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Abstract—The following paper details an optimal control
algorithm that coordinates a small collective of wind turbines.
The algorithm consists of a reduced order model (ROM) of
the wind turbine collective, a discretization of the resulting
state equations using a collocation method, and an optimization
formulation that guides the collective’s behavior. In order
to validate this algorithm, the paper provides results from
a scenario where two separate three turbine collectives are
connected via a transmission line. Combined with energy
storage, each collective delivers a constant amount of power to
the grid while simultaneously coordinating their performance
to bound any excessive fluctuations in the voltage. This scenario
suggests that a collective of wind turbines, combined with
energy storage, can be coordinated to provide a constant
amount of power with consistent voltage to the grid in spite of
rapidly changing wind conditions.

Index Terms—Microgrid, Wind Turbine, Offshore Wind,
Wind Energy, Control, Optimization

I. INTRODUCTION

The algorithm described in the following paper is the
result of an ongoing need to develop a framework to model
and control power electronics formulations based on circuit
components. In isolation, these models are not necessarily
difficult to solve. Ultimately, these models reduce to a system
of ordinary differential equations, which can be solved using
a variety of known, good algorithms. Further, there exists
multiple commercial software packages from companies
such as MathWorks [1], Typhoon [2], and Opal-RT [3] that
can quickly and efficiently model a power system.

At the same time, these packages lack the ability to
generate controls that operate the power system in a con-
strained, optimal manner. Note, each of these properties,
constrained and optimal, is important for different reasons.
Optimal controls are desirable for the efficient operation of
a particular system. Constrained controls are necessary to
adequately model or safely operate a system. For example,
an energy storage device requires a maximum capacity as
well as a bound on a possible ramp rate for how quickly the
device can be charged or discharged.

In pursuit of this goal, there has been steady improvement
in the algorithms that optimally control these kinds of power
electronics models. Wilson et al. [4] applied an optimal

control approach to the operation of DC microgrids. Here,
the resulting dynamics were discretized using a single step
of a backward Euler discretization. This methodology was
improved to multiple steps and applied to a combination of
AC and DC microgrids in [5], [6]. Each of these formulations
bounded the dynamics and control, but these bounds were
only enforced at the discretization points. This limitation
was improved by Young, Wilson, and Cook [7] when they
designed the optimal control of an electric ship. There, the
discretization was improved to an orthogonal spline colloca-
tion method based on Hermite cubic splines, which allowed
more a more accurate solution to the system dynamics as
well as bounds over the entire domain. Later, this approach
was also applied to solar arrays [8] and wind turbines [9].
While effective, the use of Hermite cubic splines limits the
formulation to first order DAEs and bounds on the function
and its first derivative. As a result, Young, Wilson, Weaver,
and Robinett [10] modified the discretization to use Bern-
stein polynomials, which allow for a direct discretization of
a DAE of arbitrary order as well as bounds of arbitrary order.

This paper improves upon the results in [10] and [9] by
focusing on a more sophisticated wind turbine control. The
previous work modeled a single wind turbine collective that
consisted of three turbines connected to a shared DC bus.
Then, the amount of generation was maximized by extracting
an arbitrary amount of power from the DC bus in order to
encourage generation. The drawback to this approach is that
it allows the control to use this sink like a storage device
with infinite capacity in order to also moderate the voltage
on the DC bus. In this paper, a constant amount of power is
removed and delivered to the grid and an explicitly modeled
energy storage device is added to the DC bus. This allows a
better study of the amount of storage required to efficiently
operate the turbines. In addition, this paper adds a second
wind turbine collective connected to the first. This allows
for the study of a cooperative control between multiple wind
turbine collectives and whether such coordination can help
limit the amount of energy storage required.

SAND2022-11998CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.



Fig. 1. Sandia Scaled Wind Farm Technology (SWiFT) facility (wind
turbine pictures courtesy of Sandia SWiFT facility [11])

II. MODEL

The Sandia Scaled Wind Farm Technology (SWiFT) fa-
cility [11] seen in fig. 1 consists of a small collective of
three wind turbines used to run experiments related to wind
power generation. This presentation focuses on a reduced
order model of this facility that is then cloned into a second
collective, so that control and coordination between multiple
collectives can be better studied. A high-level overview
of the nested control architecture used to operate these
collectives can be seen in fig. 2. In order to differentiate
between the two, the first collective is labeled as A and the
second as B. In each collective, WTGa1 and WTGb1 are
well separated. In collective A, the third turbine, WTGa2,
lies in the wake of WTGa1 by five rotor diameters (5D).
In collective B, this turbine is offset between WTGa1 and
WTGb1, so that it does not lie in the wake.

