This paper describes obiective technical results and analysis. Any subjective views or opinions that might be expressed in SAND2022-12060C
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

@ﬁg?igi:al_

Laboratories

Exceptional service in the national interest
Toward Automatic Test
Synthesis for Performance

Portable Programs

Keita Teranishi, Shyamali Mukherjee, Richard
Rutledge, Samuel Pollard, Noah Evans,
Alessandro Orso, and Vivek Sarkar

KLEE Workshop 2022

I8, U8 DEPARTHEN

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and %@?EN RG‘"Y
Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. NA'S&%

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

&

,

/.
/4

o CPUs (Intel, AMD, ARM, IBM)

o GPUs (NVIDIA, AMD, Intel)

o Heterogeneity

o Diversity of Programming Systems (OpenMP, OpenACC, CUDA, HIP, DPC++)

Motivation: Tackling the Diversity of HPC Programming Systems

Current Generation: Programming Models OpenMP 3, CUDA and OpenACC depending on machine

ﬂ

LANL/SNL Trinity LLNL SIERRA ORNL Summit SNL Astra Riken Fugaku
Intel Haswell / Intel KNL ~ IBM Power9 / NVIDIA Volta IBM Power9/ NVIDIA Volta ARM CPUs ARM CPUs with SVE
OpenMP 3 CUDA / OpenMP(@ CUDA / OpenACC / OpenMP (@ OpenMP 3 OpenMP 3/ OpenACC®

Upcoming Generation: Programming Models OpenMP 5, CUDA, HIP and DPC++ depending on machine

NERSC Perlmutter ORNL Frontier ANL Aurora LLNL El Capitan
AMD CPU / NVIDIA GPU AMD CPU / AMD GPU Xeon CPUs / Intel GPUs AMD CPU/ AMD GPU
CUDA / OpenMP 5 HIP / OpenMP 5 (@ DPC++/ OpenMP 5 (¢ HIP / OpenMP 5 (@

Courtesy: Christian Trott, Sandia National Labs, NM

// Solution Kokkos Ecosystem Provides Performance Portable
Programming Environment -- Same code for any HPC platforms

" kokkos

https://github.com/kokkos

Science and Engineering Applications
Kokkos

Tools

Kokkos
Support

Trilinos

Kokkos EcoSystem
(Kokkos Remote Spaces][Kokkos Kernels

Kokkos Core

__,\ Y

Courtesy: Christian Trott, Sandia National Labs, NM

(III
b

‘g

y

/4

Kokkos Performance Portable Programming

double A[100];
for (int i = 0; i < N; ++i)

{
A(l) =
}

i+N;

):

oA
— . .
t% A[1] = 1+N;
}
Kokkos: :View<double *, DefaultSpace::mem> A(100); // Allocated in the default
” device
9 Kokkos: :parallel for (Kokkos::range policy<DefaultExecutionSpace>(100),
5 KOKKOS LAMBDA (int &1i)
N

Modern C++ (C++17) metaprogramming

Abstraction of data object such as memory allocation/location and data layout (View)

Abstraction of execution patterns and underlying runtime/hardware

(parallel_for, parallel_reduce, parallel_scan)
Single Source for Multiple Platforms!

-

/

/" Kokkos enables extreme scale scientific/engineering applications

/ Applications Libraries Frameworks

t=0 1=40ps

UT Uintah
Combustine

SNL LAMMPS
Molecular Dynamics

NREL/SNL NALU
Wind Turbine CFD

ORNL Raptor
Large Eddy Sim

Kokkos

AN TIER

IR

LANL/SNL Trinity SNL Astra
ANL Aurora : LLNL SIERRA
Intel Haswell /Intel KNL 40| xeon CPUS + Xe Compute ARM Architecture B\ Power9 / NVIDIA Volta

ORNL Frontier TN A“l lj We

Cray / AMD GPU

Courtesy: Christian Trott, Sandia National Labs, NM

- Kokkos provides portable
abstractions (ironically) allows non-
portable implementation.

« Bugs manifest only on specific
platforms.
« Crash

* |ncorrect results
- Poor performance

« Major causes are race conditions (GPUs)
and lack sync between host and devices

- Still requires good understandings of
target platforms
 Itis not what Kokkos is intended for.

