

Sandia
National
Laboratories

Exceptional service in the national interest

Compression Analytics

Presenter: Eduardo Cardenas-Torres

Sandia Mentor: Alexander Foss

MARTIANS Symposium

What is Compression Analytics?

Data Compression: The process of encoding information using fewer bits than the original representation

- **What's the Intuition behind this?**
 - Reduce the number of unique symbols in your data (smallest possible “alphabet”)
 - Encode more frequent symbols with fewer bits (fewest bits for most common “letters”)

Challenges in Data Compression

- Best choice of compression algorithm depends on data type
- Transforming data first before compressing (depending on method)
- Many different compression algorithms to choose from

Lossy and **Lossless** Compression:

- Lossless Compression is a type of class of data compression that allows data to be reconstructed from compressed data without any loss of information.
- Lossy Compression does not allow data to be perfectly reconstructed

Using Compression Algorithms for Machine Learning

How can compression be utilized for machine learning?

- Compression algorithms involve modeling the data and then encoding it
- Modeling often includes an algorithm for predicting symbol probabilities
- The encoding stage uses these probabilities to substitute high-probability symbols with smaller codes
- Compression Analytics uses predicted symbol probabilities for machine learning
- **Today's focus:** Discriminant Analysis for classification of data by using those trained probabilities from compression algorithms

Background: Discriminant Analysis

- The idea is to model the distribution of X in each of the classes separately, $P(X=x | G = k)$, and then use Bayes theorem to flip things around and obtain $P(G=k | X=x)$.

$$\Pr(G = k | X = x) = \frac{f_k(x)\pi_k}{\sum_{\ell=1}^K f_\ell(x)\pi_\ell}.$$

How does compression come into play?

- Typical compression algorithms follow the follow algorithm:
- **$P(\sigma|s)$, σ represents the predicting symbol and the s represents the string given**
- Can see where compression algorithms may tie in with Discriminant Analysis and help utilize statistical properties

Prediction by Partial Matching (PPM)

Original Paper: Data Compression Using Adaptive Coding and Partial String Matching by John G. Cleary and Ian H. Witten (1984)

- PPM is a type of lossless compression
- Different Versions of PPM for handling unobserved characters in a string

Basic Idea: PPM uses the last few characters ("context") in the input stream to predict the upcoming one

- Example: Suppose we have a text document about cars (includes the word car frequently)
- Predict the 3rd letter, given preceding observed characters
- $P(\sigma | "c")$
- $P(\sigma | "ca")$
- $P(\sigma | "car")$
- PPM algorithms have specialized systems for combining different context lengths

How does PPM work?

How does the Algorithm work? (Generally for all PPM)

$$\hat{P}(\sigma|s_{n-D+1}^n) = \begin{cases} \hat{P}_D(\sigma|s_{n-D+1}^n), & \text{if } s_{n-D+1}^n \sigma \text{ appeared in the training sequence;} \\ \hat{P}_D(\text{escape}|s_{n-D+1}^n) \cdot \hat{P}(\sigma|s_{n-D+2}^n), & \text{otherwise.} \end{cases}$$

- s represents the sequence prior to σ , the predicted symbol
- s_a^b denotes the sequence from index a to b
- \mathbf{n} indexes position in the sequence
- $P(\sigma | "ab") = P(\sigma | s_1^2)$
- D represents the **order** of a model
- What does the order exactly mean? The number of symbols read prior to the predicted symbol
- e.g. $P(\sigma | "ab")$ is a second order model because we are given two characters "ab"

