with an
interval identifier. Overall, this overhead has always been about
10% or less in our experiments, with a data write-out rate of
once per second. It is possible for gprof overhead to be higher,
depending on application coding, and there is legacy support
in gprof for line-level information (now embodied in further
development in the gcov tool), but this can require further
instrumentation (using other compiler flags) and adds more
overhead. We are using the basic gprof mode for simplicity,
portability, and adoptability.

Although there is some documentation on the format of
the binary files that gprof writes out, we found it easier to
just invoke the gprof command line tool to convert the data
into standard gprof textual reports, and then process those.
Gprof produces both a flat per-function profile table, and then
a table relating function profiles to particular calling contexts.
The analysis presented here only uses the flat profile, though
we have ongoing experiments with using the call-graph profile
data to improve the results.

V. OVERALL PROCESS FLOW FOR
DETECTING PHASES

With the above data resulting from our IncProf collection
framework, we can now use this data to detect application

1E.g., we have created proof-of-concept implementations for both the gcov
and JaCoCo tools, and other profiling tools such as OProfile may be usable.

2Although the code is in the C library, the symbol (function name) is not,
and thus the code is hidden. We crafted an automated mechanism based on
disassembling the library code to consistently find the data output function
across different OS installations.

Fig. 1. Collecting Interval Data with IncProf.

phases and identify instrumentation sites. The tools that em-
body these analyses are distributed with and are considered
part of the IncProf framework.

A. Identifying Phases

The incremental profile data is written out by gprof as
totals since the beginning of the program, so the first step
is to subtract the previous interval from each interval to create
interval profile data. Each interval is then represented as a tuple
of function execution times (the gprof ‘self’ time), where each
unique function is an attribute dimension of the data.3

Interval data is then clustered using the k-means clustering
algorithm, and each cluster is interpreted as a phase of
execution. However, since k-means requires that one know k
ahead of time, we run k-means for k = 1..8, and then use
the Elbow method to select the best number of clusters. These
then are the phases. We have not had any applications where
the number of phases discovered is greater than five, so eight
as a maximum has worked well.

We have experimented with including or using other profil-
ing data (number of calls, execution time of children, etc.) but
have not found these to improve the results, and sometimes
to worsen them; however we do continue to evaluate other
combinations of data available from the profiling output. We
have also experimented with other clustering algorithms (e.g.,
DBSCAN) but also have not seen improvements. Because
intervals in a phase should be similar to each other, we are
less interested in any complex-shaped cluster where there
is a continuity of points but the points are less similar to
each other, and so the simple distance-based clustering of k-
means is applicable. Both the elbow and silhouette methods, of

3Not all functions in a program end up being represented in the profile
data, so this is not all of the functions in the program.



which we both experimented with, are established quantitative
methods for selecting k.

B. Identifying Instrumentation Points

As we create the interval function time tuple data, we also
record the number of times each function is called in each
interval. After finding the phases (clusters of intervals), the
next step is to find places in the source code where phase
heartbeat instrumentation could be placed—in other words,
source code places that are active in, and representative of,
the phase. Since our data is at the function level, this reduces
to identifying functions.

To avoid low-level, library-type functions, we preference
functions that have a lower number of calls in the interval.
We also want to preference functions that are active in many
intervals in the phase, so we create a per-function, per-phase
rank, which is the fraction of intervals in the phase that the
function is active in (i.e., has a non-zero execution time).

Using the clustered intervals, function call counts, and
ranks, Algorithm 1 selects the instrumentation sites for each
phase. Instrumentation sites are functions and are tagged by
one of two designations: body, which means that the function
body can be instrumented (essentially that the instrumentation
can be inserted at the start and end of the function), or loop,
which means that a loop within the function body needs
instrumented (the instrumentation point should be within the
body of a loop in the function). Since our use of gprof
only records function-level data, our algorithm cannot identify
exactly which loop in the function needs to be instrumented,
only that some loop in the function should be. A function is
designated for loop instrumentation if it is active and selected
for instrumentation for a phase, but has zero calls for most
intervals in that phase, meaning that it is long-lived.

