
Except ional serv ice in the nat ional interest

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S.

Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Toward Automatic Test
Synthesis for Performance
Portable Programs
Keita Teranishi, Shyamali Mukherjee, Richard
Rutledge, Samuel Pollard, Noah Evans,
Alessandro Orso, and Vivek Sarkar

KLEE Workshop 2022

This material is based upon work supported by the U.S. Department of Energy, Office of
Science, Advanced Scientific Computing Research, under Award Number DE-FOA-0002460.

SAND2022-12060CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Motivation: Tackling the Diversity of HPC Programming Systems

2

o CPUs (Intel, AMD, ARM, IBM)
o GPUs (NVIDIA, AMD, Intel)
o Heterogeneity
o Diversity of Programming Systems (OpenMP, OpenACC, CUDA, HIP, DPC++)

Courtesy: Christian Trott, Sandia National Labs, NM

Solution Kokkos Ecosystem Provides Performance Portable
Programming Environment -- Same code for any HPC platforms

3

Courtesy: Christian Trott, Sandia National Labs, NM

https://github.com/kokkos

Kokkos Performance Portable Programming

4

• Modern C++ (C++17) metaprogramming
• Abstraction of data object such as memory allocation/location and data layout (View)
• Abstraction of execution patterns and underlying runtime/hardware

(parallel_for, parallel_reduce, parallel_scan)

• Single Source for Multiple Platforms!

double A[100];
for (int i = 0; i < N; ++i)
{

A[i] = i+N;
}

Kokkos::View<double *, DefaultSpace::mem> A(100); // Allocated in the default
device
Kokkos::parallel_for (Kokkos::range_policy<DefaultExecutionSpace>(100),

KOKKOS_LAMBDA (int &i)
{
A(i) = i+N;

}
);

Se
ria

l
Ko

kk
os

Kokkos enables extreme scale scientific/engineering applications

5
Courtesy: Christian Trott, Sandia National Labs, NM

Performance Portable Programming is still mistake prone

6

• Kokkos provides portable
abstractions (ironically) allows non-
portable implementation.

• Bugs manifest only on specific
platforms.
• Crash
• Incorrect results
• Poor performance
• Major causes are race conditions (GPUs)

and lack sync between host and devices

• Still requires good understandings of
target platforms
• It is not what Kokkos is intended for.

KLOKKOS, Auto test-code Generation Framework

7

•
Leverages KLEE

• Establish a portable formal specification of Kokkos APIs for
model checking.

• Treats all Kokkos method calls as uninterpreted function
calls
• Symbolic analysis in the level of Kokkos’ abstractions

• Track the symbolic state of Kokkos’ data representation

• Automatic Test Generation for ”suspicious” part of program
source

• Ultimately, users do not access the target platforms to
check the correctness of their Kokkos programs.

Kokkos Proxy Allows Symbolic Analysis

8

Biggest problem in symbolic testing:
• State explosion
• Name mangling of C++
• We really care the states relevant to the

correct use of Kokkos APIs.

Solution: Convert Kokkos prorams C-like
programs
• Extract API calls, demangle namespace,

remove templates, simplify Kokkos
• All Kokkos methods are treated as C-like

function

Embody Kokkos formal semantics and
models in the proxy representation

Clang
AST

Kokkos::View<double *> A(”View A”, 100); // Allocated
in the default device
// Kokkos Range Policy, it launches a kernel, i =
[0,100)
Kokkos::parallel_for (100, KOKKOS_LAMBDA (const int
&i)
{

A(i) = i;
});

Ko
kk

os

int input[1] = {100};
KokkosView A = DeclareView("View A", 1, input ,
DOUBLE, DefaultMemSpace, LeftLayout);

ParallelForRangePolicyBegin(A, 0, 100,
DefaultExeSpace);
auto MyFunc = [&](const int &thread_i)
{

int indices[1];
indices[0] =thread_i;
KokkosViewAssgin(A,1,indices,thread_i);

