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Fallout Objectives and Approach

Goal: Minimize time spent in initial testing phase through quick identification of 
component “fallout”
Easily deployed end-to-end monitoring solution tailored to easy deployment on 
any minimally configured Linux system

• Factory testing
• Initial standup and acceptance testing

Analysis and visualization enables identification of outlier components e.g.,:
• Network links
• Processor thermals
• Memory Utilization
• CPU Utilization
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Constraints during standup/factory testing

• Limited access to repositories satisfying external software dependencies
• Limited ability to modify boot images
• Limited/missing access to shared/remote storage
• Vendor wants minimal external influences to target machine operation

• Don’t want unknown software possibly impeding acceptance

• Vendor monitoring infrastructure is largely unavailable and/or insufficient
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LDMS: Brief background

• LDMS is a extremely lightweight monitoring system:
• Flexible configuration with same base daemons everywhere with 

different plugins (e.g., different data samplers or stores)
• Memory footprint is minimized through optimized data structures
• Minimal network traffic through sending only the data values 

(contextual metadata only sent on change)
• Efficient bi-directional transports (including RMDA) over mixed 

network architectures
• Typical pull-based model for regular numerical data reduces the 

compute-node functionality and hence overhead
• Push-based model enables sending of on-demand event data 

(including application data!)
• Highly-scalable with no statistically significant impact on any 

large-scale system tested (NCSA Blue Waters, NERSC Cori)
Collector daemons 
on compute nodes

Aggregators 
(typically on 
service nodes)

Supports multiple 
concurrent storage 
endpoints

Transport 
over HSN

Transport over 
external fabric
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Fallout Approach: Simple, Streamlined Standup and 
Configuration

Few components with minimal dependencies
• Very few binaries (3) statically linked

Ldmsd_standalone, ldms_ls (data query), ldmsctl (dynamic configuration)
• Current dependencies

• libc, libssl

Ldmsd_standalone sampler binary:
• ldmsd built as a statically linked program

• Samplers:
• meminfo, vmstat, loadavg, coretemp

• Transports:
• Sock transport

• Authentication Plugins:
• “none” authentication method

Initial configuration obtained from sampler.conf located in the same directory as the binary
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Simple Topology

6

Samplers deployed on compute node bare 
metal via single scp

Aggregators deployed as Docker containers

1 or more stores including database and visualization
dashboards setup for statistical comparison and outlier detection
Deployed as Docker containers 
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Sampler Nodes Assumptions
• Require access to hardware/kernel assets not easily available from a container
• Container support may not be available on compute nodes
• Need a very simple “install” process that places the monitoring software on the 

node without requiring updating the boot image
• Minimal configuration beyond installing the application, i.e. no need to 

configure library paths, plugin paths, etc..

Fallout Solution:
• Single application that has all dependencies statically linked

• Configuration file required to be minimally modified to support system specifics
• No external dependencies
• Simply copy binary and configuration file to compute nodes and run!
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Keep Sampler Deployment Simple
Configuration = ./sampler.conf

• Comes with a “standard” configuration but expected to be modified based on user needs
• Available samplers are currently “meminfo”, “vmstat”, “loadavg”, and “coretemps”

• Assumption that relevant technology-specific samplers will be created prior to deployment and included in 
compiled-in set of samplers

Standard configuration:
Transport = sock
Listening port = 411
Authentication = none
Sampling period = 1 sec
Running Sampler = meminfo, vmstat, loadavg, coretemp
Set name = <hostname>/<sampler plugin name>

• Example: nid0001/meminfo
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Keep Sampler Deployment Simple Cont’d.

• Put ‘sampler.conf’ in the same directory as ‘ldmsd_standalone’
• ldmsd_standalone starts with the standard configuration in sampler.conf:

./<path to ldmsd_standalone>/ldmsd_standalone

Two options to customize sampler’s configuration:
• Modify sampler.conf and start ldmsd_standalone
• Point ldmsd_standalone to the user’s configuration file:

./<path to ldmsd_standalone>/ldmsd_standalone –c <user configuration file>
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Aggregator Nodes

• Implemented with a Docker container 
• Gathers (Aggregates) data from Sampler Nodes
• Stores data locally in the container (SOS or CSV)
• Minimal configuration through docker run parameters
• No external dependencies
• Requires docker swarm + docker network
• If it will run docker, it will run Fallout!
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Visualization and Analysis

• Implemented with a Docker container
• No external dependencies
• Uses Grafana or Google Graphs for Visualization
• Aggregator and Viz/Analysis containers map common local storage volumes 

into the instance
• Suite of canned Analysis modules for outlier detection, rate computations, etc.
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Fallout Current Status

Single binary image
• To build, configure with --enable-standalone flag 
Analyses

• Python analysis methods query distributed database (DSOS, Vitess)

Visualizations
• Grafana
• Google Graphs

Deployment
• Bare metal install
• Container bring up
• Visualization of line plots and heat maps
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Current Status Cont.

