
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Integrating process, control-flow, and data
resiliency layers

Matthew Whitlock, Nic Morales, George Bosilca, Aurelien Bouteiller, Bogdan Nicolae, Keita
Teranishi, Elisabeth Giem, Vivek Sarkar

Using a hybrid Fenix/Kokkos approach

IEEE Cluster - September 9, 2020

SAND2022-11865CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Sneak Peak

 Consider Resilience technologies in layers
 Redesign layers for seamless, application-level integration
 Achieve combined goals of

 Performance, Scalability
 Customizability
 Programmability, Maintainability

2

Roadmap

1. Why do anything?
 Resilience is important and annoying

2. What did we do?
• Our goals

3. How did we do it?
 Tools we used
 Our protocol

4. How well did we do?
 Performance
 Programmability

5. Conclusions

3

Why: Software resilience is important to HPC

 Blue Waters study [1]
 Average Mean time to Failure (MTTF) of 4.2 hours
 ~9% machine productivity loss from system-software failures

 Exascale only exacerbates reliability concerns [2]
 Hardware vs Software resilience [3]

 Reliability = Power Consumption = Money and heat
 Chip designers looking to offload reliability to software

 Software resilience is inherently co-design

4

Why: Current approaches are insufficient

 Developers are expensive - their time is valuable and limited
 High performance reliability is often highly code intrusive
 Online failure handling explodes state space

 Consider resilience in layers
 Representative technologies within each layer

5

How do we checkpoint?

When/what do we checkpoint?

What does a lost process mean?

 We have implemented and tested each vertical bar

Why: Current approaches are insufficient

 Two categories of current approaches

 More discussion and references in paper

 Lack of simple and customizable multi-layer resilience
6

Single Layer Multi Layer
Strengths  Diverse/flexible tools

 Easier on pre-existing apps
 High performance
 Strongly integrated layers
 Often automated into runtimes

Weaknesses  Performance requires multiple
 Not designed for integration

 Intrusive code rewrites
 Pre-integrated, fixed/custom

Examples VeloC, ULFM, MPI-Reinit, CRUM,
…

FMI, CPPC, CRAFT, ACR, …

What: Simplify application-level integration

 Extend tools to enable seamless integration
 Technology agnostic approach
 Simplify information sharing

 Meet applications where they’re at with resilience
 Minimize rewrites

 Maximize runtime configurability
 Future-proofing

7

How: Our tools

8

How: Our tools

9

 Relaunch
 Typical usage, tear down processes relaunch in job submission

script
 ULFM - https://fault-tolerance.org/

 User Level Fault Mitigation
 MPI Specification Change Proposal, available in OpenMPI 5
 Low level, for minimal specification changes
 Enables error reporting for rank failures
 Enables removing failed ranks from communicators

 Fenix - https://github.com/epizon-project/Fenix
 Simplifies ULFM-based recovery
 Designed to integrate with existing resilience
 Spare ranks replace failed ranks (configurable)
 Long-jump to initialization (configurable)
 Enables Partial-Rollback/IMR

https://fault-tolerance.org/
https://github.com/epizon-project/Fenix

How: Our tools

10

 Kokkos - https://github.com/kokkos/kokkos
 Modern C++ parallelism library
 Performance portable, heterogeneous
 Typically for-loop based parallelism
 Parallel lambdas/functors
 Custom data structures (Kokkos::View)

 Kokkos Resilience - https://github.com/kokkos/kokkos-resilience
 Gathers control-flow and data usage knowledge from Kokkos
 Resilient lambdas
 Internal VeloC integration, automate checkpoint/recovery

 Partial rollback
 Strategy available with online process recovery
 Requires integration
 Only recover on failed ranks
 Limited applications support

https://github.com/kokkos/kokkos
https://github.com/kokkos/kokkos-resilience

How: Our tools

11

 VeloC - https://github.com/ecp-veloc/veloc
 VEry Low Overhead Checkpointing
 Contemporary, actively developed
 Asynchronous
 Multi-level checkpointing

 IMR
 In Memory Redundancy
 Fenix-provided
 Memory based checkpointing
 Buddy ranks, RAID-like

https://github.com/ecp-veloc/veloc

How: Integration strategy

12

How: Kokkos Resilience Modifications

 Kokkos Resilience
 Remove all dependence on a static

communicator
 Allow application to request state

reset
 New input parameters to control

management pattern of VeloC
 Changes remain agnostic to

particular tool choices
 Just assumes that it has a currently

-functional communicator

13

How: VeloC Accommodations

 VeloC
 No internal changes needed,

must change usage from typical
 Initialize without a

communicator
 User manually finds consensus
 Performance tuning

 VeloC serverlet assumes new
process connection after failure

 Online recovery partially serializes
pre/post failure operations

14

How: Integration strategy
1. Non-communicative init
2. MPI_Init()
3. Communicative init
4. for(i=0;…){
5. Work using MPI_COMM_WORLD
6. }
7. MPI_Finalize()