Algorithm 1 identifies instrumentation points for each phase,
and is described as follows:

• the outer loop iterates through all clusters (all phases);
• line 3 sorts the intervals in the cluster by their distance

to the centroid of the cluster; this places intervals that
are most representative of the cluster first in processing
order;

• the inner loop (line 5) iterates through the intervals in the
cluster (phase);

• lines 7-9 checks to see if this interval is already covered
by some previously selected instrumentation site for this
phase; if so, it can be skipped;

• line 10 takes the current interval’s function data and sorts
the functions first by the number of calls (ascending) and
then by rank (descending);

• line 11 then takes the topmost function from this sort as
the function to instrument in order to cover this interval;

• lines 12-16 tag this function’s instrumentation type as
body if there are any calls to the function in the interval,
or loop if there are no calls (meaning the function has
continued to execute from being invoked previously);

Algorithm 1 Instrumentation Identification Algorithm
Input: Set C of clusters over interval data set; each Ci ∈ C is
the set of intervals in cluster i
Input: Function call count set F
Input: Function rank set R
Output: The set P of phases, each Pi ∈ P is a set

of tuples <function id, instrumentation type>
1: P ← {}
2: for each Ci ∈ C do
3: Sort I in Ci by distance to the cluster centroid
4: Pi ← {}
5: for each I ∈ Ci do
6: {I is interval’s tuple data (functions’ self time)}
7: if ∃f, f ∈ I ∧ f ∈ Pi then
8: continue
9: end if

10: Using F and R, sort I by number of calls (ascending)
11: then rank (descending)
12: f ← first element in I
13: if f.calls > 0 then
14: f.inst← Body
15: else
16: f.inst← Loop
17: end if
18: if <f.id, f.inst> /∈ Pi then
19: Pi.add(<f.id, f.inst>)
20: end if
21: end for
22: P.add(Pi)
23: end for
24: Output P

• lines 17-18 add this function’s instrumentation type to the
set of output instrumentation sites for this phase, if it is
not already in it;

• line 21 adds the new phase to the output phase set.
At the end of this algorithm, the phases will be identified

and each phase will have a set of instrumentation sites identi-
fied that fully cover the intervals that are included in that phase
(our implemented algorithm does allow a coverage threshold,
to skip outliers; in our results we use a 95% threshold).
This algorithm is essentially a greedy algorithm that does not
backtrack to try and make different decisions, but there are
two keys that help in selecting good instrumentation sites for
phases. One, by starting with intervals that are closest to the
center of the cluster, it is expected that the most representative
instrumentation sites will be selected first, and these should
cover the most number of intervals as they are picked; later
we discuss the issue of alternatives for dealing with outlier
intervals. Two, by sorting active functions within an interval by
the number of calls it has in the interval, we are preferencing
functions with fewer calls and thus longer execution times. The
goal of this is to avoid selecting very short non-distinguishing
functions, such as getters and setters or other utility functions
that might be called many times, even in one interval.

VI. EVALUATION AND ANALYSIS

Our initial exploration of this research has been performed
in the context of understanding the time-varying behavior
of high performance computing applications. Thus, in this



TABLE I
EXPERIMENTAL OVERVIEW: SETUP & OVERHEAD

Procs Uninstr IncProf Heartbeat #
/ Runtime Ovhd Ovhd Phases

App Nodes (sec) (%) (%) Discov.
Graph500 1 / 1 188 10.1 1.6 4
MiniFE 16 / 2 617 -6.2 1.1 5
MiniAMR 16 / 2 459 1.5 0.2 2
LAMMPS 16 / 2 307 7.5 8.1 4
Gadget 16 / 2 421 6.4 1.0 3

section, we discuss the experimental results for 5 scientific
applications (two real and three proxy/benchmark), and we
show how our phase identification captures the execution
phases for each application. Phase identification is shown by
the time-varying activity of the heartbeats from the individual
heartbeat instrumentation sites. Instrumentation sites are pre-
sented individually, even if they belong to the same phase,
which allows us to evaluate and understand how multiple
instrumentation sites may together represent a single phase.

All of these applications are highly parallel, using MPI to
communicate among distributed processes (MPI ranks). In the
discussion below we are processing the profile samples, and
showing heartbeat data, from just one representative process
(MPI rank) in the application; our framework does produce
profiles and heartbeats from all processes in an application, but
at present we only use all the data for aggregate descriptive
statistics. All of the applications being used are symmetrically
parallel and thus all processes behave similarly.

