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Sneak Peak

= Consider Resilience technologies in layers

= Redesign layers for seamless, application-level integration

= Achieve combined goals of
= Performance, Scalability

= Customizability

=  Programmability, Maintainability
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Roadmap

1. Why do anything?
= Resilience is important and annoying

2. What did we do?

*  Ourgoals

3. How did we do it?

= Tools we used
= Qur protocol

4. How well did we do?
= Performance
=  Programmability

5. Conclusions




Why: Software resilience is important to HPC

= Blue Waters study [1]

= Average Mean time to Failure (MTTF) of 4.2 hours
=  ~9% machine productivity loss from system-software failures

= Exascale only exacerbates reliability concerns [2]

= Hardware vs Software resilience [3]

= Reliability = Power Consumption = Money and heat
= Chip designers looking to offload reliability to software

= Software resilience is inherently co-design




Why: Current approaches are insufficient

= Developers are expensive - their time is valuable and limited
= High performance reliability is often highly code intrusive
= Online failure handling explodes state space

= Consider resilience in layers
= Representative technologies within each Iayer

MR
m [Kokkos Resilience |} Partial-Rollback| m
| Relauhch Fdnix (MPI-ULFM) | |

= We have implemented and tested each vertical bar

How do we checkpoint? Data Recovery

When/what do we checkpoint? EeelalifelRalelNANEIdeAVC ot

What does a lost process mean? eI =Ll g%




Why: Current approaches are insufficient

Control-Flow Recovery m Kokkos Resilience | Partial-Rollback m
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= Two categories of current approaches

_ Single Layer Multi Layer

Strengths = Diverse/flexible tools = High performance
= Easier on pre-existing apps = Strongly integrated layers
= QOften automated into runtimes
Weaknesses = Performance requires multiple = |ntrusive code rewrites
= Not designed for integration * Pre-integrated, fixed/custom

Examples VeloC, ULFM, MPI-Reinit, CRUM, FMI, CPPC, CRAFT, ACR, ...

= Lack of simple and customizable multi-layer resilience




What: Simplify application-level integration
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= Extend tools to enable seamless integration
= Technology agnostic approach
= Simplify information sharing

= Meet applications where they're at with resilience
=  Minimize rewrites

= Maximize runtime configurability
= Future-proofing




How: Our tools

Data Recovery

Control-Flow Recovery

Process Recovery
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How: Our tools

Control-Flow Recovery

# Process Recovery

= Relaunch
=  Typical usage, tear down processes relaunch in job submission

script
= ULFM - https://fault-tolerance.org/
Fenix = User Level Fault Mitigation
Resilient =  MPI Specification Change Proposal, available in OpenMPI 5
Communicator - Low level, for minimal specification changes

=  Enables error reporting for rank failures
=  Enables removing failed ranks from communicators

| Failure = Fenix - https://github.com/epizon-project/Fenix
' =  Simplifies ULFM-based recovery

Designed to integrate with existing resilience

=  Spare ranks replace failed ranks (configurable)

=  Long-jump to initialization (configurable)

Enables Partial-Rollback/IMR

Node Resilience
Role



https://fault-tolerance.org/
https://github.com/epizon-project/Fenix
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=  Kokkos - https://github.com/kokkos/kokkos

Control-Flow Recovery

How: Our tools —_

Process Recovery

e =  Modern C++ parallelism library
Trigger Clear :: = Performance portable, heterogeneous
Metadata Cache . .
o = Typically for-loop based parallelism
Resel = . Parallel lambdas/functors

Fenix

=  Custom data structures (Kokkos::View)

Resilient

Communicator =  Kokkos Resilience - https://github.com/kokkos/kokkos-resilience
Frequency

Node Resiience =  Gathers control-flow and data usage knowledge from Kokkos
— = Resilient lambdas

= Internal VeloC integration, automate checkpoint/recovery

Regions

|

Partial rollback

Strategy available with online process recovery
= Requires integration

Only recover on failed ranks

Limited applications support

Failure
Awareness

Trigger

Recheck Heterogenous

Device Data

Management

<4 Recovery
T Status



https://github.com/kokkos/kokkos
https://github.com/kokkos/kokkos-resilience

How: Our tools

Kokkos Resilience
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Process Recovery

= VeloC - https://github.com/ecp-veloc/veloc

= VEry Low Overhead Checkpointing
= Contemporary, actively developed
= Asynchronous