};
MyFunc(i);
ParallelForRangePolicyEnd(A, DefaultExeSpace);

Ko
kk

os
Pr

ox
y

We modify KLEE to analyze Kokkos Proxy calls

9

• Two Major Components
• Kokkos Proxy Module
• Kokkos Proxy Library

• (Meta) Data Object Centric
• Maintain meta data of individual Kokkos::View

• Do not perform any floating computation
• Not scalable
• We are interested in the common programming mistakes rather than floating point bugs

KLEE

Kokkos Proxy
Module

Kokkos Proxy
Library

Byte Code
Converted Kokkos App

Kokkos Proxy Calls
LLVM

sw $1, 16($sp)
lw $25, %call16(_Z5Kokkos ….)

:
:
:

Kokkos Proxy KLEE Module Allows Tracking Data Object (View) state

10

Make Kokkos View
(data object)
Symbolic

Maintain metadata
to track mirror and
reference of Views
and duplicated
copies.

Enables to track
mirror views on

GPUs for detecting
heterogeneous

data inconsistency Make Kokkos Views
(data objects)

symbolic path and
detecting anomaly in

synchronization.

Thread
specific

metadata for
tracking calls

Make number
of threads
symbolic,
simulate

parallelism

Kokkosn Proxy mistake example

11

int input[1] = {100};
KokkosView A = DeclareView("View A", 1, input , DOUBLE, DefaultMemSpace, LeftLayout);
{

ParallelForRangePolicyBegin(A, 0, 100, DefaultExeSpace);
auto MyFunc = [&](const int &thread_i)
{

int indices[1];
indices[0] = thread_i%2; //
KokkosViewAssign(A,1,indices,thread_i);

};
MyFunc(i); // We know i = [0,100)
ParallelForRangePolicyEnd(A, DefaultExeSpace);

}

Ko
kk

os
VM

 e
xa

m
pl

e

Potential Race Condition. Detected
through concolic execution

• The bug shows up with a certain parallel
simulation

• KLEE provides a way to concretize the value of
thread_i

• KLOKKOS internally maintain a table for KokkosView
specific to Parallel_For.

o Use a symbolic task or thread id
o Fork the execution for various

simultaneous tasks
o Add a constraint on task and range

policy to the path condition

Kokkos Proxy mistake example

12

int input[1] = {100};
KokkosView A = DeclareView("View A", 1, input , DOUBLE, DefaultMemSpace, LeftLayout);
{

ParallelForRangePolicyBegin(A, 0, 100, DefaultExeSpace);
auto MyFunc = [&](const int &thread_i)
{

int indices[1];
indices[0] = my_index[thread_i];
KokkosViewAssign(A,1,indices,thread_i);

};
MyFunc(i); // We know i = [0,100)
ParallelForRangePolicyEnd(A, DefaultExeSpace);

}

Ko
kk

os
VM

 e
xa

m
pl

e

Overwriting in View region indices, as
indices is non deterministic

• The bug shows up with a certain parallel
simulation

• Result is an incorrect computation. due to lack of
data cohesiveness in a non deterministic way

o Use a symbolic task or thread id
o Fork the execution for various

simultaneous tasks
o Add a constraint on task and range

policy to the path condition

Kokkos Proxy mistake example

13

int input[1] = {100};
int inputb[1] = {10};
KokkosView A = DeclareView("View A", 1, input , DOUBLE, DefaultMemSpace, LeftLayout);

KokkosView B = DeclareView(“View B”, 1, input, DOUBLE, DefaultmemSpace, LeftLayout);

KokkosDeepCopy(A, 1.0); // Assign 1s to all entries of A.
KokkosDeepCopy(B, A); // The size of B and A does not match. Runtime Error

• Result will report bug as boundary check fails in Kokkos Proxy plug-in
in KLOKKOS.

