
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and 
Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department 

of Energy’s National Nuclear Security Administration under contract DE-NA0003525. 

Fallout
A Monitoring Infrastructure 
Supporting Informed System 
Acceptance

M. Showerman, E. Roman, J. Greenseid, T. 
Tucker, and J. Brandt

SAND2022-12095CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.



2

Fallout Objectives and Approach

Goal: Minimize time spent in initial testing phase through quick identification of 
component “fallout”
Easily deployed end-to-end monitoring solution tailored to easy deployment on 
any minimally configured Linux system

• Factory testing
• Initial standup and acceptance testing

Analysis and visualization enables identification of outlier components e.g.,:
• Network links
• Processor thermals
• Memory Utilization
• CPU Utilization



3

Constraints during standup/factory testing

• Limited access to repositories satisfying external software dependencies
• Limited ability to modify boot images
• Limited/missing access to shared/remote storage
• Vendor wants minimal external influences to target machine operation

• Don’t want unknown software possibly impeding acceptance

• Vendor monitoring infrastructure is largely unavailable and/or insufficient



4

LDMS: Brief background

• LDMS is a extremely lightweight monitoring system:
• Flexible configuration with same base daemons everywhere with 

different plugins (e.g., different data samplers or stores)
• Memory footprint is minimized through optimized data structures
• Minimal network traffic through sending only the data values 

(contextual metadata only sent on change)
• Efficient bi-directional transports (including RMDA) over mixed 

network architectures
• Typical pull-based model for regular numerical data reduces the 

compute-node functionality and hence overhead
• Push-based model enables sending of on-demand event data 

(including application data!)
• Highly-scalable with no statistically significant impact on any 

large-scale system tested (NCSA Blue Waters, NERSC Cori)
Collector daemons 
on compute nodes

Aggregators 
(typically on 
service nodes)

Supports multiple 
concurrent storage 
endpoints

Transport 
over HSN

Transport over 
external fabric



5

Fallout Approach: Simple, Streamlined Standup and 
Configuration

Few components with minimal dependencies
• Very few binaries (3) statically linked

Ldmsd_standalone, ldms_ls (data query), ldmsctl (dynamic configuration)
• Current dependencies

• libc, libssl

Ldmsd_standalone sampler binary:
• ldmsd built as a statically linked program

• Samplers:
• meminfo, vmstat, loadavg, coretemp

• Transports:
• Sock transport

• Authentication Plugins:
• “none” authentication method

Initial configuration obtained from sampler.conf located in the same directory as the binary



6

Simple Topology

6

Samplers deployed on compute node bare 
metal via single scp

Aggregators deployed as Docker containers

1 or more stores including database and visualization
dashboards setup for statistical comparison and outlier detection
Deployed as Docker containers 



7

Sampler Nodes Assumptions
• Require access to hardware/kernel assets not easily available from a container
• Container support may not be available on compute nodes
• Need a very simple “install” process that places the monitoring software on the 

node without requiring updating the boot image
• Minimal configuration beyond installing the application, i.e. no need to 

configure library paths, plugin paths, etc..

Fallout Solution:
• Single application that has all dependencies statically linked

• Configuration file required to be minimally modified to support system specifics
• No external dependencies
• Simply copy binary and configuration file to compute nodes and run!



8

Keep Sampler Deployment Simple
Configuration = ./sampler.conf

• Comes with a “standard” configuration but expected to be modified based on user needs
• Available samplers are currently “meminfo”, “vmstat”, “loadavg”, and “coretemps”

• Assumption that relevant technology-specific samplers will be created prior to deployment and included in 
compiled-in set of samplers

Standard configuration:
Transport = sock
Listening port = 411
Authentication = none
Sampling period = 1 sec
Running Sampler = meminfo, vmstat, loadavg, coretemp
Set name = <hostname>/<sampler plugin name>

• Example: nid0001/meminfo



9

Keep Sampler Deployment Simple Cont’d.

• Put ‘sampler.conf’ in the same directory as ‘ldmsd_standalone’
• ldmsd_standalone starts with the standard configuration in sampler.conf:

./<path to ldmsd_standalone>/ldmsd_standalone

Two options to customize sampler’s configuration:
• Modify sampler.conf and start ldmsd_standalone
• Point ldmsd_standalone to the user’s configuration file:

./<path to ldmsd_standalone>/ldmsd_standalone –c <user configuration file>



10

Aggregator Nodes

• Implemented with a Docker container 
• Gathers (Aggregates) data from Sampler Nodes
• Stores data locally in the container (SOS or CSV)
• Minimal configuration through docker run parameters
• No external dependencies
• Requires docker swarm + docker network
• If it will run docker, it will run Fallout!



11

Visualization and Analysis

• Implemented with a Docker container
• No external dependencies
• Uses Grafana or Google Graphs for Visualization
• Aggregator and Viz/Analysis containers map common local storage volumes 

into the instance
• Suite of canned Analysis modules for outlier detection, rate computations, etc.



12

Fallout Current Status

Single binary image
• To build, configure with --enable-standalone flag 
Analyses

• Python analysis methods query distributed database (DSOS, Vitess)

Visualizations
• Grafana
• Google Graphs

Deployment
• Bare metal install
• Container bring up
• Visualization of line plots and heat maps



13

Current Status Cont.