Table I shows the configuration data describing the appli-
cation runs that we evaluated, and the general overhead and
phases detected results. We selected input and configurations
that resulted in runs on the order of 5-10 minutes. Experiments
were conducted on a heterogeneous multi-use cluster; we used
2 homogeneous nodes, each having two AMD EPYC 7282
2.8GHz CPUS with a total of 32 cores, and 512GB of RAM.
The interconnect is Infiniband HDR. We used Gnu compilers
with OpenMPI, and O3 optimization.

Our IncProf sampling rate was set to one second, in order
to achieve 1-second intervals and produce an analysis that
results in instrumentation sites valid at this fine-grained level.
Even with all MPI ranks writing out incremental profile data
files, the overhead of using IncProf is 10% or less4 (Table I),
which is much better than many program analysis tools. This
overhead is only during profile collection for use in phase de-
tection; it does not occur during the heartbeat experimentation
step. We applied a threshold cutoff for instrumentation site
selection of 95%, meaning that once selected sites covered
that much of the intervals in a phase, no further site selection
was done.

In the results below, each instrumentation site is shown with
the amount of the phase it covers, and the amount of the entire
profiled application run it covers. This gives a measure of how
significant the site is.

4For MiniFE, compiler optimization levels change its overhead significantly,
but O3 consistently produced negative overhead; we are investigating.

TABLE II
GRAPH500 INSTRUMENTED FUNCTIONS

Phase HB Discovered Site Phase App Inst.
ID ID Function % % Type
0 1 validate bfs result 98.1 62.2 loop
1 2 run bfs 100 13.2 body
2 3 run bfs 100 12.3 loop
3 4 make one edge 97.2 10.8 body

Manual Instrumentation Sites
make graph data structure body
generate kronecker range body

run bfs body
validate bfs result body

We used AppEKG, our heartbeat instrumentation frame-
work, in two ways: one, we inspected the application code and
instrumented each application with what we consider to be the
“best” heartbeat instrumentation places. Two, we instrumented
the sites chosen by our phase discovery methodology. This
offers a comparison for how well the discovery methods work
as compared to a human understanding of the application. In
this paper we present raw heartbeat plots to visualize how the
discovery process performed, we do not present any heartbeat
performance analysis, which is outside the scope of this paper.
The heartbeat overhead in Table I reflects the overhead for the
manual “best” heartbeat instrumentation. All applications but
LAMMPS has extremely low overhead, and LAMMPS is only
at 8%; in-development AppEKG modifications can lower this
significantly, but such preliminary results are not shown here.

The following subsections discuss the results for each
application, including the phases detected, their selected in-
strumentation sites, and instrumentation characterization.

A. Graph500

Graph500 [17] is a benchmark developed to evaluate the
performance of HPC systems on graph problems; in this
experiment we used the mpi simple version of the the 2.1.4
version of the benchmark. This version creates a large graph
data structure, and then performs breadth-first searches over
the graph, and checks (validates) the result of the searches.

Table II shows our phase discovery results. Our phase
analysis discovers four phases in Graph500, each with one
instrumentation site, but two of the phases have the same
function as an instrumentation site, with one phase designating
it as a body-type site, while the other designates it as a loop-
type. For the main computations (search and validate), the
discovered sites are the same as our manual instrumentation
selection (modulo a body/loop choice). For the initialization
portion of the run, the discovered site is a lower-level function
than the two that we selected.

The heartbeat plots in Figure 2 help explain the differences;
shown are the average heartbeat duration in each interval, for
both the discovered instrumentation sites and the manual ones.

Essentially, the manual heartbeat sites selected all typically
run longer than our interval size (one second). Due to the
interval-sampling data collection mechanism, these heartbeats
do not show up in all the intervals, only those that they finish



Discovered HB instrumentation, durations

Manual HB instrumentation, durations

Fig. 2. Graph500 Phase Heartbeats.

in, and our manual-site heartbeat counts are never more than
one in any interval. In the initialization phase, the manual sites
thus have gaps, and the discovered heartbeat site, being lower-
level and faster, does not. Also, phase discovery separated as
two distinct phases those intervals that run bfs was called
in and those where it simply continued to run; this is the
reason for one cluster indicating the function body should be
instrumented, while the other indicates a loop in the function
should be.

