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Light yield of recoiling ions is important 
for:
• Accurate simulation of detector 

performance
• Inform design of new detection 

system

Can we find an ionization quenching model that works for :
• A wide energy range
• Different recoiling ions

Status of the literature for fission energy 
range:
• Proton light yield data over limited energy 

range for some materials
• Alpha and Carbon data mostly non-existent



• Broad-spectrum neutron source for 
deuteron breakup

• Kinematically over-constrained 
system

• Simultaneous proton and carbon 
light yield measurements
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Light Yield measurements at the 88-Inch Cyclotron
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Datasets considered in this work



Ionization Quenching Models

Canonical quenching model 
proposed by Birks (1951) :

6
J.B. Birks, Proc. Phys. Soc. A, 64(10) (1951)

S: scintillation efficiency
kB: Birks’ constant – quenching 
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S: scintillation efficiency
kB: Birks’ constant – quenching 

If kB=0, unquenched particle
Linear light yield

J.B. Birks, Proc. Phys. Soc. A, 64(10) (1951)

Canonical quenching model 
proposed by Birks (1951) :
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S: scintillation efficiency
kB: Birks’ constant – quenching 

Birks is still widely used in the 
literature

J.B. Birks, Proc. Phys. Soc. A, 64(10) (1951)

Canonical quenching model 
proposed by Birks (1951) :
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S: scintillation efficiency
kB: Birks’ constant – quenching 

Second order quenching introduced by 
Chou (1952 )  to include bimolecular 
quenching:

C.N. Chou, Phys. Rev. 87 (1952)J.B. Birks, Proc. Phys. Soc. A, 64(10) (1951)

Canonical quenching model 
proposed by Birks (1951) :
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Separation of nuclear and electronic 
stopping power by Hong (2002) :

J. Hong et al., Astro. Phys. , 16(3) (2002)
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Separation of nuclear and electronic 
stopping power by Hong (2002) :

Separation of nuclear and electronic 
stopping power and second order quenching 
by the Yoshida (2010) :

S. Yoshida et al., NIMA 622 (2010)

Both Hong and Yoshida simultaneously fitted proton and carbon light 
yield data (Stilbene and KamLAND LS)

J. Hong et al., Astro. Phys. , 16(3) (2002)
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Voltz (1966) : Separation of prompt and delayed component
                      Separate treatment of delta rays

R. Voltz et al., J. Chem. Phys. 45 (1966)

Prompt

Delayed

D. Horrocks, Appl. Spec. 24 (1970)
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Voltz (1966) : Separation of prompt and delayed component
                      Separate treatment of delta rays

Probability of electrons 
to escape the particle 
track

Unquenched  rays 

R. Voltz et al., J. Chem. Phys. 45 (1966)
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Results – Protons in Organic glass
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Results – Protons in EJ-276

Only the Yoshida and Voltz models reproduce proton light yield data for 
EJ-204, EJ-309, EJ-276 and an organic glass 
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Results – Simultaneous fit of proton and carbon data (EJ-204, 
EJ-309)

None of the models provided a reasonable fit of proton and carbon light 
yields simultaneously
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Possible improvements

 rays are treated as unquenched, but electron light yield is nonlinear at low 
energies

Treatment of delayed light should not be monotonic as a function of stopping power

Track structure modeling has also been recently attempted by some authors with 
promising resultsT. Ogawa et al., Sci. Rep. 11 (2021)
S. Kikuta et al., Phys. Med. 89 (2021)
J. Matsuya et al., Int. J. Rad. Biol., 98 (2022)

Unquenched  rays 

W. Moses et al., IEEE Tans. Nuc. Sci. 
(2012)
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Summary and Outlook

• Model parameters with covariance matrix for proton light yield in:
- EJ-204 (PVT based plastic)
- EJ-276 (PSD plastic)
- EJ-309 (PSD liquid)
- Organic glass developed at SNL
 Can be used to simulate detector response

• Birks does not work!
• Only the Yoshida and Voltz model reproduce proton light yield data
• None of the models reproduce proton and carbon light yield simultaneously

• Potential improvements to the Voltz model and status of stopping power data are 
also discussed in manuscript

T. Laplace et al., Mat. Adv. 3 (2022)
Part of the special issue honoring Prof. 

Williams
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