This paper describes objective technical results and analysis. Any subijective views or opinions that mightlbelexpressed}in|
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States'Government.

SAND2022-11815C

Sandia
National
Laboratories

What's new in Tpetra & Data -2 amem
Services? Sit.INUD

Presented by: Chris Siefert, Tpetra Package Lead

©ENERGY NISH
Wamrm Acvmee Brisfy Ambremabue
Sandia National Laboratories is a
multimission laboratory managed
and operated by National Technology
& Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of
Honeywell International Inc., for the
U.S. Department of Energy’s National
Nuclear Security Administration under
contract DE-NA0003525.

EuroTUG 2022, September 13, 2022

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering [SolutionsfofiSandia,|LLC, alwhollylowned!
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administrationfundercontract DE-NA0003525.



> 1 OQutline

What's new in Zoltan2?

« What's new in SEACAS/IOSS/Exodus?

« What's new in STK?

* What's new in Tpetra?

« Other new developments!

Note: | will be repeating “new” developments from TUG '21, more detail on those can be found here:
https://trilinos.github.io/trilinos_user-developer_group _meeting 2021.html




« Hybrid distributed/shared memory graph coloring
« Uses MPI + KokkosKernels coloring
« Runs on CPU and GPU (Nvidia/CUDA and AMD/HIP)
« Supports dist-1, dist-2, and partial dist-2 coloring

« Sphynx: New graph partitioner
« Algorithm based on spectral partitioning
* Runs on both CPU and GPU (via Kokkos)
 First multi-GPU graph partitioner!

|
What's new in Zoltan2? [TUG ‘21 and newer] m

Sphynx partitioner

o | :
" PIOBIESS pipeline:

« Kokkos-based API for input adapters so users can
provide data on either host or device e & cigenvectors ol jagged parifion [T
« Multilevel graph partitioner for GPU 2

15 14

Slide courtesy of Erik Boman, Zoltan?2 lead.



 POC: Greg Sjaardema

 New Features
* Assemblies — hierarchical groups of blocks/sets/assemblies
* Blobs -- store arbitrarily-sized objects in an exodus file
« Entity Attributes -- “provenance” or annotation data on entities and fields
* Aprepro — Arrays, Exodus integration
* Exodus.py — python3, improved capabilities, testing

*  New Integrations — FAODEL, Catalyst2, ADIOS2, TextMesh

* In progress:
* Discontinuous Galerkin Fields
- HDF5 VOL

* Compression (lossy and lossless)

I
. | What's new in SEACAS/I0SS/Exodus? [TUG ‘21] m
I

« Others: Windows, scalability, code quality



« POC: Alan Williams

*  GPU: Improving the performance of synchronizing Fields between CPU and GPU
memory spaces.

*  Primarily for Sierra SM

*  AMD/HIP: stk-mesh unit-tests now build and run on AMD platforms,
using ROCM 4.3.

*  Primarily for ExaWind

- STK Balance: improving work-flow and performance of Balance and
BalanceM2N coming soon.

I
. | What's new in STK? [TUG ‘21] m
I



A lot has changed since EuroTUG 2019!

« The big ones are that Tpetra (and thus the derived linear solver stack) now
supports...

*  NVIDIA CUDA w/o UVM.
*  AMD GPUs w/ HIP.
* Intel GPUs w/ SYCL (Warning: Not yet regularly tested.)

* As of Trilinos 13.4 over 27,000 lines of deprecated code/interfaces were removed.

I
s | What's new in Tpetra? m
I

* There are other new features (on-node graph assembly, simultaneous
communications, BlockCrs capabiltities, etc.) as well. We'll get to those in time.



« For better portability to GPUs, we have removed the DynamicProfile option for
matrix/graph assembly.

* You now need at least an upper bound on storage to build the Graph (like the old
StaticProfile option).

« Off-processor assembly is still supported (and there is some resizing support for off-
rank imports).

|
; 1 Dynamic Profile Removal [TUG ‘19] m
|



- For folks interested in finite elements, we have a FE-centric assembly layer.

*  Much better performance than using off-rank calls to insertGlobalEntries.

» Does not require ghosted elements

« Key assumption: If you own an element, you own at least one dof associated with that
element.

