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What are RHEASs?

Refractory high-entropy alloys (RHEAS) are alloy

combinations with four to six refractory elements in near

-equiatomic proportions.
But there are exceptions to this definition...
v' Can also include Ni, Al, Si to refine the alloy properties;
deviations from equiatomic.
“Refractory” refers to high-temperature elements.
“Entropy” means the high mixing tendency of these
combinations—Iarger entropy lowers Gibbs formation.
v AG=AH-TAS
Want AH to be low and AS to be high, so that AG -
small.
First manufactured in 2010 as a solution for high-
temperature aerospace applications [Senkov et al.,
2010; Miracle and Senkov, 2017; Senkov et al., 2018;
Murty, Yeh, Ranganathan, and Bhattacharjee, 2019].
Most often ordered alphabetically; great suggestion
from Miracle and Senkov, i.e., WHfTaZrNb =
HfNbTaWZr, etc.
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D Wider definition of refractory metals
The 16 refractory elements [Murty, Yeh,
Ranganathan, and Bhattacharjee, 2019; Wikipedia,

2022]. l
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RHEA with diverse atomic radii [Moisés Beato Nuriez,
SNL]. 2



Extraordinary Properties of Some
RHEAs

High yield stress at

high Temp.’

Corrosion/Erosion

Resistance?

Self-Healing?®

Creep Resistance*

|

N

Senkov, 2017].

Corrosion resistance to boiling nitric acid (HfNbTaTiZr), sCO,, and NaCl (HfNbTaZr).
Radiation self-healing: up to 20 times fewer displacements per atom (DPA) than SS.
Creep strength resistance > 35 MPa for 30,000 hours operation at 1,200 °C.

. Compressive yield stress ~2X higher than Inconel 718 and ~10X stronger than stainless steel (SS) from room |
temperature to 1,000 °C. Can reach yield stress > 735 MPa at 1,200 °C and 300 MPa at 1,600 °C [Miracle and

Compressive yield
stress: RHEAs vs.
Inconel 718 and
other superalloys
[Miracle and
Senkov, 2017].
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Self-Healing RHEAS @!I

The RHEA lattice is under larger stress than regular metallic lattice configurations.

v Higher AS,

v" Force generated from Ar atomic radius differences, etc.
This gives RHEAs self-healing properties, whereby radiative or structural damage is reduced
automatically, without external stimuli, as the high-stress atoms reorient, thereby repairing the damage
[Egami, Guo, Rack, and Nagase, 2013; Liaw, 2014].
We recently observed experimental evidence that certain RHEA combinations are self-healing.

v Up to 20 times fewer displacements per atom (DPA) than SS.

v" DPA is minimized and micro damage is reverted as the strong interatomic forces reposition the crystalline structure.
RHEA configurations with a high degree of self-healing can be selected for harsh environment applications.

v Reduce microcracks

v Mitigate radiation damage, pitting, and corrosion

v Extending the durability and reliability of turbomachinery components

v |deal for materials under harsh environments (e.g., nuclear reactors, concentrated solar, high-temperature turbines)




Some RHEA Samples Across Sandia National Laboratories
(sample sizes are ~ 0.5 to 3 cm)

Polished RHEA sample.

HfNbTaZr 1-inch Spark

Plasma Sintered (SPS)

tube in collaboration .
with Calnano.

Multiple RHEA composition pieces & |
printed using the Laser Engineered | |
Net Shaping (LENS) approach

[Smith, 2016]. NbTaVW RHEA Type A
Annealing of NbTaVW, HfNbTaZr dogbone specimens printed
and MoNbTaVW RHEAs. via the LENS machine. >




RHEA Search and Validation

The number of RHEAs with ductile properties at room temperature (RT) is less than 1%.
Ductility is a key goal for widespread commercial RHEA manufacturing.

v Intricately associated with component machinability.
High-strength ductile (HSD) RHEAs are of much interest to the nuclear industry, other
energy sectors, aerospace, and transportation.
We conducted a literature search for HSD RHEAs at RT.
17 such combinations were identified.
We manufactured 11 via Spark Plasma Sintering (SPS) and Laser Engineered Net Shaping
(LENS):

v  AINbTiVZr,,, CrMoNbTaV, CrMoVW, HfMoNbTiZr, HfNbTiV, HfNbTiVZr,

Hf,,Nb,,Ta,,Ti,Zr, MONbTIVZr, Mo, ,NbTiW, ,, NbTaTiV, and NbTiV,Zr.