What the executable file includes:
• zap_sock
• auth_none
• meminfo
• vmstat
• coretemp
• loadavg

The standalone executable files are
• ldmsd
• ldmsctl
• ldms_ls

To build the standalone version, configure with --enable-standalone flag.



14

Simple Sampler Deployment

• Just scp ldmsd, sampler.conf, ldms_ls and ldmsctl to compute nodes

• Or, if there is a shared file system, just cp those files to a shared location

• Execution on compute nodes: simply call 
/path/to/single/ldmsd_standalone



15

Docker setup
• git clone https://github.com/ovis-hpc/ldms-containers/ 
• Initialize docker swarm on a barebone machine

docker swarm init
• If the containers were to spread across multiple barebone machines, the other 

machines have to join the swarm
docker swarm join –token KEY HOST:PORT

• Add `ldms` network, do the following on the leader machine
• Edit config.sh, specify `NET=ldms` and SUBNET of your choice
• ./network-create.sh

• docker pull ovishpc/ldms-agg
• docker pull ovishpc/ldms-ui
• docker pull ovishpc/ldms-grafana

https://github.com/ovis-hpc/ldms-containers/


16

Aggregator Container Deployment

On a barebone machine that you want to deploy the container:
./ldms-agg/run.sh --name agg-11 --prdcr "nid{00001..20}" --mem 128M --offset 
200000

• This creates a container named `agg-11` with 128 MB memory pool that collects LDMS sets 
from the ldmsd's on nid00001 – nid00020, with 200ms offset (default 1s interval). Note that 
`agg-11` does not have a store.



17

UI container deployment

On a barebone machine that you want to deploy the container:
./ldms-ui/run.sh --name ui --dsosd "agg-{11,12}"

• This creates a container named "ui" that connects to dsosds on agg-11 and agg-12 
containers.

• The "ui" container runs the Django UI back-end that serves data points to Grafana.



18

Grafana Container Deployment

On a barebone machine that you want to deploy the container:
./ldms-grafana/run.sh --name grafana
• This creates a container named "grafana" that by default has the http://ui/grafana/ data 

source installed.
• The Grafana server inside the container serves the web app over a Unix domain socket to 

work around a firewall issue. The Unix domain socket is exposed to the bare-metal host at:
• "./ldms-grafana/sock/grafana/grafana.sock"

• In order to get to the Grafana web app, we suggest to use SSH port forward as follows:
• On laptop:  
$ ssh bare-metal-host -L 127.0.0.1:3000:/ldms-containers/ldms-
grafana/sock/grafana/grafana.sock

http://ui/grafana/


19

Getting to Grafana Web App

In order to get to the Grafana web app, we suggest using SSH port forwarding 
as follows:

• Suppose the ldms-containers project is checked out at /ldms-containers.
• On laptop:  
$ ssh bare-metal-host -L 127.0.0.1:3000:/ldms-containers/ldms-
grafana/sock/grafana/grafana.sock 
• Then, on a web browser the laptop, go to: http://127.0.0.1:3000



20

Loadavg, and 
Core 
Temperature 
Dashboards 



21

Memory, 
Loadavg, 
and Core 
Temperature 
Dashboards 



4 container Plan Single host

Analysis 
Software

Local Filesystem mount

Socket connection 

Data

Logs
 ldms data
CSV data

Vitess

Google 
Graphs web

Aggregatoru

container Storage

Samplers



23

Aggregator Container Deployment w/ store_csv

On a barebone machine that you want to deploy the container:
./ldms-agg/run.sh --name csv-11 --prdcr ”nid{00001..20}" --mem 256M --offset 
400000 --strgp-conf /path/to/csv-strgp.conf

• This creates a container named `csv-11` with 256 MB memory pool that collects LDMS sets 
from the ldmsd's on nids 1-20, with 200ms offset (default 1s interval).

• "--strgp-conf" can be used instead to provide custom strgp configuration.



Software Structure and Flow

Parallel 
Datastore

Query engine
Job status 

 Job metrics

Decision Engine

Exception 
Engine

Status/display

Notification 
System

Job and LDMS 
data

Job metric 
rollups and 

reports
Job completion



Action  pipelines

LDMS LDMS_AGG Function Data 
Store CSV file spool Parsers/ingestors 

via Cron Database

Database
Job 

Checker in 
60 sec loop

Database Analysis 
framework Actions

Database Httpd/PHP Google 
Charts



Test Definitions



Criteria fails



Job Detail for missing load



Pivot to node based raw data



Conclusions

Fallout provides a simple solution to monitoring minimal Linux-based systems
• Four files comprise entire compute node install
• Containerized (Docker) aggregation, analysis, and visualization enables 

outlier detection and diagnosis on minimally provisioned external host
• Vendor can supply proprietary technology specific samplers as desired

30



31

Future Plans
Executable file includes the following compile-time user defined components

• Transport (default sock)
• Authentication configuration (default none)
• Samplers (default meminfo, loadavg, coretemp, technology specific)
• Samplers, transports, and authentication methods added to build using configure line options
• Sampler configurations (default one second sample interval)
• Log level (default QUIET)
• Log location

The standalone executable files will continue to be:
• ldmsd
• ldmsctl
• ldms_ls

To build the standalone version, configure with --enable-standalone flag



32

Questions/Suggestions?

32


