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Introduction & Motivation

Many efforts to identify the origin of application I/O performance variation have been performed in post-run 
analyses. 

◦ I/O Characterization tools (e.g. Darshan, Datadog, etc.) 
◦ Linux tools for disk I/O monitoring (e.g. iotop, dstat, etc.)  

However, I/O Performance continues to show high variations on large-scale production systems. This can be 
caused by a variety of system related components (i.e. system usage, file system, network congestion, etc.)

◦ Difficult to determine root cause of I/O related problems 
◦ Difficult to have a thorough understanding of throughput for system-specific behaviors and I/O performance in similar 

applications across a system

Limitations with existing I/O characterization tools
◦ The I/O application data is used for post-run analysis.
◦ Possible to get a set timeseries during an application run.

◦ Unable to see what happens before or after this set of data. 

Other collaborators (e.g. Northeastern University) have found a full set of timeseries data will benefit their 
studies.

Developed a tool that collects and provides runtime access to I/O event timeseries data. 
Results show the success of capturing runtime I/O behavior and patterns.
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Approach - Continued 

 This tool collects runtime data via absolute timestamps. The runtime timeseries data will the allow further insights into the 
I/O behavior:

◦ Identify the root cause(s) of I/O performance variability.
◦ Detect when an I/O performance variability occurs during application runtime.
◦ Able to quickly detect and address any operational issues.
◦ Reveal correlations between I/O performance variability and system behavior.
◦ Investigate any irregular or inconsistent timeseries related analyses. 
◦ Produce new and meaningful analyses and visualizations.

 I/O event data will be collected, stored, analyzed and visualized with the Darshan LDMS Integration - A framework that 
integrates multiple tools to provide low-latency monitoring of I/O event data during runtime:

1. Darshan – A lightweight I/O characterization tool that transparently captures application I/O behavior from HPC 
applications with minimal overhead.

◦ Generates a binary file of I/O traces post-run. 

2.  Lightweight Distributed Metric Service (LDMS) – A low-overhead production monitoring system that can run on HPC 
machines.

◦ Capability to collect, transport, aggregate and store timeseries data during runtime.

3. An Analysis and Visualization Infrastructure for LDMS
◦ Demonstrates further insights into I/O behavior through analysis modules and a web interface. 
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Integration: Darshan
 Darshan (lightweight I/O characterization tool) data is used to tune I/O behavior of HPC applications for increased 
scientific productivity or to gain insight into trends in large-scale computing systems.

 Provides detailed statistics about file accesses from MPI and non-MPI applications with the following modules:
◦ POSIX, MPI-IO, STDIO, and many more. 
◦ Darshan eXtended Tracing (DXT): Provides a more detailed profiling of I/O software stacks such as kernel I/O traces and 

systematic analysis on the I/O behavior of applications. 
◦ Ex: Start and end time of read and write operations for MPIIO and POSIX.

 Two main parts:
◦ darshan-runtime: The instrumentation portion of the Darshan characterization tool. Intent includes the collection of I/O 

characterization information of MPI & non-MPI applications. 
◦ Produces a binary file containing the I/O traces.

◦ darshan-util: A collection of tools for parsing and summarizing log files produced by Darshan instrumentation. 
◦ Darshan log files are platform-independent.

 Darshan uses absolute timestamps for reporting time related I/O event data
◦ Does not report the raw absolute timestamps due to memory limitations on host node.
◦ Modifications were made to expose this.

 This framework utilizes this tool to continuously collect I/O event data and absolute timestamp during application 
runtime. This data is then published and transported via LDMS.
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Integration: LDMS

 The LDMS monitoring system collects data via samplers and 
plugins:

◦ Sampler: Type of daemon that collects the data.

◦ Plugin: Determines the kind of data collected/sampled, aggregated 
or stored.

Provides absolute timestamp view of system conditions 
through multi-hop aggregation.

◦ Intermediate aggregators (transport) and head node aggregators 
(storage).

◦ Does not take up host memory when collecting timestamped data.

Darshan LDMS Integration leverages LDMS transport 
functionality for I/O data injection.

 Darshan LDMS Integration utilizes an LDMS functionality 
consisting of a push-based method.

◦ Requires a push-based method to reduce memory consumed and 
data loss on the node.
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Integration: LDMS Streams7
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The push-based method for I/O event data injection is 
achieved through the LDMS Streams API.

LDMS Streams API - LDMS Functionality that allows for the 
aggregation of event-based application data.

◦ LDMS Streams: A publish-subscribe bus capability.

◦ Intended for publishing and subscribing to an LDMS streams tag 
(e.g. Tag A) via publish API call.

◦ Tag needs to be specified in LDMS daemons and plugins to 
publish and receive LDMS Streams data with matching tags. 