* Requires an ownedRowMap and an ownedPlusSharedRowMap (any dof into which you
will be inserting entries. Not quite the column map).

I
. | FECrs[Graph|Matrix|Vector] [TUG '19] m
I

« Allindexing can be done locally and both owned and ghost rows are pre-allocated.



*  UVM = CUDA Vinified Memory (can be addressed both on Host & GPU)
* Tpetra has Kokkos::DualViews of matrix and vector data

« Kokkos::DualView provides the means for tracking host/device views.
* Sync/modify mechanics.

* Correct use has to be enforced by the user.

« Tpetra::\WrappedDualView manages the sync / modify flags between host and device
* Alittle like SYCL buffers.
* Users no longer sync / modify explicitly.
* Users cannot hold both host and device pointers concurrently.
« Affects MultiVector, CrsMatrix, CrsGraph, and Block variants.

|
s | WrappedDualView and UVM-free Code [TUG'21] m
|



Example: Vector fill with UVM is straightforward [TUG ‘21]

// Without UVM, this code will fail
multivector t mv(..);

auto mvData =
mv.getLocalViewHost () ;

for (3 = 0; j < numData; Jj++)
mvData (j,0) = rhs(j);

myDeviceFunction (mv) ;

Code worked with UVM
but failed without UVM

&



Non-UVM requires careful management of host and device
views [TUG ‘21]

Without UVM, explicit modify/syncs were
needed — messy and error-prone

o

multivector t mv(..);
auto mvData =
mv.getLocalViewHost () ;

mv.clear sync state();
mv.modify host () ; |

for (3 = 0; 7 < numbata; J++)
mvData(j,0) = rhs(j); I

mv.sync device () ;

myDeviceFunction (mv) ; I




Tpetra host/device management issues easier [TUG '21]

Without UVM, explicit modify/syncs were
needed — messy and error-prone

Tpetra now manages the
sync/modify state for users

o

multivector t mv(..);

auto mvData =
mv.getLocalViewHost () ;

mv.clear sync state();
mv.modify host();

J < numData; j++)
= rhs (7);

for (3 = 0;
mvData (j,0)

mv.sync device();

myDeviceFunction (mv) ;

multivector t mv(..);

{ auto mvData =

mv.getLocalViewHost (
Tpetra::Access: :0OverwriteAll)

for (3 = 0; j < numData; J++)
mvData (j,0) = rhs(J);

}

myDeviceFunction (mv) ;

; |
’




1. Capture host and device views in separate scopes
* Don’t hold raw pointers to multivector’s data
* Let views go out of scope as soon as you’re done working with them

|
Key changes for Tpetra::MultiVector users [TUG '21] m

2. Separate scope for local operations and Trilinos operations on an object

* Trilinos operations can choose where to access data |
3. Indicate intended usage of views

e ReadOnly, ReadWrite, OverwriteAll |
4. Reduce switching between host and device accesses |

* Be aware of data synchronization



Same as MultiVector

Key changes for Tpetra::CrsGraph/CrsMatrix users [TUG '21]

1. Capture host and device views in separate scopes
* Don’t hold raw pointers to data
* Let views go out of scope as soon as you’re done working with them

2. Separate scope for local operations and Trilinos operations on an object
* Trilinos operations can choose where to access data

3. Indicate intended usage of views
* ReadOnly, ReadWrite, OverwriteAll |

o

4. Reduce switching between host and device accesses
* Be aware of data synchronization

5. getLocalMatrix*®() and getLocalGraph*() build Kokkos’ matrix and graph ON |
DEMAND now (rather than returning stored data structures); use wisely

6. Functions returning Teuchos::ArrayView of CrsMatrix/CrsGraph data are |
dangerous and have been removed.

7. Functions returning raw pointers to CrsMatrix/CrsGraph data are dangerous I

and have been removed. I



Indicate intended usage of views [TUG '21]

Tpetra syncs as needed for type of access

* Tpetra::Access::ReadOnly
* Tpetra syncs if needed

* Tpetra::Access::ReadWrite
* Tpetra syncs if needed
* Tpetra marks modified

* Tpetra::Access::OverwriteAll
e Tpetra syncs only if view is a subview
* Tpetra marks modified
e Use only if writing ALL entries of view

o

// Use access tags to indicate intent

{

auto read h =
mv.getLocalViewHost (
Tpetra: :Access: :ReadOnly) ;

auto readwrite h =
mv.getLocalViewHost (
Tpetra: :Access: :ReadWrite) ;

auto write h =
mv.getLocalViewHost (
Tpetra: :Access: :0OverwriteAll);

Access tags allow Tpetra to manage sync/modify status for users




MultiVector: Update code to remove old interfaces [TUG '21] @!

