SAND2022-11865C

helpaperdojnotinecessarilyfrepresentfthefviewsjo

Thislpaperldescribeslobiectiveltechnicallresultsfandianalysis.JAnyj sub|ect|v viewsloflopinionsithatimightibelexpressedin}
h flthe]U.S. rt] tloflEnergyforfithejUnitediStatesjGovernment,

Sandia
National
Laboratories

Hegrating process, control-flow, and data
resiliency layers

Using a hybrid Fenix/Kokkos approach

Matthew Whitlock, Nic Morales, George Bosilca, Aurelien Bouteiller, Bogdan Nicolae, Keita
Teranishi, Elisabeth Giem, Vivek Sarkar

IEEE Cluster - September 9, 2020

: : U S S PY I ST P TSP S S IRPURE I SUUE PRPE SRR T S SO DR B U ST SN ST} —~
Sandia National LegdiaNationalLaboratories 19/ multmission IaboratoNdmanaqu'andtoperatedl‘bv"f\lationa?Technoquv‘&jEnqine_er_in&rs_olutionsl-of(Sandia,*LLCja-whoIIv ownedOlly

C | <
owned subsidiary of HosubsidiarylofiHoneywelhinternationaliinc.,.for the:U.S.rDepartmentofrEnergy'siNationallNuclear SecurityyAdministrationfunden contrachDE-NA0003525.0003525.

Sneak Peak

= Consider Resilience technologies in layers

= Redesign layers for seamless, application-level integration

= Achieve combined goals of
= Performance, Scalability

= Customizability

= Programmability, Maintainability

Data Recovery

Control-Flow Recovery

Process Recovery

e e

m Kokkos Resilience | Partial-Rollback m
et (WP

Roadmap

1. Why do anything?
= Resilience is important and annoying

2. What did we do?

* Ourgoals

3. How did we do it?

= Tools we used
= Qur protocol

4. How well did we do?
= Performance
= Programmability

5. Conclusions

Why: Software resilience is important to HPC

= Blue Waters study [1]

= Average Mean time to Failure (MTTF) of 4.2 hours
= ~9% machine productivity loss from system-software failures

= Exascale only exacerbates reliability concerns [2]

= Hardware vs Software resilience [3]

= Reliability = Power Consumption = Money and heat
= Chip designers looking to offload reliability to software

= Software resilience is inherently co-design

Why: Current approaches are insufficient

= Developers are expensive - their time is valuable and limited
= High performance reliability is often highly code intrusive
= Online failure handling explodes state space

= Consider resilience in layers
= Representative technologies within each Iayer

MR
m [Kokkos Resilience |} Partial-Rollback| m
| Relauhch Fdnix (MPI-ULFM) | |

= We have implemented and tested each vertical bar

How do we checkpoint? Data Recovery

When/what do we checkpoint? EeelalifelRalelNANEIdeAVC ot

What does a lost process mean? eI =Ll g%

Why: Current approaches are insufficient

Control-Flow Recovery m Kokkos Resilience | Partial-Rollback m
Process Recovery Fenix (MPI-ULFM)

= Two categories of current approaches

_ Single Layer Multi Layer

Strengths = Diverse/flexible tools = High performance
= Easier on pre-existing apps = Strongly integrated layers
= QOften automated into runtimes
Weaknesses = Performance requires multiple = |ntrusive code rewrites
= Not designed for integration * Pre-integrated, fixed/custom

Examples VeloC, ULFM, MPI-Reinit, CRUM, FMI, CPPC, CRAFT, ACR, ...