◦ Enhanced to support the collection of I/O event data.

I/O event data is stored to a database designed to hold large 
volumes of data.

Collection and transport process for event data.



Integration: Storage Database

The Distributed Scalable Object Store (DSOS) - A storage 
database designed to manage large volumes of HPC data 
efficiently.

◦ Allows for interaction via a command line interface.

◦ Fast query testing and data examination.

◦ Provides scalable data ingest and ability to query and store large 
volumes of data.

 DSOS cluster - Consists of multiple instances of DSOS daemons, 
dsosd, that run on multiple storage servers on a single cluster.

 Queried results are sorted based on joint indices selected by user 
to provide different query performances 

◦ For published LDMS Streams I/O event data, the indices consist of 
combinations of job ID, rank and timestamp.

This framework transports I/O event data, via LDMS Transport, to 
the DSOS database. It is then queried with the analysis and 
visualization infrastructure. 
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search the data by specific rank within a specific job 
over time.



Integration: Analysis and Visualization Infrastructure

HPC Web Services – An analysis and visualization infrastructure for LDMS that integrates an open-source web 
application, Grafana, with a custom back-end web framework (Django).

◦ Calls python modules for analysis and visualization of HPC data.

◦ Used to query, analyze (Python analysis modules) and view (Grafana) sorted I/O event data in real time. 

Grafana – An opensource visualization tool tailored towards time-series data from various database sources. 
◦ Provides charts, graphs, tables, etc. for viewing and analyzing queried data in real time. 
◦ Enables wide variety of visualization options for the data and allows users to save and share those visualizations to others. 

Python Analysis Module – Where the queried data from DSOS to the Grafana dashboard is transformed, 
calculated, analyzed, etc. and then returned back to Grafana. 

◦ Uses a custom DSOS-Grafana API specified in a Grafana query.
◦ Many analysis modules already exist for other types of system and application data.
◦ Allow for complex calculations, transformation and aggregations of I/O event data.
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Integration: Overview10
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Integration: Darshan-LDMS Connector

Q: How is data sent from Darshan to an LDMS daemon? 

A: Darshan-LDMS Connector 

A Darshan-LDMS Integration functionality that collects both DXT and Darshan’s original I/O tracing and optionally 
publishes a message in JSON format to the LDMS Streams interface. 

◦ Current stages of connector only collect a subset of this data due to the large volume of metrics Darshan uses for I/O tracing and 
post-processing calculations.

◦ Uses a single unique LDMS stream tag for the Darshan I/O data.
◦ Uses environment variables to establish a connection to an LDMS daemon.
◦ Little to no interference with Darshan’s original program.
◦ Absolute timestamp is included in JSON message with the name “timestamp”. 

Overview of the Darshan-LDMS connector, configurations and defined metrics will be covered in the following slides. 
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Integration: Configuration

Darshan – Easy to use and initialize 
◦ Only need to set the LD_PRELOAD environment variable to the full path of the Darshan shared library before 

executing an application.
◦ Ex: srun -n 4 --export=LD_PRELOAD=<path-to-shared-library> <application>

LDMS – Simply set the following list of environment variables to connect to an LDMS streams daemon 
and published I/O event data: 

◦ *MODULE*_ENABLE_LDMS -> Set to publish *MODULE* module data to LDMS daemon. 
◦ DARSHAN_LDMS_PORT -> Port number that the LDMS daemon is listening on.
◦ DARSHAN_LDMS_HOSTNAME -> Hostname that the LDMS daemon is running on.
◦ DARSHAN_LDMS_XPRT -> Type of transport the LDMS daemon is listening on.
◦ DARSHAN_LDMS_STREAM -> Name tag (identifier) of the stream.

Darshan-LDMS Integration – Easy to build and install Darshan against LDMS library:
◦ Only need to include --with-ldms=<path-to-LDMS-install> to the configuration line. 
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Integration: Defined Metrics 



Integration: Summary
 Data Collection

◦ Darshan to collect timeseries I/O event data during application runtime.
◦ Darshan-LDMS Connector to collect Darshan I/O data and publish to LDMS Streams interface.
◦ Configuration and setup for Darshan and LDMS is quick and easy.
◦ Various I/O event metrics are collected from Darshan’s I/O tracing.

 Transport and Storage
◦ LDMS to provide and transport live run time data feed about application I/O events. 
◦ DSOS to store and query large volumes of I/O data generated on a production HPC system. 

 Analysis and Visualization
◦ HPC Web Services to analyze and present run time I/O data. 

