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Abstract 

In this study we implement machine learning approaches for event detection of microseismic 

activity induced by CO2 injection at the Illinois Basin Decatur Basin (IBDP) where a number 

of microseismic clusters are identified. Our primary goal is to improve event detection 

accuracy and efficiency given a limited number of waveform data. To do this we develop 

multiple convolutional neural network (CNN) architectures to analyse the spectrogram (i.e., 

time-frequency images) of the waveforms. The detection results show that the usage of 

spectrogram and data normalization as a pre-processing enables us to improve detection 

accurate significantly even with only 600-700 event data per each cluster.  

1. Introduction 

Due to a growing number of subsurface energy recovery and storage activities over 

the past decades, induced seismicity has become one of key risk potentials to be controlled 

and mitigated for sustainable subsurface energy activities. Physically induced seismicity has 

been attributed to poroelastic response to fluid injection and/or extraction with two primary 

mechanisms including pore pressure increase and poro-elastic stress transfer (e.g., Chang and 

Yoon, 2018). Over the past 5 years machine learning/deep learning (ML/DL) models have 

emerged to improve the detection of seismic events more accurately and efficiently (Perol et 

al., 2018; Zhu and Beroza, 2019; Mousavi et al., 2020; Münchmeyer et al., 2022). As a recent 

comparative study of six different DL model for event detection (Münchmeyer et al., 2022) 

shows that many DL earthquake detection models have shown promising performance for a 

variety of large magnitude events, the dataset used in evaluation is from seismic data at large 

scales. Hence, microseismic level events, such as those induced by CO2 injection into the 

subsurface, remain challenging due to their low event signal energy and a limited number of 

events. 

In this work we develop convolutional neural network (CNN) models to detect 

seismic events from continuous waveform data measured at the Illinois Basin Decatur Project 

(IBDP) site where CO2 injection has been performed for geologic carbon storage (GCS). In 

particular, we evaluate the data preprocessing to improve event detection using CNN models 

and the impact of additional physical properties on event detection accuracy. We will 

highlight the importance of data preprocessing on event detection for the limited dataset and 

the improved detection accuracy with additional physical property.  

2. Methodology 

In this study, we analyze microseismic waveform data obtained at the IBDP site (Will 

et al. 2016) where ~ a million tonnes of CO2 have been injected into the lower Mt. Simon 

formation for 3 years (2011-2014). The detailed data acquisition is reported in Will et al. 

(2016) and a recent analysis in Williams-Stroud et al. (2020) shows how microseismic events 

can be used to identify the fault characteristics. For ~3 years injection period, more than 6,000 

microseismic events have been detected at 2,000 Hz frequency through two geophones in the 

reservoir formation and 28 multiple geophysical monitoring geophones. One challenge to 

analyze the IBDP waveform data stems from the vertical alignment of the sensors, resulting 

in a very limited surface coverage. Furthermore, there is a very limited amount of event data 

compared to other repositories. Here, we report our DL models with continuous microseismic 

waveform data over a short time period (Feb. 27, 2012 to Mar. 12, 2012), totaling to event 

612 samples as shown in Figure 1. For event detection we used three channel waveform data 

from the lowest geophone where signal to noise quality is the best.  
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Figure 1. Chronological frequency of event occurrence in daily (24-hour) bins. Detected 

events represent event identified with traditional phase picker (e.g., STA/LTA) and located 

events represent the source location of events identified with further analysis (e.g., Will et al., 

2016; Williams-Stroud et al., 2020).  

 

With a limited number of waveform samples the models consist of simple CNN 

architectures with a relatively low number of trainable parameters to avoid overfitting. An 

overall schematic of our DL models is shown in Figure 2a. The original three channel 

waveform data (2 second windows at 2,000 Hz) are bandpass-filtered (10-400 Hz) and 

detrended prior to applying short time Fourier transform for each channel, producing 60x60x3 

input samples. Finally, these spectrogram images are normalized by log scaling (Dennis, 

Tran, and Li 2010) and linearly converting the resulting data values to a range of 0 to 1. We 

also incorporate a physical property and constraint to improve learning efficiency. In this case 

we use Mel-Frequency Cepstrum Coefficients (MFCC) as a physical property to represent an 

energy of seismic event. The MFCC is used as an input to a multilayer perceptron (MLP) 

which extracts features from additional MFCC. The features from both CNN and MLP are 

concatenated to train the DL model. 