In order to model each collective, three different kinds of
power system components are required and described by the
circuits in figs. 3 to 5. In each of these figures, the dotted
boxes represent optional components that may or may not
be present due to the configuration. First, fig. 3 represents a
DC bus that receives power from the wind turbines, sends a
constant amount of power to the grid, and connects to other
collectives in order to share energy storage and power. Here,
the controlled sources isrc connect to and receive power
from the wind turbines, isnk connects to a transmission line
represented by fig. 4, which ultimately connects the buses,
iP removes and sends a constant amount of power to the
grid, and u represents an energy storage device connected
to the bus. Next, fig. 4 models a connection between two
different DC buses. The ideal transformer on the connection
with voltage ratio λ enables the two different DC buses
to operate at different voltages. Finally, fig. 5 models an
individual wind turbine. This model largely consists of a
reduced order model of a three-phase AC inductive machine
run in reverse to generate rather than consume power. These
three components are then interconnected according to the
topology in fig. 6.

The dynamics for these models can be found in the
following table. In short, the wind turbine collective is
represent as a differential algebraic equation (DAE) subject
to a variety of bounds that constrain the behavior of the
system.

Parallel DC bus Cv′ + v
R

+ [
∑

ip] + [
∑

id] + [iobj ] +∑
isnk = u+

∑
λisrc

Non-Dispatchable load vip = P
Dispatchable load vid = d

Dispatchable load bound d ≥ 0
Voltage ratio bound λ ≥ 0

Series DC bus Li′ +Ri+ λvsnk = u+ λvsrc

Stator d-axis Lsi′sd +Lmi′md
+Rsisd −ωs(Lsisq +

Lmimq ) + λvsnkd
= [ud]

Stator q-axis Lsi′sq +Lmi′mq
+Rsisq +ωs(Lsisd +

Lmimd ) + λvsnkq = [uq ]
Rotor d-axis Lri′rd − Lmi′rd + Rrird − (ωs −

pNωr)(Lrirq − Lmimq ) = 0
Rotor q-axis Lri′rq − Lmi′rq + Rrirq + (ωs −

pNωr)(Lrird − Lmimd ) = 0
Slip speed bound ωs − pNωr ≤ 0

Current conserv. d-axis ird + imd = isd
Current conserv. q-axis irq + imq = isq

Torque Jω′
r + Bωr + LmpN(ird isq −

isd irq ) = τr

Wind power τrωr = 1
2
πρR2

mv3mCm

(
Rm
vm

ωr

)
Parallel DC energy storage w′ = −uv

Series DC energy storage w′ = −ui
Wind energy storage w′ = −udisd − uqisq

Energy storage bound w ≥ 0

Transformer power conserv. vsnkd
isd + vsnkq isq = vdcidc

Transformer voltage mag. vsnkm = vdc

AC variable mag.
√

γ2 + v2m =
√

γ2 + 2
3
(v2d + v2q )

Initial condition v(k) = vk0

General bound vkmin
≤ v(k) ≤ vkmax

In order to shape the behavior of the control, these dynamics
are combined with the following objective functions

Use of storage
√

γ2 + ‖w − wtarget‖2 − γ

Parasitic losses
√

γ2 +R‖i‖2 − γ

Objective load −
∫ tend
0 iobj

Dispatchable load shape
√

γ2 + ‖d− dtarget‖2 − γ

Dispatchable load total
√

γ2 + (
∫ tend
0 d−

∫ tend
0 dtarget )2 − γ

This study focuses on the objective that minimizes the use
of storage. Finally, the following parameters calibrate the
model to the SWiFT facility and were obtained manually

Mass moment of inertia, J 101 537.5 kgm2

Damping, B 100 Nms/rad
Pole pairs, p 2
Gearbox ratio, N 24.12
Blade length plus hub radius, Rm 13.5 m
Rotor resistance, Rr 0.007 645 44 Ω
Rotor inductance, Lr 0.007 067 33 H
Stator resistance, Rs 0.009 585 76 Ω
Stator inductance, Ls 0.000 252 35 H
Stator current d-axis, isd isd ≥ 0A
Stator frequency, ωs ωs ≥ 0 rad/s
Initial rotor frequency, ωr0 2 rad/s
Rotor frequency, ωr ωr ∈ [0, 9.208] rad/s
Power coefficient curve, Cm fig. 8
DC bus voltage, v v ∈ [437, 483]V (460 V ± 5%)
DC bus resistance, R 1000 Ω
DC bus capacitance, C 0.1 F
DC bus load (to grid), P 75 kW
Connection inductance, L 0.001 H
Connection resistance, R 0.05 Ω
Time window 600 s

Further, the model employs the additional second-order
bounds, which assist in producing a smoother, more realiz-
able control. As a note, similar behavior may be achievable
using regularization.