• KLOKKOS maintains the metadata of individual KokkosViews

MiniKokkos and Memory Models

14

0, Host, {},
x ← 3; s

0, Host, {x = 3},
y ← View(Dev, x); s

0, Host, {x = 3, y = vw},
Parfor(Dev, x, wr i y<i>; ret);

s

0, Host, {x = 3, y = vw},
Fence(Dev); s

2, Dev,{... i = 0},
wr i y<i>; s

2, Dev,
{...}, ret

3, Dev,
{...}, ret

4, Dev,
{...}, ret

0, Host, {x = 3, y = vw},
Fence(Dev); s

tcHost ↦ 1
x ↦ 3

tcHost ↦ 1tcDev ↦ 0

tcDev ↦ 0

tcHost ↦ 1
x ↦ 3

tcDev ↦ 0
vw ↦ [0,0,0]

tcDev ↦ 3
vw ↦ [0,0,0]

tcHost ↦ 1
x ↦ 3

tcHost ↦ 1
x ↦ 3

tcDev ↦ 3
vw ↦ [0,1,2]

3, Dev,{... i = 1},
wr i y<i>; s

4, Dev,{... i = 2},
wr i y<i>; s

tcDev ↦ 0
vw ↦ [0,1,2]

tcHost ↦ 1
x ↦ 3

HostSMDevSM G Legend

Seq edge

Fork edge

Thread node

Join edge

Code

x ← 3
y ← View(Dev, x)
Parfor(Dev, x,
 "wr i y<i>; ret")
Fence(Dev)
...

MiniKokkos execution graph

• MiniKokkos paper submitted to Correctness 22
workshop at SC22
• Key results:
• Syntax and semantics for simplified language
• capture views, fences, parallel loops
• Proof of portability in this language
• Found a bug in kokkos::deep_copy [1]

• Memory Models
• Literature review
• Many modeling tools: TLA+, Murphi, CIVL; none were at

right abstraction
• Memory consistency models more specific: herd, alloy
• Found existing work for NVIDIA’s PTX
• Weaker memory model means more optimizations
• Kokkos memory model very weak; weakener than PTX

[1] https://github.com/kokkos/kokkos/issues/5213

Ongoing Work on Kokkos Formal Specification

15

• MiniKokkos
• More complete model of Kokkos: Add (prioritized)

1. Nested parallelism
2. Multidimensional views, more types than just integers
3. Parallel reduce and scan

• Memory Model
• Weaken PTX, see which theorems still hold
• Prove behavior and code transformations make sense

on Kokkos’ memory model

• Other Potential Directions
• Model potential Kokkos features (multiple user-level

Kokkos threads)
• Prove theorem: Data-race freedom + (weak) Kokkos

memory model implies sequential consistency
• Interpreter for MiniKokkos – may be useful as

modeling language?

Kokkos has many more features than
MiniKokkos

Testing Coverage Overview

16

TEST TYPE Important Techniques Behavior and Platform Coverage

Static Analysis Formal Specification, Compiler
AST

All possible executions paths and
platforms

Dynamic Analysis Compiler, Kokkos Proxy One input for multiple platforms
Concolic testing indicates which
part of code needs to be covered
by Dynamic analysis.

Concolic (Concrete-Symbolic)
Testing

Formal Specification, Compiler,
SMT Solver, Kokkos Proxy

All possible execution paths and
platforms for a subset of concrete
inputs.

Differential Testing Knowledge Base, Kokkos Virtual
Machine

Heterogeneous, Application-
Driven (Sequential VS Parallel)
Concolic testing indicates which
part of code needs to covered by
differential testing.

Future and Ongoing Work

17

• Evaluation with a suite of Kokkos Mistake Examples

• Application of Partial Symbolic Analysis
• Analysis applied only to a specific portion of an application
• Lazy initialization adapted for Kokkos and Scientific applications

• Evaluation with mini-applications
• Mantevo (https://mantevo.github.io/)
• MiniMD (Molecular Dynamics, Mini-version of LAMMPS)
• MiniFE (Finite Element Analysis for mechanical applications)
• MiniAero (CFD, Driven Cavity Flow)

• Integration of Kokkos’ Formal Specifications

