
Sandia National Laboratories is a multimission 
laboratory managed and operated by National 
Technology & Engineering Solutions of Sandia, 
LLC, a wholly owned subsidiary of Honeywell 
International Inc., for the U.S. Department of 

Energy’s National Nuclear Security 
Administration under contract DE-NA0003525.

LDMS Darshan Connector: For 
Run Time Diagnosis of HPC 
Application I/O Performance

Sara Wal ton ,  SNL

Omar  Aaz iz ,  SNL

Ana Lu isa  V.  So lórzano,  Nor theastern  Un ivers i ty

Ben Schwal le r ,  SNL

SAND2022-11736CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.



Introduction & Motivation

Many efforts to identify the origin of application I/O performance variation have been performed in post-run 
analyses. 

◦ I/O Characterization tools (e.g. Darshan, Datadog, etc.) 
◦ Linux tools for disk I/O monitoring (e.g. iotop, dstat, etc.)  

However, I/O Performance continues to show high variations on large-scale production systems. This can be 
caused by a variety of system related components (i.e. system usage, file system, network congestion, etc.)

◦ Difficult to determine root cause of I/O related problems 
◦ Difficult to have a thorough understanding of throughput for system-specific behaviors and I/O performance in similar 

applications across a system

Limitations with existing I/O characterization tools
◦ The I/O application data is used for post-run analysis.
◦ Possible to get a set timeseries during an application run.

◦ Unable to see what happens before or after this set of data. 

Other collaborators (e.g. Northeastern University) have found a full set of timeseries data will benefit their 
studies.

Developed a tool that collects and provides runtime access to I/O event timeseries data. 
Results show the success of capturing runtime I/O behavior and patterns.

2



Approach3

DatabaseTransport

Analysis and 
Visualization 
Infrastructure

Time

HPC System Storage/Analysis System

Application 

I/O Event Data



Approach - Continued 

 This tool collects runtime data via absolute timestamps. The runtime timeseries data will the allow further insights into the 
I/O behavior:

◦ Identify the root cause(s) of I/O performance variability.
◦ Detect when an I/O performance variability occurs during application runtime.
◦ Able to quickly detect and address any operational issues.
◦ Reveal correlations between I/O performance variability and system behavior.
◦ Investigate any irregular or inconsistent timeseries related analyses. 
◦ Produce new and meaningful analyses and visualizations.

 I/O event data will be collected, stored, analyzed and visualized with the Darshan LDMS Integration - A framework that 
integrates multiple tools to provide low-latency monitoring of I/O event data during runtime:

1. Darshan – A lightweight I/O characterization tool that transparently captures application I/O behavior from HPC 
applications with minimal overhead.

◦ Generates a binary file of I/O traces post-run. 

2.  Lightweight Distributed Metric Service (LDMS) – A low-overhead production monitoring system that can run on HPC 
machines.

◦ Capability to collect, transport, aggregate and store timeseries data during runtime.

3. An Analysis and Visualization Infrastructure for LDMS
◦ Demonstrates further insights into I/O behavior through analysis modules and a web interface. 

4



Integration: Darshan
 Darshan (lightweight I/O characterization tool) data is used to tune I/O behavior of HPC applications for increased 
scientific productivity or to gain insight into trends in large-scale computing systems.

 Provides detailed statistics about file accesses from MPI and non-MPI applications with the following modules:
◦ POSIX, MPI-IO, STDIO, and many more. 
◦ Darshan eXtended Tracing (DXT): Provides a more detailed profiling of I/O software stacks such as kernel I/O traces and 

systematic analysis on the I/O behavior of applications. 
◦ Ex: Start and end time of read and write operations for MPIIO and POSIX.

 Two main parts:
◦ darshan-runtime: The instrumentation portion of the Darshan characterization tool. Intent includes the collection of I/O 

characterization information of MPI & non-MPI applications. 
◦ Produces a binary file containing the I/O traces.

◦ darshan-util: A collection of tools for parsing and summarizing log files produced by Darshan instrumentation. 
◦ Darshan log files are platform-independent.

 Darshan uses absolute timestamps for reporting time related I/O event data
◦ Does not report the raw absolute timestamps due to memory limitations on host node.
◦ Modifications were made to expose this.

 This framework utilizes this tool to continuously collect I/O event data and absolute timestamp during application 
runtime. This data is then published and transported via LDMS.

5



Integration: LDMS

 The LDMS monitoring system collects data via samplers and 
plugins:

◦ Sampler: Type of daemon that collects the data.

◦ Plugin: Determines the kind of data collected/sampled, aggregated 
or stored.

Provides absolute timestamp view of system conditions 
through multi-hop aggregation.

◦ Intermediate aggregators (transport) and head node aggregators 
(storage).

◦ Does not take up host memory when collecting timestamped data.

Darshan LDMS Integration leverages LDMS transport 
functionality for I/O data injection.

 Darshan LDMS Integration utilizes an LDMS functionality 
consisting of a push-based method.

◦ Requires a push-based method to reduce memory consumed and 
data loss on the node.