Kokkos, CPUs

Kokkos, Heterogeneous

Kokkos , Heterogeneous, Efficient

Performance Portable Programming is still mistake prone

Kokkos: :View<double **> A(N,N);
for(int i = 0; i < N; ++i) {
Kokkos::parallel for (N, KOKKOS_LAMBDA (const size t &j)
{
A(i,J) = i*N*j;
b
}

// Allocated in the default device

Kokkos: :View<double **> A(N,N); // Allocated in the default device
Kokkos: :View<double **>::HostMirror HostA = Kokkos::create_mirror(A);
for(int i = 0; i < N; ++i) {

Kokkos::parallel for (N, KOKKOS_LAMBDA(const size t &j)

{

A(i,]) = i*N*j;

)i
}
Kokkos::fence();

Kokkos: :deep_copy(HostA, A); // Data copied from the accelerator to the host

Kokkos:
Kokkos :

:View<double **> A(N,N); // Allocated in the default device
:View<double **>::HostMirror HostA = Kokkos::create_mirror(A);

Kokkos::team policy<> myTeam = Kokkos::team_policy<>(N);
Kokkos::parallel for (myTeamm, KOKKOS_LAMBDA (Kokkos::team policy<>::member type team)
{

int i = team.league_ rank;
Kokkos::parallel_ for (Kokks::TeamThreadRange (team, N),
{
A(i,j) = it+N*j;
})i
)i
Kokkos: :fence() ;
Kokkos: :deep_copy(HostA, A);

[=] (const int &j)

// Data copied from the accelerator to the host

y

4

r

Leverages KLEE

- Establish a portable formal specification of Kokkos APIs for
model checking.

. Tr?lats all Kokkos method calls as uninterpreted function
calls
« Symbolic analysis in the level of Kokkos’ abstractions

« Track the symbolic state of Kokkos' data representation

« Automatic Test Generation for “suspicious” part of program
source

« Ultimately, users do not access the target platforms to
check the correctness of their Kokkos programs.

Kokkos Configuration
Formal Specification

7/ KLOKKOS, Auto test-code Generation Framework

Kokkos App
Kokkos Calls

CLANG AST

Conversion to
Kokkos-Proxy

Converted Kokkos App
- Kokkos Proxy Calls

KLEE

Kokkos-KLEE
Concolic Execution

Symbolic
Test Cases Execution
Statistics

y
4
“4

Biggest problem in symbolic testing:

&

- State explosion
« Name mangling of C++

* We really care the states relevant to the
correct use of Kokkos APIs.

Solution: Convert Kokkos prorams C-like
programs

- Extract API calls, demangle namespace,
remove templates, simplify Kokkos

« All Kokkos methods are treated as C-like
function

Embody Kokkos formal semantics and
models in the proxy representation

Kokkos

Kokkos Proxy

Kokkos Proxy Allows Symbolic Analysis

Kokkos: :View<double *> A(”View A”, 100);
in the default device
// Kokkos Range Policy, it launches a kernel, i =

// Allocated

[0,100)
Kokkos: :parallel for (100, KOKKOS LAMBDA (const int
&i)
{
A(i) = 1i;
})i
Clang
i AST 7

int input[l] = {100};
KokkosView A = DeclareView("View A", 1, input ,
DOUBLE, DefaultMemSpace, LeftLayout);

ParallelForRangePolicyBegin(A, 0, 100,
DefaultExeSpace);
auto MyFunc = [&](const int &thread_i)
{
int indices[1];
indices[0] =thread i;
KokkosViewAssgin(A,1l,indices,thread_i);
}i
MyFunc(i);
ParallelForRangePolicyEnd(A, DefaultExeSpace);

/" We modify KLEE to analyze Kokkos Proxy calls

Converted Kokkos App

KLEE
Kokkos Proxy Calls m_’ 210 Rk Kokkos Proxy

Module
sw $1, 16($sp)

lw $25, %call16(_Z5Kokkos

Kokkos Proxy

Library

« Two Major Components
« Kokkos Proxy Module

« Kokkos Proxy Library

* (Meta) Data Object Centric
« Maintain meta data of individual Kokkos::View

Do not perform any floating computation
« Notscalable

We are interested in the common programming mistakes rather than floating point bugs

Kokkos Proxy KLEE Module Allows Tracking Data Object (View) state

Make Kokkos View
(data object)
Symbolic

Maintain metadata
to track mirror and
reference of Views
and duplicated
copies.

Enables to track
mirror views on
GPUs for detecting
heterogeneous

data inconsistency

Make number
of threads
symbolic,
simulate
parallelism

Thread
specific
metadata for
tracking calls

Make Kokkos Views
(data objects)
symbolic path and
detecting anomaly in
synchronization.

‘g

// Kokkosn Proxy mistake example

int input[l] = {100};

{
ParallelForRangePolicyBegin(A, 0, 100, DefaultExeSpace);

auto MyFunc = [&](const int &thread_i)

{

int indices[1];

Kokkos VM example

}i
MyFunc(i); // We know i = [0,100)
ParallelForRangePolicyEnd(A, DefaultExeSpace);

The bug shows up with a certain parallel
simulation
KLEE provides a way to concretize the value of

thread_i
KLOKKOS internally maintain a table for KokkosView

specific to Parallel_For.

