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Benefits &

Limitations of in situ TEM

Benefits
1. Real-time nanoscale resolution observations of microstructural dynamics
Limitations Ak : I,
1. Predominantly limited to microstructural characterization i ,,: ; o
Some work in thermal, optical, and mechanical properties e i ‘ﬂfﬁ:‘i“"’ v
2. Limited to electron transparent films w.j_f,jﬁi; ,;:;
Can often prefer surface mechanisms to bulk mechanisms 'Z:..ﬁg.l’é&““"ﬁ
Local stresses state in the sample is difficult to predict tw’“"”%‘hﬁ?
3. Electron beam effects Bk, jj_f%j"ﬁi%!‘;“
Radiolysis and Knock-on Damage e ond 49 o ey
4.  Vacuum conditions _ , ,;
- 1077 Torr limits gas and liquid experlments feasibility X !
5. Local probing ' - p‘ .
- Portions of the world study is small } f
- —

Fig. & Wing surface of the house fly. Fig. 2: Sketch by the author (9 March 1931) of the cathode ray tube for testing one-stage and two-
(First intemnal pho hy, U = 60 kV, M, = 2200) - § . .
L E., m:u ler FHO Z. Wizs. Mikro: y_l e 52, 53.57 (1935) stage electron-optical imaging by means of two magnetc electron lenses (electron myicroscope) [S]



IBIL from a quartz stage inside the TEM

Sandia’s Concurrent In situ lon
Irradiation TEM FaCiIity Collaborator: D.L. Buller
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Single lon Strikes:
46 keV Au'-ions into 5 nm Au nanoparticles

Collaborator: D.C. Bufford




Radiation Tolerance in Phase Change Memory

Contributors: Trevor Clark, Eric Lang, Ethan Scott, and David Adams

No irradiation 4 dy

= 90 nm-thick GST with 0-20%C
m Plan View:

+ Anneal (5 "C/min) L :
+ RT irradiation (4dpa) GST 0 %C Anneal 5°C/min from100-150 °C ~ 15x speed

= Anneal (5 "C/min) 1E16 : : 500
+ 100 "C hold & irradiation (4dpa) & 5
= Cross se.ctllon FIB lift-outs: Senl ; e Ao 276
- RT Irradiation E : i _mg | crystallization
- 200 C & 300 C Hold E i g temperature are
= Irradiation Conditions g™ ; . |,z carbon dependent
2.8 MeV Au** up to 4 dpa E oo 5
1E13 T T T 100

0 5 10 15 . E
Carbon Doping Level (% C) 111) Sandia National Laboratories



Quantifying Grain Boundary Radiation Stability
of Nanocrystalline Au

Collaborators: D.C. Bufford, F. Abdeljawad, & S.M. Foiles
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“ ©__ Direct Comparison to Mesoscale Modeling

Collaborators: D.C. Bufford, F. Abdeljawad, & S.M. Foiles
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Because of the matching length scale, the initial microstructure
can serve as direct input to either MD of mesoscale models &
subsequent structural evolution can be directly compared. fl"
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A Complex Combination of
Sintering, Reactions, and
Ablation Occurs

Electron Beam We can now introduce
rapid thermal heating

IR Laser with any TEM stage or

Sandia National Laboratories



In situ Quantitative Mechanical Testing
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Can we Combine Laser Heating with Mechanical Testing?

Contributors: R.L. Grosso, E.N.S. Muccillo, D.N.F. Muche, G.S. Jawaharram, C.M. Barr, A.M. Monterrosa, R.H.R. Castro, S.J. Dillon
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Pushing the Laser Limit - 1604 °C and 2056 °C ScSZ-ScSZ

Contributors: R.L. Grosso, E.N.S. Muccillo, D.N.F. Muche, G.S. Jawaharram, C.M. Barr, A.M. Monterrosa, R.H.R. Castro, S.J. Dillon
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Irradiation Creep (4 MeV Cu3* 102 DPA/s)

Contributors: G.S. Jawaharram, S. Dillon & R.S. Averback )
50 nm Cu-W multilayer -+
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“©» ¢ Phase Stability in Microfluidic Environment
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Can We Gain Insight into the Corrosion
Process through In situ TEM?

Contributors: D. Gross, J. Kacher, .M. Robertson & Protochips, Inc.
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Pitting mechanisms during dilute flow of acetic acid over 99.95% nc-PLD Fe involves many grains.
Large grains resulting from annealing appear more corrosion tolerant




PED in Liquid Cell Environment

Contributors: C. Taylor, S. Pratt, & T. Nenoff
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- Ex situ Mechanical Testing End Station

Collaborators: D. Buller, B. Boyce, J. Carroll, P. Price, C. Taylor, B. Muntifering, S. Briggs, N. Heckman, J.A. Scott

- Combined three individual mechanical testing in tandem
beamline end station

- Limited (optical, IR only) imaging capabilities
M - Have successfully collected preliminary data using this system
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We can now perform
in-situ SEM heavy
ion irradiation, ion

implantation,
corrosion, creep,
and fatigue.

In situ Extreme SEM

Collaborators: .N. Heckman, B.L. Boyce, B. Derby, N. Li
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In situ High-cycle Fatigue

Collaborators: .N. Heckman, B.L. Boyce,

i " . ,..,,-.'1.._."
-
s — - Nanocrystalline Ni-
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. Direct insight into crack propagation and

| failure during cyclic loading




Unconventional In situ Microscopy . &nsuF
Creates a Wealth of Possibilities

= Plethora of extreme environments that have not been
fully explored.

= Utilizing the TEM as an experimental chamber provides
a range of nanoscale extreme environments.

= Combining extreme conditions opens up the ability
more complex real world applications.

= ACOM and other analytical techniques coupled with in
situ observations provides a nice bridge to MD and
mesoscale modeling.

= |f you would like to hear about the I3SEM let me know

The future is bright and fastly
approaching for coupled in situ TEM
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Temperature Upper Bound
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‘Diffraction for Temperature Calibration
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