DC bus voltage, v v′′ ∈ [−20, 20]V/s2



Fig. 2. Overview of the nested control architecture used to operate the collective of wind turbines
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Fig. 3. Parallel DC component used to model a DC bus
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Fig. 4. Series DC component used to model a connection between two different DC buses

DC bus incom. curr., isrc i′′src ∈ [−50, 50]A/s2

Objective load, iload i′′load ∈ [−300, 300]A/s2

Voltage ratio, λ λ′′ ∈ [−1, 1] 1/s2

Stator current, is i′′sd/q ∈ [−750, 750]A/s2

Stator voltage, vsnk v′′snkd/q
∈ [−1× 103, 1× 103] V/s2

Stator frequency, ωs ω′′
s ∈ [−1× 103, 1× 103] rad/s3

Rotor current, ir i′′rd/q ∈ [−750, 750]A/s2

Unless specifically denoted as a parameter, all other quanti-
ties in the above dynamics should be considered a variable
in the optimization formulation. As such, this particular
formulation uses a full-space formulation since both the
control and state variables are represented and solved for
explicitly in the optimization formulation.

III. DISCRETIZATION

In order to discretize the equations in section II, this
algorithm employs the collocation method developed by
Young, Wilson, Weaver, and Robinett [10]. In short, both
the state and control variables are represented as spline
composed of Bernstein polynomials. Then, the dynamics
are satisfied at a set of collocation points that coincide
with the Chebyshev points mapped to each element in the
mesh. The elements in the spline share their first and last
coefficient with their neighbor, which guarantees continuity
of the spline. In order words, if the spline of degree order
contains nele = nmesh − 1 elements, then the coefficients
that represent the spline can be represented as a vector c ∈
Rnmesh+(order−1)nele = Rorder ·nele+1. As a result, the map
between the coefficients and the d -th derivative of the spline
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Fig. 5. Wind turbine component connected to a DC bus
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Fig. 6. Reduced order model of the SWiFT facility. P denotes a parallel
DC component, S a series, and W denotes a wind turbine. Base of the arrow
denotes a source and the point a sink.

evaluated at at the collocation points can be represented as
a linear operator D(d) ∈ R(order−d)·nele+1×order ·nele+1.

In order to guarantee smoothness across the elements, the
jump in derivative between elements is also constrained to
be zero. Here, the jump means the evaluation of the spline’s
derivative on the left of a mesh point minus the evaluation of
the spline’s derivative on the right. These constraints are also
linear and the jump operator of order d can be represented
by the map J (d) ∈ Rnmesh−2×order ·nele+1. If the DAE has
degree d, then jump operators from 1 to d are required.

Finally, any boundary conditions are imposed directly on
the spline using a process similar to the derivative operators.
For an ODE of degree d, this results in a boundary condition
operator, B ∈ Rd×order ·nele+1.

As an example, a first-order RL circuit governed by the
equation

Li′(t) +Ri(t) = v(t),
i(0) = i0

(1)

can be discretized as

LD(1) +RD(0)

J (1)

[1, 0, . . . , 0]

 c =

v(tcoll)0
i0

 (2)

where tcoll are the collocation points.
Beyond their use in the solution of DAEs, Bernstein poly-

nomials possess sufficient conditions for bounding a spline.
In short, since the evaluation of a Bernstein polynomial
is a convex combination of its coefficients [12], bounding
the coefficients of the polynomial between l and u bounds
the polynomial itself between l and u. Further, since the
derivative of a Bernstein polynomial is also a Bernstein
polynomial, higher-order derivatives can be bounded in a
similar manner. This means that a Bernstein polynomial
based spline, and its derivatives, can be bounded using linear
inequality constraints.

IV. COMPUTATIONAL RESULTS

In order to study the collective described in section II, the
turbines were driven by the wind profiles in fig. 7. Recall, the
configuration of collective A and B are clones of one another
with the exception of the turbine WTGa2. In collective A,
WTGa2 lies in the wake of WTGa1 by five rotor diameters
whereas in collective B it does not. As a result, the turbines
WTGa1 and WTGb1 receive the same wind profiles each
collective, but the wind profile to WTGa2 differs. In both
cases, the wind profiles are generated using Nalu-Wind, a
generalized, unstructured, massively parallel, incompressible
flow solver for wind turbine and wind farm simulations.
Sprague, Anathan, Vijayakumar, and Robinson [13] provide
a detailed description of the algorithm while Hsieh et al. [14]
describe an application of Nalu-Wind to modeling turbines
at the SWiFT facility.

