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Experimental design requires wide-ranging models
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Codes involved in designing experiments like this require materials models
Experimental design requires equation-of-state and transport properties
Densities and temperatures vary over many orders of magnitude, including WDM regime!



Non-LTE compounds this challenge
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(Above) Absorption spectrum for Cu at T.=1 keV, 0.1 g/cm3
We need codes that can fill out tables to offset the cost of inline models



Many-atom models are expensive

Say that we want to compute electronic stopping power in the fuel...
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This calculation consisted of 1024 deuterium atoms, 10 g/cc and 2 €V.

Each projectile velocity took 1 day on a moderately large HPC system (7~10k cores).

Higher Z, higher T, larger cells - all require more time.

Our biggest stopping calculations, 1 curve = 1 machine-week on a million-core system
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Average-atom models are inexpensive

We need to cut the cost of these calculations down by 6-8 orders of magnitude™ if we
want to use them for tabulation of materials models - particularly non-LTE!

AA models fit this description,
but they're necessarily making more severe approximations than many-atom models.

What does TDDFT tell us about the quality of those approximations?
At Sandia, we've been undertaking a comparison between AA and (TD)DFT methods for
a variety of properties - but today I'll primarily be focusing on:
1.) Electronic stopping power
2.) Density of states

3.) Dynamic structure factor

TDDFT isn't a replacement for an experiment, but it still highlights improvements in AA.



Electronic stopping powers



Experimental motivation
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Measurement of Charged-Particle Stopping in Warm Dense
Plasma LK

A.B. Zylstra, J. A. Frenje, P.E. Grabowski, C. K. Li, G. W. Collins, P. Fitzsimmons, 5. Glenzer, F. Graziani,
S.B. Hansen, 5. X. Hu, M. Gatu Johnson, P. Keiter, H. Reynolds, J. R. Rygg, F. H. Séguin, and R. D.
Petrasso

Phys. Rev. Lett. 114, 215002 - Published 27 May 2015
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AA approximations in stopping

Results on the previous slide rely on two "big’ approximations

1.) “Local density approximation” for stopping
Given a formula for the stopping number as a function of density,
average over the density in the calculation.

2.) No trajectory dependence
This would be important in a cold solid, but unimportant in a sufficiently hot/disordered system.
But how hot/disordered do we need to be for this to be true?

Subsequent results won't depend on stopping LDA - instead a dielectric model.
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We'll use Ehrenfest-TDDFT to assess the sensitivity to trajectories.
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(At least) 240,000 words*

Born-Oppenheimer Ehrenfest

9240} sulddolg

Proton velocity

Average force is zero on the left
Average force agrees well with SRIM on the right (see next slide)

*20 pictures per second x 6 seconds x 2 movies x 1,000 words/picture
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Quis custodiet ipsos TDDFT?

We've also cross-validated our VASP Ehrenfest-TDDFT implementation against one in QBQII.
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Modest discrepancies are likely due to differences in trajectories and pseudization.
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Comparing collisional models in AA

Next, we compare TDDFT and three different collisional models in AA

The system under consideration is “isochorically heated” aluminum ©@ 1 &V

We only consider the free’ electrons, here.

All but 3 electrons/atom are frozen in TDFDT.
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Stopping powers generally agree pretty well,
though we will later see clear differences between
RPA and T-matrix approaches in the DSF.

What about trajectory dependence?
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Quantitying “typical” trajectories
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Local environment of projectile characterizes trajectory:
specifically distribution of nearest neighbor (NN) distances

Ideal NN distribution: uniform random sampling of cell

Bhattacharyya distance quantifies the distance between
two distributions
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Trajectory-dependence of stopping

For warm dense carbon, it is hard to find a "bad’ trajectory.

Little sensitivity to proton trajectory (below) or snapshot - good for AA in these conditions!
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Back to collisional models

Discrepancy b/w AA and TDDFT likely due to collisional models in the former
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RPA and Born predict a more accurate Bragg peak height

T-matrix predicts more accurate Bragg peak position, low-v slope

But the AA models could still stand to be improved
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Densities of states and
dynamic structure factors
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Bound-bound transitions in warm dense matter

The bulk properties of degenerate 3d band (and beyond)
matter are defined by the L

Pauli exclusion principle.

Exactly one electron is allowed to have
the quantum numbers that it has...

Thermal excitation means that certain
forbidden are now allowed...