◦ Able to demonstrate further insights into the application I/O behavior, patterns, etc. 
◦ Provides the ability to identify correlations between I/O performance and system behavior.
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Results: LDMS Overhead17

Overview: 
◦ Framework is evaluated by analyzing sampled I/O data captured from 

two HPC applications
◦ MPI-IO-TEST: Darshan utility to test MPI I/O performance on HPC 

machines.
◦ HACC-IO: I/O Proxy for the Hardware Accelerated Cosmology Code. 

◦ Experiments tested on Lustre and NFS file systems with various 
configurations.

◦ 5 runs for each configuration for a total of 40 job submissions.

Key Takeaways:
◦ Decrease in overall runtime time in 3 out of 4 experiments 

for both applications
◦ Most likely due to file system performance issues as tests 

were ran 1-2 weeks apart
◦ Variance statistically significant to determine the overhead 

calculations are inconclusive.



Results: Grafana Visualization 18

Figure above presents a Grafana visualization of MPI-IO job_id 2 writes (blue) and reads (green) operations and number of bytes 
read/written aggregated across all ranks. 

◦ Uses the absolute timestamp metric collected with Darshan LDMS Integration.
◦ Grafana offers the interactive front-end view where users can easily filter though specific times and metric intervals.
◦ Representation using absolute timestamps facilitates the correlation of I/O performance congestion with system behavior 

monitoring. 



Results: Analysis19

Key Takeaways
◦ Variation is seen between two runs of the same experiment in the far left (1).

◦ Possible data loss from connector and is currently under investigation. 
◦ Darshan LDMS Integration makes is possible to create the meaningful analyses and visualizations (2 and 3). 

◦ Ability to see when an operation occurs, it’s duration and variability between runs.
◦ Allows for further insights into I/O behavior and patterns during application execution.

◦ Experiment on the far left shows the aggregate I/O behavior which can be created with Darshan alone (e.g. post run data). 
◦ Unable to analyze when an operation occurs and duration of each operation. 
◦ Prevents further insights into I/O behavior and patterns during application execution. 

1. Post-Run Analysis of I/O event data: Number of 
I/O requests per node for close and open operations of 
2 HACC-IO jobs. Can be produced with Darshan and 
framework.

2. Runtime Analyses of I/O event timeseries data:
Duration of reads and writes per rank of 5 MPI-IO 
jobs (job_id 1-5) without collective operations. Only 
produced with framework.

3. Runtime Analyses of I/O event timeseries 
data:
Distribution of job_id 2 to display application I/O 
pattern and behavior over time. Only produced with 
framework.



Related Work

PASSION Runtime Library for parallel I/O proposed by Syracuse University 
◦ Optimizes I/O intensive applications through Data Prefetching and Data Sieving.

IOPin: Runtime Profiling of Parallel I/O in HPC Systems 
◦ Proposes dynamic instrumentation to show the interactions from a parallel I/O application to the file system.

Design and Implementation of a Parallel I/O Runtime System for Irregular Applications 
◦ Proposes two different collective I/O techniques for improving I/O performance.

Other Open-Source Tools
◦ iostat – Linux command that collects and reports I/O device statistics and loads between physical disks.
◦ ioprof – Provides insights into I/O workloads. 

How Is Darshan LDMS Integration Different?
◦ This work leverages and enhances existing applications and tools 

◦ Integrates LDMS’s timestamped data collection and storage capabilities with Darshan.
◦ Integrates python analysis modules and open-source web application for the analyses and visualizations.

◦ Provides extensive I/O tracing (i.e. statistics of individual I/O operations) of applications.
◦ Implemented a database to allow for efficient queries of large volumes of data. 
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Conclusions & Future Work

 Overview:
◦ This framework utilized Darshan’s I/O event data tracing and LDMS Streams interface to capture timeseries data of 

I/O events during application runtime.  
◦ Provided the capability to query, analyze and view the timeseries data via DSOS and HPC web services.
◦ Demonstrated further insights into application I/O behaviors and patterns with visualizations and analyses.

 Completed work: 
◦ Ability to enable or disable the LDMS Streams functionality for specific Darshan modules.
◦ Establish a simple connection from Darshan to LDMS via the LDMS Streams API to publish runtime data 

generated by Darshan.
◦ Completed multiple I/O application runs with the Darshan LDMS Integration and successfully collected runtime 

timeseries data of the I/O events. 
◦ Full timeseries data can be collected throughout entire application execution.

 Future work: 
◦ Characterize the Darshan LDMS connector overhead with a variety of I/O intensive applications.
◦ Further validate any data loss by comparing Darshan’s output log files to the timeseries data.
◦ Utilize this framework to investigate impact of file system performance on I/O intensive applications.
◦ Incorporate existing analyses and create new analyses to present in a Grafana dashboard.
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QUESTIONS?
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