PPM* Examples

Order $k = 2$ Predictions $c \ p$	Order $k = 1$ Predictions $c \ p$	Order $k = 0$ Predictions $c \ p$	Order $k = -1$ Predictions $c \ p$
ab \rightarrow r $2 \frac{2}{3}$ \rightarrow Esc $1 \frac{1}{3}$	a \rightarrow b $2 \frac{2}{7}$ \rightarrow c $1 \frac{1}{7}$ \rightarrow d $1 \frac{1}{7}$ \rightarrow Esc $3 \frac{3}{7}$	\rightarrow a $5 \frac{5}{16}$ \rightarrow b $2 \frac{2}{16}$ \rightarrow c $1 \frac{1}{16}$ \rightarrow d $1 \frac{1}{16}$ \rightarrow r $2 \frac{2}{16}$ \rightarrow Esc $5 \frac{5}{16}$	\rightarrow A $1 \frac{1}{ A }$
ac \rightarrow a $1 \frac{1}{2}$ \rightarrow Esc $1 \frac{1}{2}$			
ad \rightarrow a $1 \frac{1}{2}$ \rightarrow Esc $1 \frac{1}{2}$	\rightarrow Esc $1 \frac{1}{3}$		
br \rightarrow a $2 \frac{2}{3}$ \rightarrow Esc $1 \frac{1}{3}$	\rightarrow Esc $1 \frac{1}{2}$		
ca \rightarrow d $1 \frac{1}{2}$ \rightarrow Esc $1 \frac{1}{2}$	\rightarrow Esc $1 \frac{1}{2}$		
da \rightarrow b $1 \frac{1}{2}$ \rightarrow Esc $1 \frac{1}{2}$	\rightarrow Esc $1 \frac{1}{3}$		
ra \rightarrow c $1 \frac{1}{2}$ \rightarrow Esc $1 \frac{1}{2}$			

Table 1: PPM model after processing the string *abracadabra* (maximum order 2)

PPM* and Discriminant Analysis

Discriminant Analysis classifies an observation x into class c such that

$$c = \operatorname{argmax}_k P(Y = k) P(X = x | Y = k)$$

- $P(Y=k)$: prior probability of drawing from class k
- $P(X=x | Y=k)$: Conditional probability of drawing an observation x from given class k
- How can PPM* be utilized in this?

$$\hat{P} = (\sigma | s_{n-D+1}^n)$$

- Where the probabilities of the symbols can replace the conditional distribution $P(X=x | Y=k)$

Combining PPM* and Discriminant Analysis

General Discriminant Analysis

$$P(Y = k|X = x) = \frac{P(X = x|Y = k)P(Y = k)}{\sum_{l=1}^K P(X = x|Y = l)P(Y = l)}$$

PPM* Algorithm

$$\hat{P}(\sigma|s_{n-D+1}^n) = \begin{cases} \hat{P}_D(\sigma|s_{n-D+1}^n), & \text{if } s_{n-D+1}^n \sigma \text{ appeared in} \\ & \text{the training sequence;} \\ \hat{P}_D(\text{escape}|s_{n-D+1}^n) \cdot \hat{P}(\sigma|s_{n-D+2}^n), & \text{otherwise.} \end{cases}$$

PPM* Discriminant Analysis

$$\hat{P}(Y = k|X = x) = \frac{\hat{P}(X = x|s_{n-D+1}^n, Y = k)\hat{P}(Y = k)}{\sum_{l=1}^K \hat{P}(X = x|s_{n-D+1}^n, Y = l)\hat{P}(Y = l)}$$

$$\hat{P}(Y = k) = \frac{\#\{\text{items in class } k\}}{\#\{\text{Total items}\}}$$

Variable Order Markov Model for PPM* Discriminant Analysis

Variable Order Markov Model is a type of Markov Model that gives predicted probabilities for the current symbol based on a given context

- VOMMs have multiple conditional distributions for a range of context lengths
- Standard Markov Models require a single choice of context length
- VOMMs can flexibly use different context lengths for each prediction

$$P(X = x | S_{n-D+1}^n)$$

Variable Order Markov Model for PPM* Discriminant Analysis

Variable Order Markov Model can help finding the conditional distribution $P(X=x | Y=k)$ and similar to PPM* compression

- By using PPM* strength of escaping as a transition probability from one model to a lower one

Example

$$P(X = x | s_{n-D+1}^n) \sim \text{Multinomial}(\vec{p}_D)$$

$$\vec{p}_D \sim \text{Dirichlet}$$

$$P(X = x | s_{n-D+1}^n) \text{ Multinomial}(\vec{p}_D)$$

$$\vec{p}_D \text{ Dirichlet}(\alpha_{D-1})$$

References

- Proceedings DCC '95 Data Compression Conference. (1995) Unbounded Length Contexts for PPM. Institute of Electrical and Electronics Engineers
- Journal of Artificial Intelligence Research 22. (2004) On Prediction Using Variable Order Markov Models. Journal of Artificial Intelligence Research. R. Begleiter, R. El-Yaniv, G. Yona
- Proceedings of Machine Learning Research. (2010) Bayesian Variable Order Markov Models. Christos Dimitrakakis

Thank you for Listening!