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3 | Background and Motivation

*The disposal room porosity model simulates the evolution
(deformation) of a disposal room containing waste containers.

* The production of gas, through a combination of anoxic corrosion,
biodegradation and radiolysis, results in pressure being applied to
the room surfaces.

* The waste containers and the gas pressure resist the inward creep
of the salt.

* The room only stops evolving when the resistance from the
containers and gas pressure are balanced with the stresses from
the surrounding rock salt.

*The WIPP Performance Assessment Group model of brine and gas
flow (BRAGFLOQO) uses the disposal room porosity results from
mechanical simulations of room closure as input to account for the
time dependent porosity changes in the waste disposal areas.




+ I Background and Motivation

*To do these disposal room porosity simulations we need to
have:

* geomechanical model capable of reproducing closure
measurements from past underground room scale tests

 constitutive model for the waste containers
* gas model

*The WIPP Performance Assessment (PA) group performs
1800 brine and gas flow simulations for each Compliance
Recertification Application (CRA). These simulations account
for parameter and model uncertainties and various scenarios
(ex. borehole into the waste area).



s | Background and Motivation

*We do not currently have the capability to perform fully
coupled flow and mechanical deformation simulations.

* As an alternative, we solve the mechanical deformation
problem using the same geomechanical model setup while
only varying the amount of gas generated.

*From this set of simulations, a response surface (look-up
table) for the disposal room porosity as a function of time and
amount of gas generated is produced.

*The flow simulator uses interpolation of the response surface
porosity data to continuously adjust the disposal area porosity
during each simulation.



« | Background and Motivation

°In this uncoupled approach for the disposal room porosity
model, the disposal room is a closed system to fluid flow; there
IS no flow of brine and gas into or out of the room.

*The porosity we calculate for the look-up table is based on the
volume of the room and the amount of solid material initially in
the waste. There is no consideration of spatial variation of
porosity within the room.

A rapid change in pressure in the room could produce a
instantaneous change in porosity during a flow simulation. We
would expect that the porosity would change more gradually if
a fully coupled approach were employed.



Geomechanical Model



¢ I Geomechanical Model

Reedlunn (2022) performed a detailed reinvestigation of experimental room
closure measurements and modeling for Experimental Rooms B, D, G, and Q
and found some areas that could make the geomechanical model more
defensible and produce better agreement with the experimental room
measurements.

‘Ensured that numerical model solver tolerances, domain size, and mesh
discretization provided converged results for horizontal and vertical room
closure.

*Use the same stratigraphy as proposed in 1983 for all simulations. Reintroduced
the anyhydrite layers, polyhalite, and clay seams to the model that were
sometimes ignored.

*Used a single salt type, no distinction between clean and argillaceous salt.

*Introduced a low equivalent stress mechanism to account for pressure solution
creep in the MD model.

*Calibrated the Munson-Dawson (MD) model using new laboratory data as much

as possible. No parameter adjustment were made to calibrate against the
experimental room teste



o I Geomechanical Model- Comparison of legacy and “new”
stratigraphy

Munson et al.(1989) Stone (1997) Reedlunn (2022)
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Stratigraphy shown in Stone (1997) was used in last disposal room porosity
calculations




WIPP is approximately 650 m below the

Layout of WIPP and location of selected room closure experiments
surface
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1 I Geomechanical Model - Room Closure Experiments
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Room Closure Experiments

Predictions- Comparison of new geomechanical model results with model used in Stone’s

1997 porosity response surfacée calculations
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. Geomechanical Model- Assumptions and Simplifications

Plane strain model of an infinite array of rooms
filled with waste adequately represents the
average drift porosity at WIPP.
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Geomechanical Model- Simplifications

Rooms are filled with standard 55-gallon waste containers and treating them as a
homogenous continuum adequately captures the behavior of discrete containers.

MgO sacks have negligible effect on room porosity so they are not included.

No fracture-damage or rock fall effects included in room porosity modeling.
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Gas Generation Model



Gas Generation Model

*Gas generation in the repository is from anoxic corrosion of iron, biodegradation

of cellulosics, plastics and rubbers, and radiolysis of brine.

*Compared to the legacy gas generation model (~1997), the new model (King,
2021) incorporates these changes-

* Increased iron inventory

* Increased iron corrosion rate

» Decreased microbial gas generation rate
- Radiolysis of brine

*The biggest change from legacy models is the inclusion of radiolysis. Gas
generation as a result of radiolysis continues for the entire regulatory period of
the repository (10,000 years) because the radionuclide inventory will not be
exhausted and brine can flow into the repository from the surrounding rock.