Arguably, the discovered sites better capture the behavior
than our manual sites. Thus overall, we deem this result
good, and yet it points out areas of improvement: our manual
selection perhaps should have instrumented loops, our phase
discovery might need some postprocessing to combine phases
which have the same instrumentation sites, and better analysis
or plotting of heartbeats that are longer than data collection
intervals could be done.

B. MiniFE

MiniFE is a finite element mini-application developed to
represent an implicit finite-element application kernel, and
is part of the Mantevo mini-application suite [18]. MiniFE,
as described in its documentation, uses four kernels: the
first generates the matrix/vector mesh structures, the second
assembles the mesh into sparse matrices, the third performs
sparse matrix operations during a conjugate-gradient solver,
and the fourth performs various vector operations.

TABLE III
MINIFE INSTRUMENTED FUNCTIONS

Phase HB Discovered Site Phase App Inst.
ID ID Function % % Type
0 1 sum in symm el... 100 19.5 body
1 2 cg solve 100 43.7 loop
2 3 init matrix 93.2 10.1 loop
2 4 generate matrix structure 6.8 0.7 loop
3 5 impose dirichlet 100 4.4 loop
4 2 cg solve 94.7 20.5 loop
4 6 make local matrix 2.7 0.6 loop

Manual Instrumentation Sites
cg solve loop

perform elem loop loop
init matrix loop

impose dirichlet loop
make local matrix loop

Discovered HB instrumentation, durations

Fig. 3. MiniFE Phase Heartbeats.

As shown in Table III, our phase analysis finds five phases,
and selects six different instrumentation sites (one repeated) to
represent those phases. Our manual heartbeat instrumentation
identified five sites, four of which are also selected by the
phase discovery; Figure 3 only shows the discovered heart-
beats, since they are nearly identical. The cg solve heartbeat
captures the main solver computation, with the other four
being preparation phases (in our runs, the main computation is
not run for a long, extended period of time, so the initialization
phases appear fairly large). All heartbeats are relatively stable
in behavior, although some have some spiking at various ends.
The graph region with cg solve active appears almost solid;
this is because the heartbeat oscillates between 0 and 1 in
successive interval data.

The discovered generate matrix structure heartbeat site is
active across other varying heartbeats, and so is not considered
by us to be a good selection; the sum in symm elem matrix
heartbeat is invoked from and is essentially equivalent in
behavior to our manual perform element loop heartbeat; ex-
tending the discovery analysis to use the call-graph structure
might be a way to improve it and select our site, which is
higher up in the call graph.



TABLE IV
MINIAMR INSTRUMENTED FUNCTIONS

Phase HB Phase Inst. Rate
ID ID Function % Type Factor
0 1 check sum 100 89.1 body
1 2 allocate 33.8 3.7 loop
1 3 pack block 32.4 3.5 body
1 4 unpack block 26.5 2.9 body

Manual Instrumentation Sites
check sum body
stencil calc body

comm body

C. MiniAMR

MiniAMR is a proxy that represents applications based on
adaptive mesh refinement; it applies a stencil computation over
a mesh that adaptively refines and coarsens as objects move
through it [19].

Table IV shows the phases and instrumentation sites for the
two discovered phases, with the second phase having three
discovered heartbeat instrumentation sites. Only the first phase,
along with its heartbeat site, matches our manual heartbeat
instrumentation selection, but this phase covers almost 90%
of the execution. We should note that the check sum heartbeat
site is not a function that performs a simple mathematical
checksum but rather embodies more involved matrix compu-
tations.

Figure 4 shows the time varying behavior of the heartbeats.
In comparing the plots of the discovered heartbeat sites and
the manual sites, our three manual sites are simultaneously
active, not really capturing different phase behavior. On the
other hand, the discovered heartbeats for phase 1 are clearly
capturing the periods in the execution where the “normal”
computation is deviated from. The large and varied deviation
in the middle is a mesh adaptation, while the smaller periodic
deviations are large communication steps. In our manual
instrumentation, we observed in the code an iteration over
the three main functions we chose as heartbeat sites, but these
are all active together and so our discovery analysis, which
tries not to overlap heartbeats, would not select all of them.
Still, an application developer would probably be interested in
statistical analysis of the performance of these three heartbeats
as they seek to improve their application.

Overall, the phase discovery did well in selecting phases that
distinguish application behavior, but also missed what manual
code inspection saw as important (interleaved) application
steps. This points to future work in perhaps integrating whole-
execution summary data, to include overlapping high-time
program regions, with the interval data.