= Lack of simple and customizable multi-layer resilience

What: Simplify application-level integration

Control-Flow Recovery m Kokkos Resilience | Partial-Rollback m
Process Recovery Fenix (MPI-ULFM)

= Extend tools to enable seamless integration
= Technology agnostic approach
= Simplify information sharing

= Meet applications where they're at with resilience
= Minimize rewrites

= Maximize runtime configurability
= Future-proofing

How: Our tools

Data Recovery

Control-Flow Recovery

Process Recovery

T e e
m Kokkos Resilience | Partial-Rollback m
e | e (e

Data Recovery

e | we
m Kokkos Resilience | Partial-Rollback m
e || Fenivmroim)

How: Our tools

Control-Flow Recovery

Process Recovery

= Relaunch
= Typical usage, tear down processes relaunch in job submission

script
= ULFM - https://fault-tolerance.org/
Fenix = User Level Fault Mitigation
Resilient = MPI Specification Change Proposal, available in OpenMPI 5
Communicator - Low level, for minimal specification changes

= Enables error reporting for rank failures
= Enables removing failed ranks from communicators

| Failure = Fenix - https://github.com/epizon-project/Fenix
' = Simplifies ULFM-based recovery

Designed to integrate with existing resilience

= Spare ranks replace failed ranks (configurable)

= Long-jump to initialization (configurable)

Enables Partial-Rollback/IMR

Node Resilience
Role

https://fault-tolerance.org/
https://github.com/epizon-project/Fenix

Data Recovery

e | we
m Kokkos Resilience | Partial-Rollback m
et (MPLULFN

= Kokkos - https://github.com/kokkos/kokkos

Control-Flow Recovery

How: Our tools —_

Process Recovery

e = Modern C++ parallelism library
Trigger Clear :: = Performance portable, heterogeneous
Metadata Cache . .
o = Typically for-loop based parallelism
Resel = . Parallel lambdas/functors

Fenix

= Custom data structures (Kokkos::View)

Resilient

Communicator = Kokkos Resilience - https://github.com/kokkos/kokkos-resilience
Frequency

Node Resiience = Gathers control-flow and data usage knowledge from Kokkos
— = Resilient lambdas

= Internal VeloC integration, automate checkpoint/recovery

Regions

|

Partial rollback

Strategy available with online process recovery
= Requires integration

Only recover on failed ranks

Limited applications support

Failure
Awareness

Trigger

Recheck Heterogenous

Device Data

Management

<4 Recovery
T Status

https://github.com/kokkos/kokkos
https://github.com/kokkos/kokkos-resilience

How: Our tools

Kokkos Resilience

Trigger Clear Checkpaint
Metadata Cache . G
Data Region ‘
Reset DE.t[B M a
2 Regions [= . S
. h =!‘ B ‘
Yasilient r - .
Communicator int Initialization Mode ‘
I i - S
‘ Available |
| Checkpoints |
[Checkpoint |
 Functonality |
|' Restart ‘
| Functionality |
-Collec
Mode

q Data Recovery

Control-Flow Recovery

e | we
m Kokkos Resilience | Partial-Rollback m
et (MPLULFN

Process Recovery

= VeloC - https://github.com/ecp-veloc/veloc

= VEry Low Overhead Checkpointing
= Contemporary, actively developed
= Asynchronous

= Multi-level checkpointing

= |n Memory Redundancy

= Fenix-provided

= Memory based checkpointing
= Buddy ranks, RAID-like

https://github.com/ecp-veloc/veloc

Trigﬂer Clear

How: Integration strategy

Reset

Kokkos Resilience

e DO

= ik =

Fenix

Resilient
Communicator

Node Resilience

Role

Failure

Awareness

Trigger
Recheck

VeloC

Data Region
Metadata

—

Unigue ID

Checkpoint

Frequency

Loop lterations

Checkpoint
Regions

Heterogenous

L—||—||—J

4
-l

Initialization ModeJ

Available
Checkpoints

L 4

Checkpoint
Functionality

Device Data
Management

- 0 o

Non-Collective

Mode

>

Functionality

Kokkos Resilience

= Remove all dependence on a static
communicator

= Allow application to request state
reset

= New input parameters to control
management pattern of VeloC

Changes remain agnostic to
particular tool choices

Just assumes that it has a currently
-functional communicator

How: Kokkos Resilience Modifications

Kokkos Resilience

Trigger Clear Checkpoint

Metadata Cache

Data

Reset M Regions I

...

