SAND2022-11909C

Electrochemical Aptamer Based Sensors for Measurements In Vivo and in Undiluted Blood

Alex Downs?, Julian Gerson?, M. Nur Hossain>, Kaylyn Leung®, Kyle Ploense?, Michael Pham®,
Heinz-Bernhard Kratz>, Tod Kippin?, Phillipe Dauphin-Ducharme’, Kevin Plaxco3*®

ISandia National Laboratories 2UC Santa Barbara Department of Mechanical Engineering, 2UC Santa Barbara Center for Bioengineering, UC Santa Barbara Department of
Psychological and Brain Sciences, *University of Toronto Scarborough Department of Physical and Environmental Sciences,
°UC Santa Barbara Department of Chemistry and Biochemistry, “University of Sherbrooke Department of Chemistry.

Electrochemical Aptamer Based Sensors

DNA aptamers are artificially selected to bind to a target, such as a small molecule,
protein, or metabolite
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These sensors:

* Function both in whole blood and in the living body
 Enable real-time measurements of rising and falling target concentrations

* Are generalizable to a range of different targets

Sub-second Measurements Using Impedance'
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When interrogating a sensor at its
redox potential, a peak occurs in
the phase component of
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: With target addition the peak
position moves toward higher
frequencies.
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Here, we use phase changes to
measure the antibiotic, tobramycin.
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Measuring phase at specific frequencies
vields calibration curves.
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Depending on frequency, the response:
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* Increases in phase toward
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Collecting phase at specific frequencies Phase interrogation vyields stable
near the phase peak achieves sub- measurements in whole blood for
second temporal resolution long time durations

Sensor Miniaturization Using Nanoporous Gold?

Electrochemically-deposited nanoporous gold increases electrode surface area by
75-100X. This increase yields a 20-30X increase in sensor redox signal.
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* The nanoporous morphology enables miniaturization of in-vein working electrode
by 6-fold, while the dendrite morphology typically used in vivo does not.

* Here, we demonstrate in vivo dosing and measurement of the antibiotic,
vancomycin, using square wave voltammetry

Measurement Accuracy in Whole Blood?
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 Temperature influences the response of electrochemical aptamer based sensors by
changing the rate of electron transfer.

* Using freshly collected, body temperature blood improves the sensor calibration
accuracy to greater than 10% in the clinical range.

Microneedle-based Measurements in Whole Blood
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* The sensors, when implemented in a microneedle format, achieve
measurement of vancomycin in body temperature whole blood
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