D. LAMMPS

The Large-scale Atomic/Molecular Massively Parallel Sim-
ulator (LAMMPS) is a classical molecular dynamics applica-
tion [20] that is used in much active research. LAMMPS is a
large application that can be used in several different modes
that simulate a variety of combinations of molecules and force

Discovered HB instrumentation, durations

Manual HB instrumentation, durations

Fig. 4. MiniAMR Phase Heartbeats.

types. In this work we chose the metal type atoms with the
Lennard-Jones (LJ) force model. After initialization and atom
creation, the application has one main core computation, that
of using the LJ force computation algorithm to simulate the
interaction between atoms. We recognize that our analysis here
does not capture what would be needed to recognize phases in,
and find instrumentation sites for, other modes of LAMMPS.
For full heartbeat instrumentation of LAMMPS, further anal-
yses would be needed, and large multi-mode applications like
LAMMPS should really be thought of as a collection of related
applications, each having unique but related phase behavior.

Table V shows our phase analysis finding four phases, but
only three different instrumentation sites. The two doubly-
indicated sites are the same as our manual instrumentation
effort selected. Phases 0 and 2, with the PairLJCut::compute
site, make up almost 90% of the execution, and should really
be identified as a single phase. Phase 3 is only 2.4% of the
execution, and half of it is covered by the NPairHalf::build
site, which is also covering all of phase 1.

Figure 5 shows that the application is dominated by
phase 0/2 and short intervals of the phase 1/3 heartbeat
NPairHalf::build, with the other phase 3 heartbeat (Veloc-
ity::create) only occurring at the beginning, and thus being
an initialization function. Inspecting the application source
indicates that PairLJCut::compute is the main point for re-
computing the LJ force model used in this execution, while
NPairHalf::build occurs in preparing data for parallel com-



TABLE V
LAMMPS INSTRUMENTED FUNCTIONS

Phase HB Discovered Site Phase App Inst.
ID ID Function % % Type
0 1 PairLJCut::compute 100 55.7 loop
1 2 NPairHalf...::build 100 7.7 loop
2 1 PairLJCut::compute 100 34.1 loop
3 2 NPairHalf...::build 50 1.3 body
3 4 Velocity::create 42.9 1.1 loop

Manual Instrumentation Sites
PairLJCut::compute body
NPairHalf...::build body

Discovered HB instrumentation, durations

Fig. 5. LAMMPS Phase Heartbeats.

munication. Figure 5 shows just the discovered heartbeat plot,
since it subsumes the manual sites that were selected.

E. Gadget2

Gadget2 is a simulation for a cosmological N-body/SPH
problem; it computes gravitational forces using a hierarchical
tree algorithm and represents fluid behavior by means of
smoothed particle hydrodynamics (SPH) [21], and is used in
significant cosmological research. Gadget2 combines N-body
simulation with hydrodynamic forces for large-scale cosmo-
logical simulations. As with many scientific simulations, it is
timestep-based, recomputing particle densities, accelerations,
and positions over a timestep-driven loop with four main
function calls in it. Gadget2 is interesting in that these different
parts of the computation loop occur quickly, and thus our
one-second interval-based analysis does not to a good job in
detecting different phases in the computation.

Table VI shows our phase analysis of Gadget2, with frame-
work producing three phases with three different instrumenta-
tion sites (one site shared). For our manual instrumentation we
selected the four main timestep functions. Figure 6 shows the
heartbeats over time. Because the main timestep loop always
calls each of the four main functions once per loop, our manual
heartbeat sites result in a plot where all four lines essentially
overlap each other, modulo intervals where a single count is
missed (the interval ends in the middle of the main loop).
All three discovered heartbeat sites are called indirectly from
compute accelerations, which is responsible for about 75%
of the execution time. Since the discovery analysis is working

TABLE VI
GADGET2 INSTRUMENTED FUNCTIONS

Phase HB Discovered Site Phase App Inst.
ID ID Function % % Type
0 1 force treeevaluate shortrange 100 44.9 body
1 2 pm setup nonperiodic kernel 93.8 28.6 body
1 3 force update node recursive 5.9 1.8 body
2 1 force treeevaluate shortrange 100 24.7 body

Manual Instrumentation Sites
find next sync point and drift body

domain decomposition body
compute accelerations body

advance and find timesteps body

Discovered HB instrumentation, durations

Manual HB instrumentation, durations

Fig. 6. Gadget2 Phase Heartbeats.

from one-second interval profile data, which may sometimes
partition the main computation loop disadvantageously, the
phase detection does see enough variation to decide there are
three phases (k-means clusters), and tries to select heartbeat
sites representative of these.