Checkpoint
Frequency

Loop Iterations

Checkpoint
T'rigger Regions
Recheck

i

Heterogenous

iy

-

Device Data

Management

Recovery

e
e ——

VeloC

Data Region
Metadata

Unique ID

Initialization Mode

Available
Checkpoints

Checkpoint
Functionality

Restart
Functionality

Mon-Collective Status
. Mode

=

How: VeloC Accommodations

= VeloC

No internal changes needed,
must change usage from typical

Initialize without a
communicator

User manually finds consensus

Performance tuning

= VeloC serverlet assumes new
process connection after failure

= Online recovery partially serializes
pre/post failure operations

Kokkos Resilience

Trigger Clear Checkpoint

Metadata Cache VeloC
Ok Data Region
ata
Reset M Regions Metadata
Fenix m Unique ID
Resilient =
Communicator Checkpoin t Initialization Mode
Jode Resilience Frequency
Role Available
Loop Iterations Checkpoints
Failure -
Awareness : Checkpoint
Checkpoint Functionality
Trigger Regions
Recheck Heterogenous _(e
Device Data | Functionality
Management
, 4 RCCOVETY
Mon-Collective Status
L Mode

=

How: Integration strategy

<~ o O b W N B

Non-communicative init 1.
MPI Init () 2.
Communicative init |3.

for (1=0;..) { 4
Work using MPI COMM WORLD 5.

} 6.
MPI Finalize() 7
8

9

(3.) Fenix_init() 10.

n longjmp point 11.

u role reports local failure/recovery 12.
status 13

(9.) ctx.reset(res_comm) 14.

n User-initiated state reset 15.

16.

(12.) Checkpoint lambda automatically
checkpoint/restarted

(13.) Simply ctrl-f and replace
MPI_COMM_WORLD with res_comm

Non-communicative init
MPI Init ()
Fenix Init (MPI COMM WORLD, &res comm,
if (role == initial)
Communicative init
if (role != survivor)

ctx = KokkosResilience::make context (res comm)

else
ctx.reset (res comm)
1 = ctx.latest version
for(i;..){
KokkosResilience: :checkpoint (*ctx,
Work using res comm
b))

}
MPI Finalize()

&role)

i,

() {

Testing: Benchmark and MiniApp performance

= VeloC's Heat Distribution (Heatdis) benchmark

= 2D Heat distribution stencil
= Tested with many combinations of resilience layers
= Used to compare basic performance

= Sandia’s MiniMD mini application
= Molecular dynamics simulation
= Tested with our resilient protocol
= More realistic performance verification
= Programmability test

= Platform:
= 100-node Cray XC40 system
= 2 socket Intel Haswell nodes, 32 cores per node
= One rank per node
= Lustre distributed filesystem

Results: Simplified integration outperforms single-layer
resilience - Heatdis 64-Node Data Scaling (MB)

dddd.a
L[FF

i

Ul
o
1

= Adding layers has little-to-no
failure-free overhead

= Multi-layer recovery
Improves performance even = a0
for nalve implementations

= Potential for large

Overhead Recovery
H
o

50

Time (s)
Fail-Free
N w
o (@]
O O O O O
S -_

performance improvements
= Best data layer tool depends
on amount of data @ 4% Qj““
= Flexibility is key < \@a@"@oﬁ” o
B App compute BB Checkpoint Function I Recompute
N App MPI [1 Data Recovery 1 Other

[Resilience Initialization

Results: Overhead and recovery costs depend on
communication/compute balance - MiniMD

= Applications regions have different
behaviors
= Force Compute: highly compute-bound
= Neighboring: Mixed compute/communication
= Communicator: highly communication-bound

= Microcosm of different application types
= Again, flexibility is best

M|n|MD Resilience Weak Scaling

i Ii

Recovery

Overhead

Time (s)
= N
Ul (@]
o o

Fail-Free
|_I
o
o

50

I Force Compute B Checkpoint Function
I Neighboring 1 Data Recovery
& Communicator [Other

Results: The integration is efficient

= 61 Kokkos::View objects
= We don’t want to manually inspect
= Some contain duplicate data (aliased)
= User can specify alias names

= Some are references to the same data
(Skipped)

= Automatically detected
= Avoids 50-100% unneeded checkpoint
overhead
= Are we over checkpointing?