What the executable file includes:
• zap_sock
• auth_none
• meminfo
• vmstat
• coretemp
• loadavg

The standalone executable files are
• ldmsd
• ldmsctl
• ldms_ls

To build the standalone version, configure with --enable-standalone flag.
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Simple Sampler Deployment

• Just scp ldmsd, sampler.conf, ldms_ls and ldmsctl to compute nodes

• Or, if there is a shared file system, just cp those files to a shared location

• Execution on compute nodes: simply call 
/path/to/single/ldmsd_standalone
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Docker setup
• git clone https://github.com/ovis-hpc/ldms-containers/ 
• Initialize docker swarm on a barebone machine

docker swarm init
• If the containers were to spread across multiple barebone machines, the other 

machines have to join the swarm
docker swarm join –token KEY HOST:PORT

• Add `ldms` network, do the following on the leader machine
• Edit config.sh, specify `NET=ldms` and SUBNET of your choice
• ./network-create.sh

• docker pull ovishpc/ldms-agg
• docker pull ovishpc/ldms-ui
• docker pull ovishpc/ldms-grafana

https://github.com/ovis-hpc/ldms-containers/
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Aggregator Container Deployment

On a barebone machine that you want to deploy the container:
./ldms-agg/run.sh --name agg-11 --prdcr "nid{00001..20}" --mem 128M --offset 
200000

• This creates a container named `agg-11` with 128 MB memory pool that collects LDMS sets 
from the ldmsd's on nid00001 – nid00020, with 200ms offset (default 1s interval). Note that 
`agg-11` does not have a store.
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UI container deployment

On a barebone machine that you want to deploy the container:
./ldms-ui/run.sh --name ui --dsosd "agg-{11,12}"

• This creates a container named "ui" that connects to dsosds on agg-11 and agg-12 
containers.

• The "ui" container runs the Django UI back-end that serves data points to Grafana.
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Grafana Container Deployment

On a barebone machine that you want to deploy the container:
./ldms-grafana/run.sh --name grafana
• This creates a container named "grafana" that by default has the http://ui/grafana/ data 

source installed.
• The Grafana server inside the container serves the web app over a Unix domain socket to 

work around a firewall issue. The Unix domain socket is exposed to the bare-metal host at:
• "./ldms-grafana/sock/grafana/grafana.sock"

• In order to get to the Grafana web app, we suggest to use SSH port forward as follows:
• On laptop:  
$ ssh bare-metal-host -L 127.0.0.1:3000:/ldms-containers/ldms-
grafana/sock/grafana/grafana.sock

http://ui/grafana/
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Getting to Grafana Web App

In order to get to the Grafana web app, we suggest using SSH port forwarding 
as follows:

• Suppose the ldms-containers project is checked out at /ldms-containers.
• On laptop:  
$ ssh bare-metal-host -L 127.0.0.1:3000:/ldms-containers/ldms-
grafana/sock/grafana/grafana.sock 
• Then, on a web browser the laptop, go to: http://127.0.0.1:3000
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Loadavg, and 
Core 
Temperature 
Dashboards 
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Memory, 
Loadavg, 
and Core 
Temperature 
Dashboards 
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Aggregator Container Deployment w/ store_csv

On a barebone machine that you want to deploy the container:
./ldms-agg/run.sh --name csv-11 --prdcr ”nid{00001..20}" --mem 256M --offset 
400000 --strgp-conf /path/to/csv-strgp.conf

• This creates a container named `csv-11` with 256 MB memory pool that collects LDMS sets 
from the ldmsd's on nids 1-20, with 200ms offset (default 1s interval).

• "--strgp-conf" can be used instead to provide custom strgp configuration.



Software Structure and Flow
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Action  pipelines

LDMS LDMS_AGG Function Data 
Store CSV file spool Parsers/ingestors 

via Cron Database

Database
Job 

Checker in 
60 sec loop

Database Analysis 
framework Actions

Database Httpd/PHP Google 
Charts



Test Definitions



Criteria fails



Job Detail for missing load



Pivot to node based raw data



Conclusions

Fallout provides a simple solution to monitoring minimal Linux-based systems
• Four files comprise entire compute node install
• Containerized (Docker) aggregation, analysis, and visualization enables 

outlier detection and diagnosis on minimally provisioned external host
• Vendor can supply proprietary technology specific samplers as desired

30
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Future Plans
Executable file includes the following compile-time user defined components

• Transport (default sock)
• Authentication configuration (default none)
• Samplers (default meminfo, loadavg, coretemp, technology specific)
• Samplers, transports, and authentication methods added to build using configure line options
• Sampler configurations (default one second sample interval)
• Log level (default QUIET)
• Log location

The standalone executable files will continue to be:
• ldmsd
• ldmsctl
• ldms_ls

To build the standalone version, configure with --enable-standalone flag
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Questions/Suggestions?
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