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What does a poorly balanced breakfast
have to do with photonics?



What is topological photonics?

Chern or Quantum Hall insulators
2D system with broken Time Reversal symmetry
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Haldane, Phys. Rev. Lett. 61, 2015 (1988)
Konig et al., Science 318, 776 (2007)
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Can predict these boundary phenomena
from a calculation in the bulk
» Bulk-boundary correspondence
Bulk bandgap = no photons in the bulk

Chern number: (a “topological invariant”)

Defects on.the edgeldqf Adymatede)) ,
"= 2mi | \ok, ok,
Still no backscatteri

Berry Connection:
Edges that are waegyidegy, | v, 1)
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What is topological photonics?

Topological crystalline insulators
Reciprocal system, requires crystalline symmetry

Can have both edge-, and corner-localized modes
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Benalcazar, Bernevig, Hughes, Science 357, 61 (2017)

Predicted using symmetry indicators:
(i.e., a different topological invariant)

[Hn] = #nn - #rn
Calculated from terms such as

(wnkl 0 hbnk)

0 -is a crystalline symmetry



Why make photonics topological?

» No structural fine tuning required
» If the invariant identifies topology, desired states are guaranteed

» Frequencies of desired states are guaranteed to be in the bandgap

» Systems are robust to fabrication imperfections
» So long as defects don’t close the bandgap.



Why make photonics topological? () .

Topological lasers

» Robust against disorder
» Efficient phase locking
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Bandres et al., Science 359, 1231 (2018) Dikopoltsev et al., Science 373, 1514 (2021)



Why make photonics topological?
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Device 2 Device 3
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Routing of quantum information
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Why make photonics topological?

Creating cavities for light-matter interaction
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Ota et al., Optica 6, 786 (2019)
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Zhang et al., Light Sci. Appl. 9, 109 (2020)
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Kruk et al., Nano Lett. 21, 4592 (2021)
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So what’s the problem?
We'd like nanophotonic Chern insulators
» Non-reciprocal edge states

But... it's hard to break time-reversal
symmetry

Sma” Complete 200 ﬂl e ¥
bandgap (42 pm) A5

Bahari et al., Science 358, 636 (2017)

We don’t have a theory that
handles finite systems

How close can two topological
cavities be, while maintaining
protection?

1550
Wavelength (nm)

Kim et al., Nat. Commun. 11, 5758 (2020)



So what’s the problem?

s it possible to define topology without
Bloch eigenstates or band structures?

» For electromagneticfields, calculating
|Ynk) and Vi |Y,i) can be challenging

Frequency [c/a,]

/R =3125 |la,/R =29
K r MK r M
Kruk et al., Nano Lett. 21, 4592 (2021)
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= An operator-based approach to topological photonics
= Uses a framework called the “spectral localizer”

= Topology without a band gap

= Universal approach to topological crystalline photonics

Realization in acoustic metamaterial
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Topology as "Wannierizability”

Instead of an invariant, “Can the system be permuted to an atomic limit?”

Initial lattice
1y

t3: Poreiaade

Can a lattice
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Can address this from band theory of original lattice
» Topological quantum chemistry

Determine if a complete Wannier basis exists.

be permuted to

« Band gap stays open
 Symmetries are preserved

Atomic limit

_______ without violating?
E ¢ If yes
oo (90 oo > Trivial
same céar-dmates
If no
» Topological

Kitaev, AIP Conference Proceedings 1134, 22 (2009)

Brouder et al., Phys. Rev. Lett. 98, 046402 (2007)

Soluyanov and Vanderbilt, Phys. Rev. B 83, 035108 (2011)
Taherinejad et al., Phys. Rev. B 89, 115102 (2014)

Bradlyn et al., Nature 547, 298 (2017)

Po et al., Nat. Commun. 8, 50 (2017) 12



Topology as "Wannierizability”

Instead of an invariant, “Can the system be permuted to an atomic limit?”

Can a lattice

Can the
operators
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Topology from operators

Instead of an invariant, “Can the system be permuted to an atomic limit?"
“Can the system’s operators be permuted to be commuting?”

» Diagnose using recent advances in the mathematics of C*-algebras

Construct the spectral localizer using a non-trivial Clifford representation
d
L(xl,...,xd.E)(Xlr ---JXd.J H) = Z . 1(X} - XJI) ®' [} + (H - EI) ®' Fd+1
J:

Different topological invariants are given by this composite operator’s properties

Example: local Chern number C.(x,y,E) =% Sig[Lxy, ;) (X, Y, H)]

’ [1]

As is the system’s “local gap” (i.e., something like a spatially resolved band gap)

uC(xq, o, xq,E) = OminlL(xy,. xqE) X1 s Xa, H)] (smallest eigenvalue of Ly, ». )
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Reformulating Maxwell’s equations

Linear, local media, allow for dispersion For non-zero frequencies, can recast as:

V x E(x) = iwji(x,w) x) —%VX)_w(ﬁ(x) 0 )](H(x))zo
V x H(x) = —iwé(x,w)E(x). N>< 0 0 &(x) E(x) ’
V- [E(x,w)E(x)] =0,

V- [fi(x, w)H(x)] The divergence equations can be recovered using

V-V xF(x) =0 foranyvector field F(x)

This yields a “self-consistent”
generalized eigenvalue equation:

Wp(x) = wM(x,w)p(x)

And flnaIIy an ordinary eigenvalue equation:

In which: P (x) = (H(x),E(x))T? Heog(w)d(x) = w(x)
—_— (0 —iVx )
ERAZ Heg(w) = M~ V2(x,w)WM 2 (x,w)
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The Haldane and Raghu photonic Chern insulator
Heg(w) = M2 (x,w)WM~Y2(x, w)
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Haldane and Raghu, Phys. Rev. Lett. 100, 013904 (2008)

Raghu and Haldane, Phys. Rev. A 78, 033834 (2008) AC and Loring, in submission. 16



Gapless photonic Chern materials

(a)

Completely gapless in
the frequency range of
interest
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Topological crystalline photonic structures

a) Topological photonic crystal ) Trivial photonic erystal
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Gapless topological acoustic metamaterial

Domain boundary
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Gapless topological acoustic metamaterial
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Direct observation of K-theory

New experimental protocol:
» Localizer as Hamiltonian

o~

H, = Ly o(X, H) = k(X — xI)IT + H.

Makes topology directly observable.

v(x) = 1sig (ih,m(X, H)) cZ

Slight alteration for physical systems.

X —xI
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Conclusion = (%

Benefits of topological photonics
= States with guaranteed properties
= Robust against disorder

= Topology can be diagnosed using an operator-based framework
= No band structures or Bloch eigenstates required

Yields topology in gapless materials (not possible with band theories)

= Rigorous, general framework for finite system effects

= New experimental protocol — Spectral localizer as Hamiltonian
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