Gadget2 is an example of an application that, when we
look at the code, clearly has four main computation steps,
each of which should be tracked with a heartbeat to enable
an understanding of that portion of execution performance,
yet none are long-running phases that can be detected with
our phase analysis. This points to a need for an alternative
analysis scheme for applications with fast phases.



VII. RELATED WORK

Beyond the large body of work in phase detection based on
measuring hardware usage, for simulation improvement, archi-
tecture improvements, and scheduling, and cited in Section II,
other work also related to our work is described below.

Nickolayev et al. [22] is a classic work in which statistical
online clustering was performed in real-time over a stream of
metrics (events) being collected from an application. This idea
focused on real-time analysis and selected application-specific
metrics, and showed that the statistical clustering could track
the known phases of the application. Our focus is on a generic
method that can be applied to all applications.

Zhang et al. [23] used principal components analysis and
clustering to classify applications based on performance data
from their execution. This work focused on summary data
for the entire application and was not directed at identifying
varying phases of execution. Sondag and Rajan [24] use static
basic block-level analysis to determine program phases for the
purposes of program scheduling on performance-asymmetric
multicore processors, then use dynamic analysis to decide
which phases should run on which cores. They insert phase
transition instrumentation in order to detect when the phase
changes during execution. Leveraging their static analysis
ideas to refine our phase detection could improve our results.

Software tracing has been long used in many software analy-
sis, understanding, and debugging efforts, and trace reduction
techniques (e.g., [25]) have used a variety of statistical, ad-
hoc, compression, and other techniques to reduce the size
of a history of software behavior. These techniques are most
often over event-type data, not profile metrics, and are geared
towards further algorithmic processing (e.g., record-reply or
debugging). Our effort at phase detection is using profile
metric data and is oriented towards human-understandable
instrumentation and program feedback. Others have used trace
data to understand software phases in systems [1], [26], [27],
[28], [29], including sampling of traces, e.g., [30].

Work in the HPC community that entails processing applica-
tion traces for phase detection and application understanding
includes [31], [32], [33]. In [31] in particular, Casas et al.
use wavelet analysis over program tracing to automatically
detect MPI program phases, however their analysis is directed
towards finding the initialization, computation, and output
phases of a program. Trace analysis techniques are certainly
an alternative for finding phases and heartbeat instrumentation
sites, though tracing generally has higher overhead.

Mühlbauer at al. [34] represents a research line of analyzing
the performance history of an evolving program. They do
this by sampling the revision history and deriving gaussian
process models of the performance change. They do not take a
dynamic runtime view of the program but operate on aggregate
performance data; however, this and other time-series analysis
approaches may be beneficial in our future work.

Licata at al. [35] gathered coverage profiling data over
versions of evolving software and used clustering to identify
characteristics of features that were added as the code evolved.

While not oriented toward dynamic behavior classification, the
use of multiple instances of profiling data and of clustering to
understand the data is similar to our work.

Chabbi et al. [36] created a toolset for studying barrier
elision, and its analysis may also be another approach to
identifying phases; however, their toolset has an application
specific side that may limit its generality.

Other forms of profile data, e.g., the Context Execution Tree
of [37], might be useful for our work. Work in online perfor-
mance monitoring and analysis, e.g., [38] can also be relevant,
since such work is processing incremental performance data.

VIII. CONCLUSION

As shown across the applications described above, our
attempt at automatically detecting software-based phases of
applications has promise, but also has significant room to
improve. Using other data sources, and even using the profile
data differently, may improve its performance, and many
other ideas for potential future work are too numerous to
catalog here. Even this preliminary work, though, has some
important takeaways. One is that real applications do have
phases of different behavior, although they can look different
(e.g., overlapping or sequenced). Two is that heartbeat data,
even just visually, can capture how those phases are behaving.
Three, future analyses developed for heartbeat data can provide
portable, consistent, and quantitative evaluation of scientific
application performance.
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