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. I Challenges in high-throughput drying processes
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» Coating and drying conditions often determine product cost and quality (e.g., efficiency, durability, etc.) :

» Coating and drying at high speeds increases the risk of defects and comes with significant capital and energy costs

» Opportunities to reduce these costs and mitigate defects via optimization of process conditions and coating formulation



Fundamentals of Defect Formation in Drying Coatings

Cracking Blistering

* Improper choice of drying conditions can lead to
various defects
* Wet coating at dryer exit
« Boiling, cracking, delamination of coating
* Deformation of substrate

* Drying conditions must yield appropriate drying
rates to avoid defects
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Prior Work Challenges
Drying and Sorption Experiments ILl-Posed Diffusivity Models
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4I Prior Work on Benchtop Dryer Design Tools
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5| Design Tool for Drying Processes
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« | Experimental Setup

TP

M Y ¥ Coil Thermocouple

i T — L o ’
\ )
& .
[ ¥ o I}
\ 4 , ‘.\? L —
b " - i
b —f
’

Wall (Air) Thermocouple

T :4,

d o

—
5 4
]
i
]

Residual Solvent (g/em

O L L i
0 1000 2000 3000 4000
Time (s)

—Dish Temp.
- - -Wall Temp.

—— Base Temp.
— Coil Temp.

Device
Thermocouple

=

Aluminum Drying Dish
: i —h, )

~

500

+=
—
v’
-
o

Dish Thermocouple

Dish Temp. (°C)

H]; Sartonus 200
565395 . 2 100
v ARO TAR j:"-:-:—t- ----- -
0 ' ‘ '
0 2000 4000 6000

- Time (s)



7| Drying Model for Multicomponent Polymer-Solvent Coatings

Heat Transfer B.C.: Liquid-Air Interface

Nsotr . .
Kg_r - EE( coll T4] + hair[T - Tr] + Z ﬁHuupki'{R!p - Pﬂ.l-) Drylng F{ux for mtvent t
Species Transport: Diffusion 4 i=1 Nsolw
ﬁ'ﬂj: dH =
6‘c e ; Dija_y'FCEE;_ki(Pi —Py;)
= = Z D u( T) J
Vapor-Pressure: Flory Huggins
Dyj(c,T) from Price (2004) T T T T T T T f T 1 C/ P} (c,T) = di(c) - vi(c) - B (T)
Heat Transfer: Liguid B emn _ B
|l PI(T) =exp(Ai 77
i
pC E = i (xa—r) \O N
fot oy\ oy In }’:{_) = Z (ﬁf){ﬁki —$) ..

k_
) Rl

...+ l PrX i + b; ( ) (6 — 'i’k))[’;‘i:]
/D -

No-Flux B.C. for solvent i

Heat Transfer: Substrate

aT, K, 0°T,

T v dc;
at pscp,g ay Z D=2 =0
Ly oy
j-

Heat Transfer B.C.
aT,

s
aT, ks
kg a hbase {T Tb) 6y

Heat Transfer Boundary Condition a‘r

oy

T,(0*,t) =T(0,t)




sl Drying Model: Key Device and Material Properties

Heat Transfer B.C.: Liquid-Air Interface
Drying Flux for solvent i
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Ambient conditions and known properties Heat transfer boundary conditions

Tcoir: coil temperature hqir: heat transfer coefficient to air

T,: reference temperature for air-side heat transfer €: emissivity for radiation modeling ]
T),: base temperature hpase: heat transfer coefficient to base

AH,qy,: specific heat of vaporization . : :
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k: thermal conductivity
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gl Drying Model: Solvent Diffusivity
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10| Example Parameter Regression: Heat Transfer Parameters

Base
Total Energy Balance for polymer and dish
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h,i-: heat transfer coefficient (wall)
hpase @ heat transfer coefficient (base)
€: emissivity for radiation modeling
m: dish mass

cp: dish heat capacity

o: Stefan-Boltzmann constant

A: area of top/bottom dish surfaces

Ag: area of dish side




+ 1 Example Parameter Regression: Heat Transfer Parameters
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h,i-: heat transfer coefficient (wall)
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21 Regression Method for Diffusion and Flory-Huggins Params.
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s 1 Model Predictions: Residual Solvent and Coating Temperature
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« 1 Model Predictions: Two Solvent System
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Final residual solvent tends to be overpredicted using regressed
parameters:
Skin formation and viscoelastic drying effects likely culprit




15| Challenges: Regression of Flory-Huggins Parameter
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Predicted residual solvent is insensitive to the Flory-Huggins parameter, while
important measures used to predict defect formation (e.g., vapor pressure) remain
sensitive!
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16| Variability in Process Limits with Flory-Huggins Parameter
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Process limits for drying defects (e.g., boiling and blistering) vary strongly with Flory-Huggins
parameter

This approach is not always useful for predicting process limits!




Summary and Conclusions

* Developed complementary experimental and computational tools to regress key drying parameters

* Regressed parameters yield quantitative predictions of coating composition and temperature, useful in dryer

sizing/design

* Updated diffusivity and mass transfer models are needed to address viscoelastic skin formation in fast-drying

coatings

* Additional experiments are needed for the regression of thermodynamic parameters (e.g, Flory-Huggins

parameter)
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