= Multi-level checkpointing

= |n Memory Redundancy

= Fenix-provided

= Memory based checkpointing
= Buddy ranks, RAID-like



https://github.com/ecp-veloc/veloc
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How: Integration strategy
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Kokkos Resilience

= Remove all dependence on a static
communicator

=  Allow application to request state
reset

= New input parameters to control
management pattern of VeloC

Changes remain agnostic to
particular tool choices

Just assumes that it has a currently
-functional communicator

How: Kokkos Resilience Modifications

Kokkos Resilience
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How: VeloC Accommodations

= VeloC

No internal changes needed,
must change usage from typical

Initialize without a
communicator

User manually finds consensus

Performance tuning

=  VeloC serverlet assumes new
process connection after failure

=  Online recovery partially serializes
pre/post failure operations

Kokkos Resilience
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How: Integration strategy

<~ o O b W N B

Non-communicative init 1.
MPI Init () 2.
Communicative init |3.

for (1=0;..) { 4
Work using MPI COMM WORLD 5.

} 6.
MPI Finalize() 7
8

9

(3.) Fenix_init() 10.

n longjmp point 11.

u role reports local failure/recovery 12.
status 13

(9.) ctx.reset(res_comm) 14.

n User-initiated state reset 15.

16.

(12.) Checkpoint lambda automatically
checkpoint/restarted

(13.) Simply ctrl-f and replace
MPI_COMM_WORLD with res_comm

Non-communicative init
MPI Init ()
Fenix Init (MPI COMM WORLD, &res comm,
if (role == initial)
Communicative init
if (role != survivor)

ctx = KokkosResilience::make context (res comm)

else
ctx.reset (res comm)
1 = ctx.latest version
for(i;..){
KokkosResilience: :checkpoint (*ctx,
Work using res comm
b))

}
MPI Finalize()

&role)

i,

() {




Testing: Benchmark and MiniApp performance

=  VeloC's Heat Distribution (Heatdis) benchmark

= 2D Heat distribution stencil
= Tested with many combinations of resilience layers
= Used to compare basic performance

= Sandia’s MiniMD mini application
=  Molecular dynamics simulation
=  Tested with our resilient protocol
= More realistic performance verification
=  Programmability test

= Platform:
= 100-node Cray XC40 system
= 2 socket Intel Haswell nodes, 32 cores per node
=  One rank per node
=  Lustre distributed filesystem




Results: Simplified integration outperforms single-layer
resilience - Heatdis 64-Node Data Scaling (MB)
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Results: Overhead and recovery costs depend on
communication/compute balance - MiniMD

= Applications regions have different
behaviors
= Force Compute: highly compute-bound
= Neighboring: Mixed compute/communication
= Communicator: highly communication-bound

= Microcosm of different application types
= Again, flexibility is best
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Results: The integration is efficient

= 61 Kokkos::View objects
=  We don’t want to manually inspect
= Some contain duplicate data (aliased)
=  User can specify alias names

= Some are references to the same data
(Skipped)

=  Automatically detected
= Avoids 50-100% unneeded checkpoint
overhead
= Are we over checkpointing?

= Small # of sizable Views to be inspected,
compared to initial 61

I Checkpointed [ Alias @@ Skipped

100% -
50%- I I I I
0% - 1 1 [ 1

10073 20073 300"3 40073
Simulation size

Each box represents a View object, with its height
proportional to its size

Memory size (% of total)




Results: Programmability is high

= MiniMD
= 61 Kokkos::View data objects
= 20+ source files
m 148 MPI calls across 15 source files

=  Programming cost
=  Kokkos Resilience changes only a small handful of files
=  Fenix changes similarly limited to two files, ~20 lines of code

= Unintegrated cost estimate
=  ULFM error handling roughly per MPI call

. Or approach rebuilding Fenix

=  VeloC calls per Kokkos::View
. Manually inspect what/when to checkpoint

=  Highly intrusive!
This integration of Kokkos Resilience and Fenix was enabled by our work




Conclusions: App-level integration can be performant, simple,
and flexible

= Qutperforms single-layer resilience
= |ntroduces flexibility in resilience strategies
= Simpler to use than single-layer resilience

= Simpler to add to existing applications than internally integrated multi-
layer systems

= Future work

= Room for more complex recovery to be introduced with better integration

= Checkpoint/recovery with a shrinking/growing communicator
= Data/Control-flow to redistribute work

= More localized error handling
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