15

1. Non-communicative init
2. MPI_Init()
3. Fenix_Init(MPI_COMM_WORLD, &res_comm, &role)
4. if(role == initial)
5. Communicative init
6. if(role != survivor)
7. ctx = KokkosResilience::make_context(res_comm)
8. else
9. ctx.reset(res_comm)
10. i = ctx.latest_version
11. for(i;…){
12. KokkosResilience::checkpoint(*ctx, i, (){
13. Work using res_comm
14. });
15. }
16. MPI_Finalize()

 (3.) Fenix_init()
 longjmp point
 role reports local failure/recovery

status

 (9.) ctx.reset(res_comm)
 User-initiated state reset

 (12.) Checkpoint lambda automatically
checkpoint/restarted

 (13.) Simply ctrl-f and replace
MPI_COMM_WORLD with res_comm

Testing: Benchmark and MiniApp performance

 VeloC’s Heat Distribution (Heatdis) benchmark
 2D Heat distribution stencil
 Tested with many combinations of resilience layers
 Used to compare basic performance

 Sandia’s MiniMD mini application
 Molecular dynamics simulation
 Tested with our resilient protocol
 More realistic performance verification
 Programmability test

 Platform:
 100-node Cray XC40 system
 2 socket Intel Haswell nodes, 32 cores per node
 One rank per node
 Lustre distributed filesystem

16

Results: Simplified integration outperforms single-layer
resilience - Heatdis

 Adding layers has little-to-no
failure-free overhead

 Multi-layer recovery
improves performance even
for naïve implementations

 Potential for large
performance improvements

 Best data layer tool depends
on amount of data
 Flexibility is key

17

Results: Overhead and recovery costs depend on
communication/compute balance - MiniMD

 Applications regions have different
behaviors
 Force Compute: highly compute-bound
 Neighboring: Mixed compute/communication
 Communicator: highly communication-bound

 Microcosm of different application types
 Again, flexibility is best

18

Results: The integration is efficient

 61 Kokkos::View objects
 We don’t want to manually inspect
 Some contain duplicate data (aliased)

 User can specify alias names
 Some are references to the same data

(Skipped)
 Automatically detected

 Avoids 50-100% unneeded checkpoint
overhead

 Are we over checkpointing?
 Small # of sizable Views to be inspected,

compared to initial 61

19

Each box represents a View object, with its height
proportional to its size

Results: Programmability is high

 MiniMD
 61 Kokkos::View data objects
 20+ source files
 148 MPI calls across 15 source files

 Programming cost
 Kokkos Resilience changes only a small handful of files
 Fenix changes similarly limited to two files, ~20 lines of code

 Unintegrated cost estimate
 ULFM error handling roughly per MPI call

 Or approach rebuilding Fenix
 VeloC calls per Kokkos::View

 Manually inspect what/when to checkpoint
 Highly intrusive!

 This integration of Kokkos Resilience and Fenix was enabled by our work

20

Conclusions: App-level integration can be performant, simple,
and flexible

 Outperforms single-layer resilience
 Introduces flexibility in resilience strategies
 Simpler to use than single-layer resilience
 Simpler to add to existing applications than internally integrated multi-

layer systems
 Future work

 Room for more complex recovery to be introduced with better integration
 Checkpoint/recovery with a shrinking/growing communicator

 Data/Control-flow to redistribute work
 More localized error handling

21

Q&A – Thanks!

22

References

[1] C. Di Martino, Z. Kalbarczyk, R. K. Iyer, F. Baccanico, J. Fullop, and W. Kramer,
“Lessons learned from the analysis of system failures at petascale: The case of blue
waters,” in 2014 44th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, 2014, pp. 610–621
[2] Ramon Canal, Carles Hernandez, Rafa Tornero, Alessandro Cilardo, Giuseppe
Massari, Federico Reghenzani, William Fornaciari, Marina Zapater, David Atienza,
Ariel Oleksiak, Wojciech PiĄtek, and Jaume Abella. 2020. Predictive Reliability and
Fault Management in Exascale Systems: State of the Art and Perspectives. ACM
Comput. Surv. 53, 5, Article 95 (September 2021), 32 pages.
https://doi.org/10.1145/3403956
[3] S. Heldens, P. Hijma, B. V. Werkhoven, J. Maassen, A. S. Z. Belloum, and R. V.
Van Nieuwpoort, “The landscape of exascale research: A data-driven literature
analysis,” ACM Comput. Surv., vol. 53, no. 2, mar 2020. [Online]. Available:
https://doi.org/10.1145/3372390

23

https://doi.org/10.1145/3403956
https://doi.org/10.1145/3372390

