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Sneak Peak

 Consider Resilience technologies in layers
 Redesign layers for seamless, application-level integration
 Achieve combined goals of

 Performance, Scalability
 Customizability
 Programmability, Maintainability
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Roadmap

1. Why do anything?
 Resilience is important and annoying

2. What did we do?
• Our goals

3. How did we do it?
 Tools we used
 Our protocol

4. How well did we do?
 Performance
 Programmability

5. Conclusions
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Why: Software resilience is important to HPC

 Blue Waters study [1]
 Average Mean time to Failure (MTTF) of 4.2 hours
 ~9% machine productivity loss from system-software failures

 Exascale only exacerbates reliability concerns [2]
 Hardware vs Software resilience [3]

 Reliability = Power Consumption = Money and heat
 Chip designers looking to offload reliability to software

 Software resilience is inherently co-design
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Why: Current approaches are insufficient

 Developers are expensive - their time is valuable and limited
 High performance reliability is often highly code intrusive
 Online failure handling explodes state space

 Consider resilience in layers
 Representative technologies within each layer
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How do we checkpoint?

When/what do we checkpoint?

What does a lost process mean?

 We have implemented and tested each vertical bar



Why: Current approaches are insufficient

 Two categories of current approaches

 More discussion and references in paper

 Lack of simple and customizable multi-layer resilience
6

Single Layer Multi Layer
Strengths  Diverse/flexible tools

 Easier on pre-existing apps
 High performance
 Strongly integrated layers
 Often automated into runtimes

Weaknesses  Performance requires multiple
 Not designed for integration

 Intrusive code rewrites
 Pre-integrated, fixed/custom

Examples VeloC, ULFM, MPI-Reinit, CRUM, 
…

FMI, CPPC, CRAFT, ACR, …



What: Simplify application-level integration

 Extend tools to enable seamless integration 
 Technology agnostic approach
 Simplify information sharing

 Meet applications where they’re at with resilience
 Minimize rewrites

 Maximize runtime configurability
 Future-proofing
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How: Our tools
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How: Our tools

9

 Relaunch
 Typical usage, tear down processes relaunch in job submission 

script
 ULFM - https://fault-tolerance.org/ 

 User Level Fault Mitigation
 MPI Specification Change Proposal, available in OpenMPI 5
 Low level, for minimal specification changes
 Enables error reporting for rank failures
 Enables removing failed ranks from communicators

 Fenix - https://github.com/epizon-project/Fenix  
 Simplifies ULFM-based recovery
 Designed to integrate with existing resilience
 Spare ranks replace failed ranks (configurable)
 Long-jump to initialization (configurable)
 Enables Partial-Rollback/IMR

https://fault-tolerance.org/
https://github.com/epizon-project/Fenix


How: Our tools
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 Kokkos - https://github.com/kokkos/kokkos 
 Modern C++ parallelism library
 Performance portable, heterogeneous
 Typically for-loop based parallelism
 Parallel lambdas/functors
 Custom data structures (Kokkos::View)

 Kokkos Resilience - https://github.com/kokkos/kokkos-resilience 
 Gathers control-flow and data usage knowledge from Kokkos
 Resilient lambdas
 Internal VeloC integration, automate checkpoint/recovery

 Partial rollback
 Strategy available with online process recovery
 Requires integration
 Only recover on failed ranks
 Limited applications support

https://github.com/kokkos/kokkos
https://github.com/kokkos/kokkos-resilience


How: Our tools
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 VeloC - https://github.com/ecp-veloc/veloc 
 VEry Low Overhead Checkpointing
 Contemporary, actively developed 
 Asynchronous 
 Multi-level checkpointing

 IMR
 In Memory Redundancy
 Fenix-provided
 Memory based checkpointing
 Buddy ranks, RAID-like

https://github.com/ecp-veloc/veloc


How: Integration strategy
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How: Kokkos Resilience Modifications

 Kokkos Resilience
 Remove all dependence on a static 

communicator
 Allow application to request state 

reset
 New input parameters to control 

management pattern of VeloC
 Changes remain agnostic to 

particular tool choices
 Just assumes that it has a currently

-functional communicator
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How: VeloC Accommodations