In order to simulate sending power to the grid, both Bus A
and Bus B contain a non-dispatchable load of 75 kW. Since
the turbines themselves may not be able to always deliver
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this amount of power, each bus is fitted with a storage device
that can store up to 10 MJ. In order to assist the the overall
performance, the control attempts to keep the storage device
at 80% full. This allows the storage to either deliver or store
power as necessary.

As far as the optimization algorithm, the control uses
a prototype version of Optizelle [15], which implements
a modified version of the composite step SQP method
developed by Ridzal and Heinkenschloss [16], [17], [18].
This is combined with a primal-dual interior point method
in a manner similar to NITRO described by Byrd, Hribar,
and Nocedal [19]. The augmented systems that arise from
this formulation are solved using a rank-revealing QR fac-
torization developed by Davis [20]. This scenario uses a
formulation that contains 467 111 variables, 162 344 equality
constraints, and 279 957 bounds.
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In terms of the performance, the amount of generation that
the turbines deliver to the DC bus can be seen in fig. 10. As
should be expected, WTGa2A generates less power than the
other turbines since it lies in the wake of WTGa1A. Outside
of that, the amount of power delivered to the bus roughly
corresponds to the wind speed in fig. 7. Next, the voltage on
each DC bus is found in fig. 11. Notice that the while the
voltage varies slightly, it remains close to the desired 460 V.
This indicates that the control successfully coordinates the
turbines and storage in order to provide a consistent voltage
in the power provided to the grid. In terms of efficiency,
fig. 9 shows the power coefficient achieved by each turbine
on the power coefficient curve in fig. 8. This shows that each
turbine operates near the maximum of the power coefficient
curve with the exception of the turbine WTGa2A whose
wind speed is significantly slower since it lies in the wake of
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WTGa1A. As another metric of performance, fig. 12 displays
the motor efficiency, which is defined as

isdvsnkd
+ isqvsnkq

− (i2sd + i2sq )Rs − (i2rd + i2rq )Rr

isdvsnkd
+ isqvsnkq

(3)

This is the amount of power delivered to the DC bus, minus
the parasitic losses, normalized by the amount of power
delivered to the DC bus. In this scenario, the efficiency
remains around 98-99%. In terms of the control, the rotor
frequency can be seen in fig. 13 and the slip frequency
in fig. 14. Finally, the amount of energy stored in the
momentum of the turbines can be seen in fig. 15. This
energy is coordinated with the amount of energy stored in
the explicit energy devices seen in fig. 16, which deliver
the amount of power shown in fig. 17. Although, the energy
storage device can store a maximum of 10 MJ, the storage
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device on Bus A remains bounded between 7.67 MJ and
8.11 MJ and the storage device on Bus B remains bounded
between 7.56 MJ and 8.20 MJ. This means that Bus A
only requires 0.44 MJ of storage and Bus B only requires
0.63 MJ. This also demonstrates the ability of the optimal
control to assist with sizing certain parameters such as
energy storage.

V. SUMMARY AND FUTURE WORK

The preceding paper summarized an optimal control algo-
rithm for the control and coordination of a small collective
of wind turbines based on the Sandia SWiFT facility. The
turbines and power system were modeled using a circuit
based ROM. The resulting DAE was discretized using a
collocation method. Then, the overall formulation was solved
using an optimization solver.
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The computational study provided encouraging results. It
demonstrated that the control can successfully coordinate
multiple wind turbine collectives to not only deliver a
constant amount of power to the grid, but to do so at a
consistent voltage. This is in spite of wildly changing wind
conditions where the amount of power in the wind itself may
be insufficient to generate the amount of power required by
the grid. The control accomplished this by coordinating the
amount of energy stored within each turbine as well as an
explicit energy storage device on each bus. The simulation
helped demonstrate that for this particular scenario, less than
0.63 MJ of storage was required to deliver a constant 75
kW from each wind turbine collective. As such, this kind
of study can help determine the amount of energy storage
required to efficiently operate a wind turbine collective.

In terms of future work, the scope, size, and design of
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generation can be further explored. For example, additional
requirements could be added to the energy storage devices
to restrict the rate that power can be stored to delivered
to each bus. This could help determine the kind of energy
storage device appropriate for the collectives. Alternatively,
other kinds of generation could be added to the scenario such
as solar or wave generators. Generally speaking, the above
approach provides a framework for coordinating multiple,
disparate power generation sources and delivering a constant
amount of power with consistent voltage. As a result, the
idea of multi-modal power generation and control can be
further explored.
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