The 11 underwent a series of tests to assess their relative strength, ductility, and
machinability.
The following seven had the highest degree of machinability:

v' CrMoNbTaV, CrMoVW, HfNbTiV, MoNbTiVZr, Mo, ,NbTiW,,, NbTaTiV, and NbTiV,Zr.
A synthesis of the experimental data, elemental combinations, material properties, and
machinability provided insights regarding HSD RHEA compositions and pathways for
improving ductility at RT.




RHEA Search and Validation m‘
The 11 RHEAs of interest that were manufactured for Other potential HSD RHEAs of
this research include: interest that will be manufactured
e AINDTIVZr,, soon by our team include: ‘
e CrMoNbTaV e NbBTIVZr [8]
e CrMoVW e HfNbTaTiZr [9, 10]
e HfMoNbTiZr e HfNbTiZr [11, 12]
e HfNDbTIV e MoNDbTIV [13]
o HNDTIVZr * Moy ;NbTiVyZr [14]
o HfyNby,Tay,TigpZr " RNbTaTVITS] |
e MoNbTiVZr
e Mo, ,NbTiW,, |
e NbTaTiV |
e NbTIV,Zr



RHEA Characterization

SEM shows no
spatial varying
composition at low

« Scanning Electron Microscope magnification.
(SEM) with a 50-microns scale fuler =20 microns.
bar shows RHEA homogeneity.

» A granular homogeneous pattern
is observed for the Electron
BackScatter Diffraction (EBSD), ; 3
with scale bars at 2-microns. SEM images for

* A high degree of mixing of the HfNbTaZr.
principal elements is important to
reach the RHEA’s optimum
strength and ductile properties.

EBSD images for HfNbTaZr.



Overall RHEA Machining Tests

* The machining performed to date includes drilling, lathing, slicing, welding, and filing.
 Some examples are shown below, and in the next slide.

=

A. Rotational lathing of a RHEA tube. B. Drilled and lathed RHEA. C. RHEA-
to-RHEA welding. D. RHEA drilling.




The ability of RHEAs to withstand
drilling represents a significant step
towards demonstrating machinability.
Machinability is generally a property
of ductile materials, because the
machined surface tends to have a
smooth finish over a range of
machining tasks.

Drilling was conducted with a 3.18
mm (1/8" inch) drill at 550 RPM.

The drill was coated with cobalt
carbide, with a hardness of 75 HRC
on the Rockwell scale.

Because of the hardness of the
RHEAs, it was determined that the
drill bits should be replaced right after
each drill test.

RHEA Drill Tests

Drilled NbTaTiV with two fully-completed
drill holes. A partial hole on the left was
stopped to show the smooth, drilled surface.

Drilling RHEA curls (the ruier at the left is in inches,

while the one on the right is in cm). 10



HSD RHEA Validation Yellow = Minimal machining capacity

RHEA / References Manufacturing Poisson’s Yield Strength Machinable? / Visual results
Method Ratio at RT (MPa)
AINbTiVZr,, SPS 0.36 1,430 Minimal.
[14, 22] Generated curls in the range of 0.5 to 2 mm; the opposite surface popped.
HfMoNbTiZr SPS 0.35 1,719 Minimal.
Generated dust and curls in the range 0.1 to 0.2 mm; the opposite surface popped.
[1, 28]
. Top two in terms
[15] of machinability.
Top two in
[29] terms of machinability.
o + 11



Analysis of the Data, Part 1

The seven machinable RHEAs generally had Mo, Nb, V, and Ti, with the top two RHEAs
involving primarily Nb, Ti, and V.