= Small # of sizable Views to be inspected,
compared to initial 61

I Checkpointed [Alias @@ Skipped

100% -
50%- I I I I
0% - 1 1 [1

10073 20073 300"3 40073
Simulation size

Each box represents a View object, with its height
proportional to its size

Memory size (% of total)

Results: Programmability is high

= MiniMD
= 61 Kokkos::View data objects
= 20+ source files
m 148 MPI calls across 15 source files

= Programming cost
= Kokkos Resilience changes only a small handful of files
= Fenix changes similarly limited to two files, ~20 lines of code

= Unintegrated cost estimate
= ULFM error handling roughly per MPI call

. Or approach rebuilding Fenix

= VeloC calls per Kokkos::View
. Manually inspect what/when to checkpoint

= Highly intrusive!
This integration of Kokkos Resilience and Fenix was enabled by our work

Conclusions: App-level integration can be performant, simple,
and flexible

= Qutperforms single-layer resilience
= |ntroduces flexibility in resilience strategies
= Simpler to use than single-layer resilience

= Simpler to add to existing applications than internally integrated multi-
layer systems

= Future work

= Room for more complex recovery to be introduced with better integration

= Checkpoint/recovery with a shrinking/growing communicator
= Data/Control-flow to redistribute work

= More localized error handling

Data Recovery

Control-Flow Recovery

Process Recovery

Kokkos Resilience

Kokkos Resilience

VeloC

Data Region
Metadata

"I

J Unique ID 1

Trigger Clear Checkpoint
Metadata Cache
Data
Reset % Regions I
)m
Checkpoint

Frequency

Initialization Mode

‘, Available 1

Loop Iterations

Awar Checkpaint

Regions

Trigger
Recheck

Heterogenous

Checkpoints

Checkpoint
Functionality

Restart 1

.‘I

Device Data
Management

¥ Functionality
e ——

J

e« RECOVETY
Status

Mon-Collective
. Mode

64-Node Data Scaling (MB)

>
| -
“ ; J J J J
: J
(@)
(]
.
Partial-Rollback T 10-
Q
e
|-
! Q
Fenix (MPI-ULFM) 3 l i J J
500 -
400 -
()]
£ 300-
L 200-
100 -
L A A
X < e x O \)
& e S S
o N Q,(\.Qf\ X x &
ng '257 Q.\\\ -+ e 00
& Q< AN G
NS £ (;2— < <%
WO &
*9 \PO‘_ P

BN Checkpoint Function
1 Data Recovery

I App compute
I App MPI
[Resilience Initialization

[Recompute

1 Other

i1

|22

References

[1] C. Di Martino, Z. Kalbarczyk, R. K. lyer, F. Baccanico, J. Fullop, and W. Kramer,
“Lessons learned from the analysis of system failures at petascale: The case of blue
waters,” in 2014 44th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, 2014, pp. 610-621

[2] Ramon Canal, Carles Hernandez, Rafa Tornero, Alessandro Cilardo, Giuseppe
Massari, Federico Reghenzani, William Fornaciari, Marina Zapater, David Atienza,
Ariel Oleksiak, Wojciech PiAtek, and Jaume Abella. 2020. Predictive Reliability and
Fault Management in Exascale Systems: State of the Art and Perspectives. ACM
Comput. Surv. 53, 5, Article 95 (September 2021), 32 pages.
https://doi.org/10.1145/3403956

[3] S. Heldens, P. Hijma, B. V. Werkhoven, J. Maassen, A. S. Z. Belloum, and R. V.
Van Nieuwpoort, “The landscape of exascale research: A data-driven literature
analysis,” ACM Comput. Surv., vol. 53, no. 2, mar 2020. [Online]. Available:
https://doi.org/10.1145/3372390

https://doi.org/10.1145/3403956
https://doi.org/10.1145/3372390