*The maximum gas pressure is not limited in the disposal room porosity model.
The gas pressure is calculated using the ideal gas law and depends on the
number of moles of gas and the current room volume.



17 ‘ Gas generation models- Repository Panel Scale

" Modd

Legacy Gas Generation
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We run mechanical
simulations with different
values of f to account for the
effect of gas generation
uncertainty on room porosity
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Waste Container
Experiments and Model



v I Waste Container Experiments and Model
Original Container Tests (Butcher et al., 1991) |

- Surrogate Non-degraded Waste — assumed waste
containers were nearly filled to capacity

> Used mixture rule to determine the composite
response of waste

> Two types of tests

From Butcher et al.,

> Uniaxial strain loading on material constituents — 1991
performed in oedometer

> Uniaxial stress tests on waste filled, 55-gallon drums

- No lateral strain measurements — assumed to be
minimal



20 I Waste Container Experiments and Model

New Tests

An updated dataset is available from new container tests
performed by Broome et al., 2016

Based on CRA 2014 Inventory

Surrogate Non-Degraded Waste — only filled to ~2/3 capacity (initial
solid volume fraction = 0.175)

Uniaxial (UC), Hydrostatic (HC), and Triaxial (TXC) Compression
datasets

Measured axial and volumetric strains so lateral strain can be computed

Two sizes of waste containers
o 55 gallon drum (uniaxial and hydrostatic compression tests only)
o Ya-scale drum (#12 food can)

Loading axial strain rate of 1x10-4 s’

o

o

o

o

(e]

o

Additional uniaxial compression tests performed by Courtney Herrick
and Michael Hileman in 2021-2022

o Three strain rates i
> 1.0x10° s
o 2.1x106 s A) Ya-scale (#12 food can), B) full-scale (55
o 1.0x107 s-1 gallon drum) Waste containers loaded with

surrogate waste ready for lid installation. C) full-
scale sample with surrogate waste. (Figure from
Broom et al. 2016)



21 ‘ Pictorial Summary of Uniaxial Test
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Pictorial Summary of Uniaxial Test (cont.
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2« | Hydrostatic and Triaxial Compression Test Results

Hydrostatic compression test results - Triaxial compression test results -- Y4
Full-size waste drum -scale waste container



s I Waste Container Experiments and Model

Soil and Foam Model (SAF) was used in previous disposal room porosity
simulations

o Elastic behavior - Isotropic (constant bulk and shear moduli)
o Inelastic (plastic) behavior defined by “uncoupled” 2 surface model :

> Non-hardening shear surface defined in terms of 2 stress invariants
(Drucker-Prager)

> Strain hardening “cap” behavior defined using a table of pressure- volume
strain data

> Assumed that the data from the drum/waste testing are representative of
uniaxial stress conditions

o Calibrated as if the stress in the lateral directions was zero in uniaxial
strain tests which allowed the conversion of axial stress-axial strain to
pressure-volume strain.

SAF Issues
> The model behaves according to theoretical formulation but produces



26 I Waste Container Experiments and Model

Foam Damage Model (or Unified Creep Plasticity Damage
Model)

- Developed at SNL by Mike Nielsen and others (Nielsen et al., 2015)
- Describes the mechanical response of foams to large deformation

o Significant increase to load resistance as porosity decreases

o Lateral expansion can be made to vary with porosity

o Can incorporate strain rate dependence



27 I Waste Container Experiments and Model

Foam Damage model
° Elastic response 1s assumed to be linear and isotropic
° Yield surface is ellipsoidal and centered about the hydrostat defined by

=2 2
c@=—+5-10=0

° a, b are deviatoric and volumetric strengths and are functions of the porosity (or solid volume fraction)

o g is von Mises effective stress

° pis pressure or mean stress

> Uses Perzyna-type formulation for rate dependence
( , n .

—eh (% _ A
Ag—e(a l)g whena 1>0

*
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\
° For associated flow, g, which defines the inelastic flow direction, is normal to the yield
surface

° Overstress model because inelastic strain is power-law function of the overstress



Engineering Axial Stress (MPa)

28 ‘ Waste Container Experiments and Model

Experimental results from uniaxial compression,
hydrostatic compression, and triaxial compression tests

Uniaxial Compression Test -- Experimental Results
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Uniaxial stress tests

Hydrostatic Compression Test -- Experimental Results

Hydrostatic Pressure (MPa)

Strain v. Pressure
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Effective Stress (MPa)

