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/ Introduction
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o Turbine blades experience a complete cycle of reversed stress during each evolution
o Deflections (deformations) on the blade during its operation
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o Conventional design studies on tidal current turbines
o Computational Fluid Dynamics (CFD) with a simple rigid blade assumption

o Finite Element Analysis (FEA) with simplified hydrodynamic loads from low-fidelity methods

FSI model will yield time-accurate solutions for loading and performance of a deforming rotor*
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Q-criterion iso-surface colored by helicity and pressure contour on the turbine surface (left) and total deformation of blades (right) ‘

*Daniel L. Laird, Erick L. Johnson, Margaret E. Ochs, and Blake Boren, Technological Cost-Reduction Pathways for Axial-Flow Turbines in the Marine Hydrokinetic Environment, SANDIA REPORT, SAND2013-7203 (2013).



P Introduction

o Fluid Structure Interaction (FSI)
o Categorized by the degree of physical coupling between CFD and FEA solvers
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The degree of physical coupling and numerical coupling approaches

ANSYS Fluent and Mechanical are used for FSI modeling
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Geometric characteristics of RM1
o 1:40 scale model tested at St. Anthony Falls Laboratory (SAFL) (Hill et al., 2014 & 2020)

Parameter 1:40 Model
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/" CFD Setup

Computational domain and boundary conditions (w/o blockage)
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One rotor only

Cut off 1.5% of chord length for mesh quality

Blockage effect is ignored

(0, O, 0,) at the nose of the rotor

Inlet: 1.04 m/s uniform flow

Outlet: zero gauge pressure |
Symmetry: on top, bottom, and sides |
No-slip wall: on rotor and nacelle

Computational domain for the simulation without blockage effect
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/" CFD Setup

Computational domain and boundary conditions (w/ blockage)
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One rotor only

Cut off 1.5% of chord length for mesh quality
Blockage is applied to bottom and side wall
(0, O, 0,) at the nose of the rotor

Inlet: fully developed turbulent flow velocity profile
Outlet: zero gauge pressure

Symmetry: left side

No-slip wall: rotor, nacelle, bottom and right side

Free surface effect is ignored (Slip wall)

Computational domain for the simulation with blockage effect
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Inlet boundary condition (w/ blockage)

o Water tunnel simulation
o To obtain velocity profile of fully developed turbulent flow

o 40m (80D) long - The RM1 model was located 40m downstream of the baffles
o No-slip wall BC on bottom and right side
o Volumetric flow rate, Q,, = 2.425m3/s

-

Velocity contour of fully developed turbulent flow from the water tunnel simulation




/" CFD Setup

Computational Mesh (Medium grid)

o Tetrahedral mesh with overset multi-blocks (# of cells)
o Rotor: 9.3M

o Nacelle: 1.1M
o Bkgw/ refinement: 19.1M (w/ blockage)
o Total: 29.4M

o Prism layers on the rotor and nacelle wall
o yt=14(Ay =3.44x 107> m)
o Growth rate: 1.2
o Total number of layers: 20

O htotal - 9.1 X 10_3 m, 5turb.est. - 1.8 X 10_3 m

Computational Mesh for rotor and nacelle overset blocks and background domain
(Donor cells for overset method are colored by red)
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Mathematical Model and Numerical Method
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Viscous model:
o SST k-omega model

Pressure-velocity coupling:
o Pressure-based coupled solver

Spatial discretization:
o Pressure: second order

o Momentum: second order upwind
o Turbulence model: second order upwind

Temporal discretization:
o Transient formulation: first order implicit




7/~ Temporal Convergence
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Timestep size dependency (w/o blockage) 03
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Estimated Cp and C; depends on the time step size




P Spatial Convergence

Mesh size dependency study (w/ blockage)
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P Turbine Performance

Coefficient of power

o Discrepancy between CFD w/o blockage and Exp. (Hill et al, 2014 & 2020) results due to the
extensive blockage effect (14.3%)
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Measured and estimated Cp vs. 4 (coefficient of power vs. tip-speed ratio).
Solid and dashed lines are from Hill et al, 2014 and 2020, respectively)
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Inflow Characteristics

Velocity and turbulence intensity profiles
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/i Turbine Wake Characteristics
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Measured (top) and estimated (bottom) normalized streamwise velocity (left column) and turbulent kinetic energy (right column) in x-z plam



/4 Turbine Wake Characteristics
/4

Streamwise velocity deficit and turbulence intensity
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Geometry and mesh
o Rotor only

o Hexahedral mesh with quadratic element order
o Modelled as a solid made from aluminum alloy
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Generated mesh for FEA simulation (# of elements = 1.1M)

Boundary conditions
o Assigned angular velocity corresponding to the turbine rotating speed

o Displacement support at the turbine hub center
o Afluid-solid interface on the rotor surface

Remote displacement point (left) and pressure on the fluid-solid interface (right)




P One-way FSI

Simulation results at 204 rpm (TSR = 5.5)

o Mesh size dependency
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Variation of estimated maximum deformation (left), strain (middle), and stress (right) with mesh density

o Estimated total deformation and equivalent stress
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Instantaneous contour plots of total deformation (left) and equivalent stress (right) on rotor

Max. total deformation = 0.2 mm

Max. equivalent stress = 5.05 MPa
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/" Two-way FSI Model

Two-way iteratively implicit approach

o lIterate within each time step to obtain an implicit solution

o Three levels of iterations:

— Transient loop

/ Each step moves forward in time

Force/displacement are updated between the
FEA and CFD solvers

/ P Inner loop used to converge the

Coupling loop / 7
—  CFD loop Force —  FEAloop |
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System Structural
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k: coupling iteration for the coupling loop

i: coupling step for the transient loop
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/i Conclusion and Further Works

Transient two-way coupled FSI is modeled based on CFD and one-way FSI models
Require constrain method for freestream turbulence intensity in CFD

Decision of suitable timestep for two-way FSI to avoid negative cell volume from mesh
smoothing

Investigation of the influence of blade deformation on hydrodynamic parameters

Evaluation of LCOE of full scale turbine made from composite materials




