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« Emission from hot particles and gaseous species originates from hot shell
» But, cold core of expanded detonation products plays an important role
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Grand Challenges

Our Goals

« Acquire T, P, CO, CO, and H,O measurements in post-det fireballs at ~ MHz
rates to evaluate fireball+radiation model accuracy

Challenges Solutions

+ Transmission losses * Optical engineering

. Optical emission « Spectral and spatial filtering

« Small-scale fireballs * Mid-infrared absorption

. Need ~us resolution - DFB QCLs with deep tuning + wavelength selection

Line-of-sight nonuniformities Wavelength selection + utilization of synthetic
measurements from CFD results




LAS Sensor Design: Diagnostic Technique
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LAS Sensor Design: Wavelength Selection

Need mid-IR wavelengths o 1500 K o
« Strong absorption needed for small scales —22
and concentrations

Cco
—CH,

—NO

Need high-E” transitions

* Minimizes absorption in cold core & BL
—>eases interpretation of path-integrated
absorption

Linestrength, cmZ/atm
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Need large AE” transitions
« Large temperature sensitivity

N

Scan Depth (cm'1)
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Need closely spaced transitions for near-

MHz measurements \ 1

* Tuning amplitude of DFB QCLs is small at e
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LAS Sensor Design: Wavelength Selection

CL targets CO P(0,31) and P(2,20) transitions near 2008.5 cm-! (~5 um)
E” ~1901 and 5052 cm™!, AE"=3151 cm"’
« Measurements are deliberately biased to fireball’s hot outer shell!
« Similar approach for CO, diagnostic
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Experimental Setup for Simultaneous T, P, CO, CO,

RP-80 Blast
ICL Current & T ICL ) Chamber
Temperature Beamsplitter
Controller ] D
%ER O Beamsplitter \ etector
-->
T N = /‘é -~ \ 4
— Mirror Collection ICL
I .| Lens Y| Bandpass
® } Filter
\A/\ Function QCL Dat
0000 Generator Bandpass =1~ Acquei‘s?cion
j Filter

-~ N\¢—{acL
QCL Current Mirror
Controller
Detector
QCL Temperature

Key Details
« QCL scanned across CO transitions near 2008 cm-' at 1 MHz
 ICL scanned across CO, transitions near 2384 cm-! at 500 kHz
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Key Takeaways

« Large optical losses, especially at shock arrival
« Each T, P, PcoL measurement acquired in ~0.5 us




Results: Example Absorbance Spectrum

Example Single-Scan Measurement

Key Takeaways >y
« Large absorbance || Measured
 Relatively high-SNR (~100) "
- Spectrum dominated by 2 lines 508
< 04
« Spectrum well modeled by uniform LOS 0.2 ] ‘ Pi4)

absorption model using HITEMP2019 0

L. . -0.25 -0.2 -0.15 -0.1 -0.05 0
 Due to minimal abs. in cold core & BL

via high-E” lines T
» Single T, P, P¢ol from each fit %_zo | | i | [ MMM MW'
T =1360 K, ® 025 02  -015 -0 0.05 0
P =1.63 atm, Relative Frequency, cm’™
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Results: Time Histories at y = 51 mm
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Key Takeaway

* Results are highly time resolved and repeatable
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15 ps

contours show 2D
temperature slices

But how do you compare measurements to models
recognizing they both have flaws?



Use CFD to simulate your spectroscopic measurements
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Compare experimental LAS measurements vs synthetic LAS measurements
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Grand Challenges

Simulation Framework 15 s

contours show 2D
temperature slices

CTH
hydrocode

HyB
UF CI3:/Durn
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Multi-physics requires several coupled

computational tools [

1. Hydrocode predicts explosive detonation
and fragmentation

2. Fireball species initialized based on
equilibrium and kinetics assumptions

3. 3D reactive Large Eddy Simulation (LES)
predicts fireball evolution
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Evaluated 4 CFD Models

3000 ——Method 1
* Method 1 (2D) 2000 —Method 2
——Method 3
 Chemical equilibrium at 4 pus handoff to HyBurn - 1000 _Method4
—>Very little CO . | | | ‘
* Method 2 (2D) 0 1 2 3 4
« K-W rules implemented at handoff time . 27
- Much more CO! ©® 4
o 2t
O I | )
* Isentropic expansion from CJ state to 1500 K, 0 1 2 3 4
afterwhich kinetics are frozen prior to handoff to 0.6
HyBurn -% 04}
* Method 4 (3D) &8 0.2
3D version of Method 3 Q
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15 X, cm



1. CFD provides

* T, P, Xco, Xco2, Xh20, Xors Xno 4000
as f(x)

2. Used spectroscopic model to
calculate path-integrated 1%
absczrbance spectrum: 1 2500
=j S(T)Pco i bi(v,Av,, Av,)dl {2000

. ,

a(v) = ) STDPeo v, Ave, Av)dx
3. Fit a simulated spectrum -

assuming uniform LOS to
synthetic measurement of a(v)

*  Gives T, P, PcoL to compare with
measured values!
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Fitting results:
T=1593.8 K
P=1.14 atm

PCO = 0.00044 atm
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Key Takeaways for Method 2

* Synthetic measurement of Pl
dramatically improved (correct order
of magnitude)

 Further suggests there is elevated CO
in hot shell!

* But why?
* Synthetic measurement of T and P
exhibit significantly worse agreement

Need a more physical model which
leads to more CO:

Methods 3 and 42>Freeze Out
18
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Key Takeaways
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45

CO exhibits reasonable
agreement, but T is consistently low

°* Method 4: T, P, and CO exhibit good

agreement with QCL measurements

« Accounting for freeze out at 1500 K

+ 3D CFD is most accurate!
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* QCLAS diagnostic applied to measure T, P, P;oL at 1 MHz in RP-80 fireballs
* ICLAS diagnostic applied to measure T, P, P;ooL at 500 kHz in RP-80 fireballs

* Measurements used to evaluate 4 CFD models
* lllustrate importance of accounting for freeze out and 3D effects

Main Challenges Addressed:
* Achieved MHz measurements in post-det fireballs
—->Wavelength selection + deep current modulation
* Overcame Extremely Nonuniform LOS
—>Wavelength selection + comparison with synthetic measurements
— Dual-zone absorption model (see upcoming Proc. Comb. Inst. paper)

21
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Caveat: Accuracy of T, P, and CO profiles remains uncertain, BUT:

- Comparing experimental and synthetic LAS measurements bounds the models

» This approach combined with reasonable, scientific arguments enables us to
evaluate the accuracy of fireball models and model assumptions

3000 | — Method 1 0.6
—Method 2 = 04!
v 2000 | ——Method 3 © L
= 1000 —Method 4 8 02t
o
0 ‘ ' ' 0 ' '
0 1 2 3 4 0 1 2 3 4
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500 kHz TDLAS at Larger Scale

Function Generator: Fireball produced by
Scan Waveform N5, 15 pus after >
’ i 15
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* Measured T & H,O at 500 kHz in fireballs of 25 g hemis at UIUC
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