KokkosView A = DeclareView("View A", 1, input , DOUBLE, DefaultMemSpace, LeftLayout);

indices[0] = thread_i%2; // <+ potential Race Condition. Detected
KokkosViewAssign(A,1l,indices,thread_i); through COﬂCO“C execution

Use a symbolic task or thread id
Fork the execution for various
simultaneous tasks

Add a constraint on task and range
policy to the path condition

‘g

// Kokkos Proxy mistake example

int input[l] = {100};

indices[0] = my_index[thread i]; <
KokkosViewAssign(A,1l,indices,thread_i);

}i
MyFunc(i); // We know i = [0,100)
ParallelForRangePolicyEnd(A, DefaultExeSpace);

The bug shows up with a certain parallel
simulation

Result is an incorrect computation. due to lack of
data cohesiveness in a non deterministic way

KokkosView A = DeclareView("View A", 1, input , DOUBLE, DefaultMemSpace, LeftLayout);

indices is non deterministic

@

e A

D ParallelForRangePolicyBegin(A, 0, 100, DefaultExeSpace);

) auto MyFunc = [&](const int &thread_i)

= {

> g . . . -

” int indices[l]; Overwriting in View region indices, as
2

@]

N

Use a symbolic task or thread id
Fork the execution for various
simultaneous tasks

Add a constraint on task and range
policy to the path condition

-

4

/~ Kokkos Proxy mistake example

‘g

int input[l] = {100};
int inputb[1l] = {10};
KokkosView A = DeclareView("View A", 1, input , DOUBLE, DefaultMemSpace, LeftLayout);

r

&

KokkosView B = DeclareView(“View B”, 1, input, DOUBLE, DefaultmemSpace, LeftLayout);

KokkosDeepCopy(A,

1.0); // Assign 1s to all entries of A.
KokkosDeepCopy(B, A);

// The size of B and A does not match. Runtime Error

« Result will report bug as boundary check fails in Kokkos Proxy plug-in
in KLOKKOS.
« KLOKKOS maintains the metadata of individual KokkosViews

/" MiniKokkos and Memory Models
4

7 MiniKokkos paper submitted to Correctness 22
G Legend Code
workshop at SC22
0, Host, {}, — Seqedge —
- Key results: 5 e View(Dev,x
—» Fork edge ’
« Syntax and semantics for simplified language o HOSJ’{X:?’}‘ —> Joinedge Parm?f,i’if-’ ret’)
- capture views, fences, parallel loops A i [] threadnode FeNCE(DeV)
- Proof of portability in this language Parfor(Dev, x, wh y<io: et
* Found a bug in kokkos: :deep_copy [1] v
« Memory Models roosy 1| v | [wives || wrivens
« Literature review Fence(Dev):s ! ! !
2, Deyv, 3, Dey, 4, Dey,
* Many modeling tools: TLA+, Murphi, CIVL; none were at), et), et L), et
right abstraction
« Memory consistency models more specific: herd, alloy 0. Host, (X =3,y = v,

Fence(Dev); s

« Found existing work for NVIDIA's PTX
« Weaker memory model means more optimizations Minikokkos execution graph
« Kokkos memory model very weak; weakener than PTX

[1] https://github.com/kokkos/kokkos/issues/5213 n

‘g

MiniKokkos

« More complete model of Kokkos: Add (prioritized)
1. Nested parallelism
2. Multidimensional views, more types than just integers
3. Parallel reduce and scan

Memory Model
« Weaken PTX, see which theorems still hold

« Prove behavior and code transformations make sense
on Kokkos’ memory model

Other Potential Directions
« Model potential Kokkos features (multiple user-level
Kokkos threads)

* Prove theorem: Data-race freedom + (weak) Kokkos
memory model implies sequential consistency

* Interpreter for MiniKokkos - may be useful as
modeling language?

/7 0ngoing Work on Kokkos Formal Specification

Execution space ES ::= Host | Dev
Types 7 := N |V | R | void
Expressions e ::= x | ¢ | e1 + ez | View(ES,e)
Statement s = i;s | ret
Instruction ¢ := m | x < c | < e1 + ez
| z < View(ES,e€)
| Parfor(ES,e,s) | Fence(ES)
| Fence(Host); Fence(Dev); DeepCopy(x, y)
| if e then s; else s2
Memory operation m ::= allocz | rdz y | rd z y(e)

| wrzy | wr = y(e)

Fig. 1. Syntax of MiniKokkos

Kokkos has many more features than
MiniKokkos

Testing Coverage Overview

/ TEST TYPE Important Techniques Behavior and Platform Coverage

P Future and Ongoing Work

Evaluation with a suite of Kokkos Mistake Examples

Application of Partial Symbolic Analysis
« Analysis applied only to a specific portion of an application

- Lazy initialization adapted for Kokkos and Scientific applications

Evaluation with mini-applications
« Mantevo (https://mantevo.github.io/)

MiniMD (Molecular Dynamics, Mini-version of LAMMPS)
MiniFE (Finite Element Analysis for mechanical applications)
MiniAero (CFD, Driven Cavity Flow)

Integration of Kokkos’ Formal Specifications

