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Challenges in high-throughput drying processes

• Coating and drying conditions often determine product cost and quality (e.g., efficiency, durability, etc.)

• Coating and drying at high speeds increases the risk of defects and comes with significant capital and energy costs

• Opportunities to reduce these costs and mitigate defects via optimization of process conditions and coating formulation
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Fundamentals of Defect Formation in Drying Coatings

Price Jr. & Cairncross, J. Appl. Polym. Sci. 2000. 78, 149

• Improper choice of drying conditions can lead to 
various defects

• Wet coating at dryer exit
• Boiling, cracking, delamination of coating
• Deformation of substrate

• Drying conditions must yield appropriate drying 
rates to avoid defects

• Two important phenomena that affect overall 
drying rate:

• External heat and mass transfer
• Diffusion of solvent through coating
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Prior Work on Benchtop Dryer Design Tools4

ChallengesPrior Work

Price Jr. et al. AIChE J. 1997. 43, 1925

Drying Process Predictions

Ill-Posed Diffusivity ModelsDrying and Sorption Experiments

Price Jr. et al. AIChE J. 1997. 43, 1925 Schabel et al. Dry. Technol. 2004. 22, 285

Price Jr. & Romdhane. AIChE J. 2003. 49, 309

Inconsistency in Thermodynamic Parameters

Mamaliga et al.. Chem. Eng. Process. 2004. 43, 753Vrentas et al. J. Polym. Sci. B. 1985. 23, 289



Moisture Balance

 Provide a cheap, benchtop tool to regress model 
parameters from gravimetric drying data

 Use model parameters to predict residual solvent 
during drying process

 Provide estimates for optimal dryer conditions for 
given inks/coatings

Free-volume diffusivity
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Design Tool for Drying Processes5

Price Jr. & Romdhane. AIChE J. 2003. 49, 309



Experimental Setup

Base Thermocouple

Coil Thermocouple

Aluminum Drying Dish

Dish Thermocouple

Wall (Air) Thermocouple

Device 
Thermocouple
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Drying Model for Multicomponent Polymer-Solvent Coatings7



Drying Model: Key Device and Material Properties

Heat transfer boundary conditionsAmbient conditions and known properties

Mass transfer: drying and evaporative cooling

radiation convection

conduction

evaporative cooling
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Drying Model: Solvent Diffusivity

Free-volume diffusivity Free-volume parameters
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Example Parameter Regression: Heat Transfer Parameters

Total Energy Balance for polymer and dish
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Example Parameter Regression: Heat Transfer Parameters 

Set Temp.
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Total Energy Balance for polymer and dish



Regression Method for Diffusion and Flory-Huggins Params.12

Measured Residual Solvent

Predicted Residual Solvent

Individual Experimental Error

Total Regression Error



Model Predictions: Residual Solvent and Coating Temperature
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Model predictions for residual solvent and coating temperature agree well (within 10%) for typical polymer-solvent 
systems
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Model Predictions: Two Solvent System

Final residual solvent tends to be overpredicted using regressed 
parameters:

Skin formation and viscoelastic drying effects likely culprit
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Challenges: Regression of Flory-Huggins Parameter

Predicted residual solvent is insensitive to the Flory-Huggins parameter, while 
important measures used to predict defect formation (e.g., vapor pressure) remain 

sensitive!
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Variability in Process Limits with Flory-Huggins Parameter

Process limits for drying defects (e.g., boiling and blistering) vary strongly with Flory-Huggins 
parameter

This approach is not always useful for predicting process limits! 
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• Developed complementary experimental and computational tools to regress key drying parameters 

• Regressed parameters yield quantitative predictions of coating composition and temperature, useful in dryer 
sizing/design

• Updated diffusivity and mass transfer models are needed to address viscoelastic skin formation in fast-drying 
coatings

• Additional experiments are needed for the regression of thermodynamic parameters (e.g, Flory-Huggins 
parameter)

Summary and Conclusions
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