For now, most interfaces remain

Removed by Trilinos 13.4

* Get an ArrayRCP (1D or 2D):

* getData, getDataNonConst
* getldView, getldViewNonConst

* get2dView, get2dViewNonConst

* Get a single column as Vector:

* getVector, getVectorNonConst

Removed before Trilinos 13.4

* Tpetra::withLocalAccess
* Tpetra::for each
* Tpetra::transform

* Accessors without Access tags

* getLocalViewHost ()
* getLocalViewDevice ()
* getLocalView<> ()

* getLocalBlock()

* Sync/modify now handled by MultiVector

* mv.sync host (), mv.sync device(), mv.sync<>
()
* mv.modify host (), mv.modify device (), mv.moq

()

* mv.clear sync state()




7 1 Asynchronous Import/Export [NEW]

Motivation
* Import/Export transfer data from one distributed object (Tpetra: :DistObject) to another
* Let's say you have many MultiVectors to do import on ...

*  What if you want to overlap communication?
Launch sends for multiple DistObjects simultaneously
Launch sends and do some other computation while you wait

Synchronous API
* Do the complete import, don't return until it's finished: DistObject: :doImport

New asynchronous API
* Pack data and kick off sends: DistObject: :beginImport

« (Optionally) check if data has arrived and is ready to unpack: DistObject::transferArrived
* Unpack and combine data: DistObject::endImport

Backend improvements mean each DistObject handles communication separately
« BUT, can still share the same communication plan from the importer (expensive to create)

Lead developer: Timothy Smith




For on-node matrix assembly, we've had an interface for quite some time...
« Grab the Kokkos::SparseCrsMatrix and wok on that directly.

But how do you assembly a Graph on-node?
« For many apps, host-assembly suffices --- the connectivity never changes.

* But some apps have Graphs that change over time.

Brian Kelley has been working on a FEM-centric prototype for graph assembly:

RCP<CrsGraph> Tpetra::assembleFEGraph(
RCP<Map> rowMap,
View<GO**, Node::memory_ space> ownedElements,
View<GO**, Node::memory space> ghostElements);

|
s | Prototype: On-node graph assembly [NEW] m
|

Still in development: Watch for more info at next EuroTUG.

Lead developer: Brian Kelley



Tpetra::BlockCrsMatrix was designed to support fixed-sized, small, blocks, e.g., 5x5.

« Uses a CrsGraph on nodes (groups of dofs) for the blocked problem --- less pointer
chasing than CrsGraph for each individual dof.

*  New features
Transpose operation.
Sparse matrix-matrix multiplication.

« Enables blocks-through-the-whole-hierarchy in certain MuelLu code-paths.

|
o | Improved BlockCrsMatrix Support [NEW] m
|

Still in development: Should be in Trilinos/develop by end of CY22.

Lead developer: Conrad Clevenger



0 | Performance Monitoring [NEW]

Nightly performance testing on: Intel CPU, ARM CPU, Power9/A100 (NVIDIA),
EPYC/MI250 (AMD).

JEclipse Serial: MiniEM 3D Refiiaxwell 16 ranks

Performance tests: SAMPLE

*  Tpetra SpMV.
- Tpetra FE assembly. - ﬁ/\
«  MiniEM (Maxwell CG+MueLu).

L-V\.r-'sn‘w‘»

* Abnormal Energy (GMRES + ILU(3) w/ overlap 2).

Checked by humans every Tuesday. cmestamy

Goals: Work towards automatic changepoint detection, more app-relevant tests.

Lead developers: Brian Kelley / Jonathan Hu

o
!



« The last few years in Tpetra have been full of new developments!
* New architectures, UVM-free Cuda, overlapping halo exchanges and more!

* |Is there something you want to see in Tpetra & Data services? No guarantees, but
please feel free to ask (or submit a patch)!

|
1 1 Thank you for your time! m
|