Triaxial Compression Test -- Experimental Results
Strain v. Stress
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(Triaxial compression tests were only
performed using quarter-scale waste
containers.)
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, | Waste Container Experiments and Model

Uniaxial Compression Test

Foam Damage Model F

16 Uniaxial Compression Test-Single Element Test
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, | Waste Container Experiments and Model

Foam Damage Model

Hydrostatic Compression Test--Single Element Test
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31 1 Waste Container Experiments and Model

Comparison of Foam Damage Model to

. : : Foam Damage Model
Soil and F.0am Model in hydrostatlc 16, Hydrostatic Compression Test--Single Element Test
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2 | Waste Container Experiments and Model

Disposal Room Stress Paths

* UmaX]a}l stres.s loading in disposal Foam Damage Model - Elements representing waste
room simulations takes place Stress Paths

early in process, therefore the 10r S
simulation comparison to or
experimental results of the

uniaxial compression tests is of

lesser importance

8L

* The disposal room simulations
seem to indicate that the

Mises Effective Stress (MPa)

behavior of the waste canisters 4t ZN\
tend to evolve to a more ol V4 N
hydrostatic condition. 7 SR
2r 4 S
» Stress path from disposal room 1L s )
calculation is computed as an 5
average of all the elements in the 00' 5 10 15

waste container block. Mean Stress (MPa)



13 1 Room Disposal Simulation Stress Paths

60 yrs 120 yrs
As indicated by the disposal room
simulations, the behavior of the waste
canisters tend to evolve to a more
hydrostatic condition.

Foam Damage Model -- Stress Paths

——TXCAMPa — THC-AS5MPa ==  =Disposal Room
THC-2MPa ———UC--Q02 #® Lock P aint
THC-5MPa ———HC--Q02 = Simulation Point

Mises Effective Stress (MPa)
e ]

o —_
o ==

10 15 20
Mean Stress (MPa)




Waste Container Experiments and Model Plane

34 Simulations Foam Damage Model Disposal Room
Foam Damage Model Single Element Simulation -- Plane Strain Test Results

Plane Strain Test Results
Horizontal, Out-of-Plane Stress vs. Time
Plane Strain Simulation
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Disposal Room Porosity Model
Results



36 1 Disposal Room Porosity Model Results

Eulerian Porosity vs time

Examine the impact of the geomechanical model ! [ ' . oder :
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7 | Disposal Room Porosity Model Results
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.. | Disposal Room Porosity Model Results

Sensitivity of room closure to choice of clay seam friction coefficient
* No data available from WIPP site clay seams
« Experimental tests (Sobolik) as part of WEIMOS project:
* Direct shear tests were performed
« Samples with diffuse clay from a nearby potash mine
» shear strength similar to that of intact salt- Coulomb friction =
0.42
 Artificial clay seams

» shear strength more like highly consolidated saturated clay-
Coulomb friction = 0.0279



9 | Disposal Room Porosity Model Results

No gas generation case (f=0)

Clay Seam F is fixed at 0.42,
and simulations were performed
with other clay seams fixed at
the lower bound, 0.2 and the
upper bound of 0.42.

For times less than 300 years
there is a sensitivity to clay
seam friction coefficient.

As expected, the room closes
faster with low friction.

The upper horizon (dots) closes
faster than the lower horizon
(solid line).

Eulerian Porosity vs time
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Upper and lower horizon disposal
room porosity results

Gas Generation Cases- f scales the
curve shown earlier

The upper horizon disposal room is mined
2.43m higher relative to the lower
horizon disposal room. The roof is at the
level of Clay Seam G and Clay Seam F
intersects the wall of the room.

Porosity initially decreases until the gas
pressure becomes large enough to
overcome the inward movement due to
creep.

Some slight differences between the
lower and upper disposal room porosity
during the first 400 years for most gas
generation cases.

Disposal Room Porosity Model Results

Eulerian Porosity vs time
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Summary and Conclusions

*We have presented the new models for the geomechanics, waste constitutive
behavior, and gas generation with some select results from preliminary
modeling.

*The addition of the low stress creep component increases the rate of disposal
room closure.

*The Foam Damage model corrects the problem of tensile stresses in the out of
plane direction seen when using the Soil and Foam model.

*The Foam Damage model becomes stiffer at a higher value of porosity and for
low gas generation cases would have a higher final porosity compared to that
calculated with the Soil and Foam model.

*For the maximum gas generation, f=1, the room porosity at 10K years is
almost as large as the initial porosity (O 917); the room has returned to its initial
volume due to the high gas pressure in the room.

*The impact of these changes to the disposal room porosity model on WIPP
performance has not yet been determined.