 

 
Figure 2. (a) A schematic of DL model architecture. The inputs are 3 channel spectrogram 

images for the CNN block and MFCC coefficients for the MLP block . The MLP pipeline, 

shown in the red box, operates in parallel to the base CNN pipeline. Features extracted by 

both pipelines are concatenated before entering a final dense layer leading to the final 

prediction output. (b) Binary cross-entropy loss values over epochs for each DL model. 

Dashed and solid curves represent training and validation loss values, respectively. 

 

3. Results 

As seen in Figure 2b, two CNN models with data normalization as the preprocessing 

were trained excellently and the best models selected have a loss value at an order of ~1×10-6 

. One notable difference between these two models is the CNN model without MFCC input 

shows an early plateau compared to the CNN+MLP model with MFCC input, and the latter 

has a better the loss value for validation datasets than for training dataset. The result of the 

CNN+MLP model may reflect that the addition of physical property of each waveform can be 
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generalized better (i.e., less overfitting to the training data). As described earlier, the IBDP 

site does not have a large number of event data for training, hence, we include the train results 

of the CNN model to highlight the impact of normalized input spectrograms on model 

accuracy, given that higher loss and higher difference between training and validation loss 

values signifies bad model optimization. 

 To show that our DL models have learned to distinguish microseismic event features 

for high fidelity event detection, the trained model is applied for raw continuous waveform 

data. Input to the trained model is preprocessed in the same way as described previously. We 

select three day-long (24 hrs) waveform data. Two of these dates have been used to make 

some training samples as event and noise data for our DL models and are included to identify 

new microseismic events during these times which are not recorded in the original catalog. 

On the other hand, one day-long data corresponds to a time period outside of that used for the 

training data, allowing us to assess our models’ capability of generalizing detections for 

unseen data samples. Table 1 shows event detection results and number of documented events 

by the catalog for the respective dates. 

 

Table 1. Comparison of number of events reported in the IBDP catalog and events predicted 

with DL models in this study. Three independent days are selected for comparison, two of 

which are part of the training data period and one outside of this period. 

 Date Located/Detected CNN CNN+MLP 

Case 1 Feb/27 60 / 171 203 209 

Case 2 Mar/1 66 / 196 532 987 

Case 3 Jun/26 64 / 195 174 189 

 

Detection results demonstrate the effectiveness of our DL methodology for microseismic 

applications. Both DL cases show to be able to detect close to as many or more events than 

those reported in the IBDP catalog for the days analyzed in Table 1. Manual inspection 

confirms all detections show seismic anomalies of interest. Figure 3 shows examples of event 

predictions including events registered in the catalog (on the right side) and new unregistered 

events (left side). 

 

 
Figure 3. Samples of microseismic events detected by DL models on continuous waveform 

data. Two samples on the right and left sides are registered and not registered in the IBDP 

catalog, respectively. Only the horizontal (H2) channel out of the three channel data is shown. 

 

4. Conclusions 

We design and compare multiple CNN models with time-frequency feature extraction 

capabilities for the role of automated high fidelity microseismic event detection, using the 

IBDP data repository. A crucial aspect of our CNN design is the augmentation of the data 

time series into a time frequency domain and a proper normalization strategy for the input 

information, which proved to help optimize our DL models. We demonstrated that presenting 

additional data driven inputs in a different format (here we use MFCC features) using a 

simple MLP model in parallel to the CNN model can help improve final decision making for 



                                                                                            

sample classification. This CNN+ MLP model achieves similar optimization performance as 

the simple CNN for 100 epochs, but its learning progression suggest the CNN+MLP models 

has potential to improve with further training. Both DL models are subjected to continuous 24 

hor recording to evaluate their performance in comparison to the IBDP catalogue records. 

Study cases 1 and 2 correspond to time periods where data was extracted to create training 

data for the DL models themselves, therefore they were expected to perform well. However, 

the significant increase of predicted events for these cases compared to the catalogue suggest 

there may be more microseismic events of interest unidentified in the IBDP repository. Case 

3, on the other hand, corresponds to data of a time period not used for training data, where our 

DL models achieved comparable results to the IBDP records demonstrating the prediction 

reliability of our CNN models. Next steps would be applying the CNN models to make 

prediction over more IBDP continuous recording to have a broader perspective of our DL 

model capabilities. 
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