 VeloC
 No internal changes needed, 

must change usage from typical
 Initialize without a 

communicator
 User manually finds consensus
 Performance tuning

 VeloC serverlet assumes new 
process connection after failure

 Online recovery partially serializes 
pre/post failure operations
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How: Integration strategy
1.    Non-communicative init
2. MPI_Init()
3.    Communicative init
4. for(i=0;…){
5.    Work using MPI_COMM_WORLD
6. }
7. MPI_Finalize()
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1.    Non-communicative init
2. MPI_Init()
3. Fenix_Init(MPI_COMM_WORLD, &res_comm, &role)
4. if(role == initial)
5.    Communicative init
6. if(role != survivor)
7.    ctx = KokkosResilience::make_context(res_comm)
8. else
9.    ctx.reset(res_comm)
10. i = ctx.latest_version
11. for(i;…){
12.    KokkosResilience::checkpoint(*ctx, i, (){
13.      Work using res_comm
14.    });
15. }
16. MPI_Finalize()

 (3.) Fenix_init()
 longjmp point
 role reports local failure/recovery 

status

 (9.) ctx.reset(res_comm)
 User-initiated state reset

 (12.) Checkpoint lambda automatically 
checkpoint/restarted

 (13.) Simply ctrl-f and replace 
MPI_COMM_WORLD with res_comm



Testing: Benchmark and MiniApp performance

 VeloC’s Heat Distribution (Heatdis) benchmark
 2D Heat distribution stencil
 Tested with many combinations of resilience layers
 Used to compare basic performance

 Sandia’s MiniMD mini application
 Molecular dynamics simulation
 Tested with our resilient protocol
 More realistic performance verification
 Programmability test

 Platform:
 100-node Cray XC40 system
 2 socket Intel Haswell nodes, 32 cores per node
 One rank per node
 Lustre distributed filesystem

16



Results: Simplified integration outperforms single-layer 
resilience - Heatdis

 Adding layers has little-to-no 
failure-free overhead

 Multi-layer recovery 
improves performance even 
for naïve implementations

 Potential for large 
performance improvements

 Best data layer tool depends 
on amount of data
 Flexibility is key
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Results: Overhead and recovery costs depend on 
communication/compute balance - MiniMD

 Applications regions have different 
behaviors
 Force Compute: highly compute-bound
 Neighboring: Mixed compute/communication
 Communicator: highly communication-bound

 Microcosm of different application types
 Again, flexibility is best
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Results: The integration is efficient

 61 Kokkos::View objects
 We don’t want to manually inspect
 Some contain duplicate data (aliased)

 User can specify alias names
 Some are references to the same data 

(Skipped)
 Automatically detected

 Avoids 50-100% unneeded checkpoint 
overhead

 Are we over checkpointing?
 Small # of sizable Views to be inspected, 

compared to initial 61
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Each box represents a View object, with its height 
proportional to its size



Results: Programmability is high

 MiniMD
 61 Kokkos::View data objects
 20+ source files
 148 MPI calls across 15 source files

 Programming cost
 Kokkos Resilience changes only a small handful of files
 Fenix changes similarly limited to two files, ~20 lines of code

 Unintegrated cost estimate
 ULFM error handling roughly per MPI call

 Or approach rebuilding Fenix
 VeloC calls per Kokkos::View

 Manually inspect what/when to checkpoint
 Highly intrusive!

 This integration of Kokkos Resilience and Fenix was enabled by our work
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Conclusions: App-level integration can be performant, simple, 
and flexible

 Outperforms single-layer resilience
 Introduces flexibility in resilience strategies
 Simpler to use than single-layer resilience
 Simpler to add to existing applications than internally integrated multi-

layer systems
 Future work

 Room for more complex recovery to be introduced with better integration
 Checkpoint/recovery with a shrinking/growing communicator

 Data/Control-flow to redistribute work
 More localized error handling
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Q&A – Thanks!
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