Today, I'll show you how we're modeling these processes as they should appear in scattering
experiments, using time-dependent DFT and average atom.
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Basics of x-ray Thomson scattering (XRTS)

X-ray Thomson scattering in high energy density plasmas

Siegfried H. Glenzer and Ronald Redmer
Rev. Mod. Phys. 81, 1625 — Published 1 December 2009

Measure inelastically scattered x-rays

Penetrate with hard x-rays
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(opaque to optical probes)

2
dcglzg - UT%S(QI»W) Cross section proportional to dynamic structure factor (DSF)
W qi

Contains information about density, ionization state, structure, temperature, etc...
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Dynamic structure factor in TDDFT

X-ray Thomson Scattering in Warm Dense Matter without the
Chihara Decomposition

A. D. Baczewski, L. Shulenburger, M. P. Desjarlais, 5. B. Hansen, and R. J. Magyar
Phys. Rev. Lett. 116, 115004 — Published 18 March 2016
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Revising average atom theory

We make 3 significant revisions to work in
[Starrett + Saumon, HEDP, 2014] and [Souza, et al., PRE, 2014]

1. An improved treatment of electron-ion collisions.
Vastly improves the treatment of the plasmon, in general.

2. The addition of a bound-bound term to the Chihara decomposition.
Think of this as a label for matrix elements for Kramers-Heisenberg.

3. Use of the non-ideal density of states.
Obviates the need for separate treatment of quasi-bound states.
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Example 1: Aluminum (“good” free-electron metal)

TDDFT  —-— FF we— Total :
FF (RPA) --- BF '

1.0 -

Thermal depletion of 2p states
starts to appear above 10 eV

[Witte, et al., PoP, 2018]

DOS (eV ! /atom)

S(q,w) (keV ™)

—100

energy (eV)

Results highlight the importance of revised Mermin
treatment of the free-free contribution over

A 2s-2p bound-bound transition appears coincident TDDFT  —:— FF - BB
with thermal depletion of 2p. FE(RPA) === BF

Low intensity, but if you see such a feature you have a
smoking gun that you're above 710 eV.

Key takeaway: bound-bound might be weak, but T=20eV '
this example illustrates need for better collisions in AA. q=4.4A \
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Example 2: Iron (d-band near chemical potential)

The spectrum of bound-bound transitions is richer yet in iron.

DOS (eV ! /atom)

3p->3d © 55 eV
3s->3d @ 85 &V
3s->3p © 35 eV

There is a "5 eV discrepancy between TDDFT and average

00 —50 0
energy (eV . .
&Y (V) atom for 3p-3d, worth further consideration...
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Collective character of the iron 3p-3d feature

TDDFT predicts that a single-particle

=== 10eV == 20eV excitation around 54 eV will appear at
q=8.8 A1 large momentum transfers...
q=6.6 A7t ...but at smaller momentum transfers,
] ) this excitation has a collective character
q=4.4 A~? that gets stronger with temperature.
o We have confirmed:
q=2.2 A .
— 1) Not an exchange-correlation effect,

| | . | 2) Kubo-Greenwood fails to reproduce.
70 30 90 100

w [eV]

Average atom predicts a non-dispersing 3d isn't really a bound state, it is a
bound-bound feature at 54 eV. narrow band near the chemical potential.
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Failure of Kubo-Greenwood*

Treatment of the Kubo-Greenwood* dielectric
function common in our community is equivalent
to a TDDFT calculation in which the

Hartree+exchange-correlation kernel is zero. -

=

Discrepancies between these treatments of the £
response function are thus entirely due to the 73

neglect of collective effects in Kubo-Greenwood*. 2

Another way of putting this:
Kubo-Greenwood* is only capable of capturing
single-particle (non-collective) excitations.
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Inter-shell bound-bound processes in average atom

One benefit of average atom is being able to 103 -
efficiently study conditions that are Tntra M :
prohibitively expensive for TDDFT... 102 ’l
. —=A4
. . T - ) 10" = n
Looking at the L-shell in TDDFT would > 10! - \) 1 n
require (at least) O(100)x the CPU time! = 3 L-to-M ”,\
3 0 A i/ S,
~ 10" = % - e
We see that a rich set of inter-shell features % _____ . eV\ | 107 :....,5'
around the L-edge at higher temperatures. 10~ _ —— 90 v O\
| : 80 eV | &
All of these features can be used in 102 192 |
thermometry, better than plasmon shift for 10* 103 600 300 1000
w [eV] w [eV]

certain conditions.
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Brief aside away from equilibrium



Electron Distribution

Toward full relaxation dynamics

Big goal: first principles simulation of equilibration after an ultrafast laser pulse
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Signatures of non-equilibrium in XRTS

Band structure effects persist for hot electrons that
aren't equilibrated with the underlying ions...
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Conclusions

Check out arXiv:2109.09576, preprint on bound-bound results. E-mail is adbacze@sandia.gov.

Experimental design and macroscopic simulations require wide-ranging materials models.
Where multi-atom models are too expensive, average-atom models can step in.

We have inclinations about where AA models need refinement and TDDFT
corroborates these.

We proposed a metric for determining typicality of trajectories for many-atom stopping,
discrepancies between AA and TDDFT seem to be due to collisional models.

Augmented AA theory w/rigorous extension of established scattering theory and partitioning
techniques common in opacity to account for bound-bound scattering, consistent w/TDDFT.
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