That is not surprising, as Nb, Ti, and V are intrinsically ductile, so adding them to the RHEA
cocktail helps induce ductility.

By contrast, the top seven RHEAs rarely had Cr, Hf, Ta, W, or Zr; this is confirmed via
contrast with the minimal and non-machinable RHEASs, which tended to use Hf and Zr.

However, it is noted that relatively pure Hf and Zr are considered ductile. |

More generally, Group IV (e.g., Ti, Zr, and Hf) and Group V (e.g., V, Nb, and Ta) are
intrinsically ductile, while Group VI (e.g., Cr, Mo, and W) is brittle. |

Thus, additional mechanisms are likely exerting a stronger influence on ductility... I



Analysis of the Data, Part 2

Refractory element combinations with
a wide range in radii promote
interatomic mixing (AKA “atomic size
mismatch”).

Period 6 elements have a larger radius
than those in Period 5, which in turn
are larger than those in Period 4.
Moreover, as the elements move from
left to right, the radius becomes
smaller.

Hence the smallest refractory atoms
are those on the right hand side of
Period 4 (e.g., Ti, V, Cr, and Mn).

Ti is included because its radius is
almost the same as that of V).

The largest refractory atoms are those
on the left hand side of Period 6 (e.g.,
Hf, Ta, and W).
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Analysis of the Data, Part 3

* By applying a Venn diagram for ductility vs. radius range, Ti, V, Hf, and Ta achieve this
desirable metric.
v That is, RHEAs with intrinsic ductility + high entropy can now be obtained.

 Thus, RHEA hybrids that use Hf, Ta, Ti, V combinations have a reasonable chance of
being ductile, with Nb and Zr being good replacements for Hf and Ta, respectively (given
their comparable radius and intrinsic ductility).

NbZr, i.e., they are hybrid RHEAs stemming from the senary HfNbTaTiVZr RHEA, which is

* Finally, the 17 selected RHEAs have much in common with the selection of HfTaTiV and
comparable to the CrMnFeCoNi Cantor high-entropy alloy. |



Summary & Conclusions, Part 1

Eleven RHEAs from the literature were manufactured and tested to evaluate their ductility, machinability, and
strength.

Seven were found to be highly machinable:

v CrMoNbTaV, CrMoVW, HfNbTiV, MoNbTiVZr, Mo, ,NbTiW,,, NbTaTiV, and NbTiV,Zr RHEAs, of which
the most machinable were HfNbTiV and NbTaTiV.
Such RHEAs predominantly had Nb, Ti, and V, which are very ductile intrinsically.

The atomic size is also found relevant towards the degree of ductility, with a wider range of atomic radii being
the most favorable.

This includes Ti, V, Cr, and Mn from Period 4, and Hf, Ta, and W from Period 6.
Refractory elements that have both intrinsic ductility and the widest radii range include Ti, V, Hf, and Ta. |

RHEA hybrid combinations that employ some or all of the following elements (Hf, Ta, Ti, and V), have a high |
likelihood of being ductile.

15|



Summary & Conclusions, Part 1

Moreover, Nb and Zr can replace Hf and Ta, respectively, given their
comparable radius and intrinsic ductility.

Relying solely on intrinsically-ductile elements to form HSD RHEAs is not
sufficient, as such combinations can yet experience brittle failure.
v’ It is also necessary to use a wide radii range.

The data also indicates that the Poisson’s ratio is not a reliable indicator
of ductility.

The application of advanced manufacturing, experiment, theory, and
computational modeling is recommended for fast-prototyping optimization
and validation [Rodriguez, 2019] to tap the vast potential offered by
RHEAs.

Finally, only a small fraction of RHEAs has been explored [Miracle and
Senkov, 2017; Senkov et al., 2018].

CFD

Advanced
Manufacturing
Theory

Experiment

o

The technology quad: theory, computation,
advanced manufacturing, and experiments

[Rodriguez, 2019].
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