6

LDMS Transport

Push
Pull

Memory 
Region

LDMSD

Storage 
Plugin

Database

Memory 
Region

Sampler 
Plugin

System 
Metrics

Memory 
Region

Collection Aggregation

LDMSD

Collection and transport process for system data.



Integration: LDMS Streams7

Collection Aggregatio
n

LDMS Transport

Push Database

LDMSD

Streams 
Subscriber

Storage 
Plugin

LDMS 
StreamsLDMS 

Streams

Streams 
Publisher

LDMSD

Tag A

Tag A

The push-based method for I/O event data injection is 
achieved through the LDMS Streams API.

LDMS Streams API - LDMS Functionality that allows for the 
aggregation of event-based application data.

◦ LDMS Streams: A publish-subscribe bus capability.

◦ Intended for publishing and subscribing to an LDMS streams tag 
(e.g. Tag A) via publish API call.

◦ Tag needs to be specified in LDMS daemons and plugins to 
publish and receive LDMS Streams data with matching tags. 

◦ Enhanced to support the collection of I/O event data.

I/O event data is stored to a database designed to hold large 
volumes of data.

Collection and transport process for event data.



Integration: Storage Database

The Distributed Scalable Object Store (DSOS) - A storage 
database designed to manage large volumes of HPC data 
efficiently.

◦ Allows for interaction via a command line interface.

◦ Fast query testing and data examination.

◦ Provides scalable data ingest and ability to query and store large 
volumes of data.

 DSOS cluster - Consists of multiple instances of DSOS daemons, 
dsosd, that run on multiple storage servers on a single cluster.

 Queried results are sorted based on joint indices selected by user 
to provide different query performances 

◦ For published LDMS Streams I/O event data, the indices consist of 
combinations of job ID, rank and timestamp.

This framework transports I/O event data, via LDMS Transport, to 
the DSOS database. It is then queried with the analysis and 
visualization infrastructure. 

8

Sort by joint indices example: “job_rank_time” where 
data will by ordered by job, rank then timestamp and 
search the data by specific rank within a specific job 
over time.



Integration: Analysis and Visualization Infrastructure

HPC Web Services – An analysis and visualization infrastructure for LDMS that integrates an open-source web 
application, Grafana, with a custom back-end web framework (Django).

◦ Calls python modules for analysis and visualization of HPC data.

◦ Used to query, analyze (Python analysis modules) and view (Grafana) sorted I/O event data in real time. 

Grafana – An opensource visualization tool tailored towards time-series data from various database sources. 
◦ Provides charts, graphs, tables, etc. for viewing and analyzing queried data in real time. 
◦ Enables wide variety of visualization options for the data and allows users to save and share those visualizations to others. 

Python Analysis Module – Where the queried data from DSOS to the Grafana dashboard is transformed, 
calculated, analyzed, etc. and then returned back to Grafana. 

◦ Uses a custom DSOS-Grafana API specified in a Grafana query.
◦ Many analysis modules already exist for other types of system and application data.
◦ Allow for complex calculations, transformation and aggregations of I/O event data.

9



Integration: Overview10

DSOS

LDMS Streams

Application 

LDMS 
Streams 

HPC Web Services

Time

HPC System Storage/Analysis System

Darshan 

LDMS Transport



Integration: Darshan-LDMS Connector

Q: How is data sent from Darshan to an LDMS daemon? 

A: Darshan-LDMS Connector 

A Darshan-LDMS Integration functionality that collects both DXT and Darshan’s original I/O tracing and optionally 
publishes a message in JSON format to the LDMS Streams interface. 

◦ Current stages of connector only collect a subset of this data due to the large volume of metrics Darshan uses for I/O tracing and 
post-processing calculations.

◦ Uses a single unique LDMS stream tag for the Darshan I/O data.
◦ Uses environment variables to establish a connection to an LDMS daemon.
◦ Little to no interference with Darshan’s original program.
◦ Absolute timestamp is included in JSON message with the name “timestamp”. 

Overview of the Darshan-LDMS connector, configurations and defined metrics will be covered in the following slides. 

11



Darshan FILE (binary)

module_writemodule_read

runtime data

darshan-core

* Check if any <module>_ENABLE_LDMS env variable is set. 
 Check if connection to LDMS daemon succeeded.

** Gather meta data of I/O activity.

module_initialize
HAVE_LDMS

darshan_ldms_initialize

open**

*_ENABLE_LDMS

darshan_ldms_connector_send

 Database

JSON buffer

streams store plugin

Connector Darshan

close

Integration: Darshan-LDMS Connector



Integration: Configuration

Darshan – Easy to use and initialize 
◦ Only need to set the LD_PRELOAD environment variable to the full path of the Darshan shared library before 

executing an application.
◦ Ex: srun -n 4 --export=LD_PRELOAD=<path-to-shared-library> <application>

LDMS – Simply set the following list of environment variables to connect to an LDMS streams daemon 
and published I/O event data: 

◦ *MODULE*_ENABLE_LDMS -> Set to publish *MODULE* module data to LDMS daemon. 
◦ DARSHAN_LDMS_PORT -> Port number that the LDMS daemon is listening on.
◦ DARSHAN_LDMS_HOSTNAME -> Hostname that the LDMS daemon is running on.
◦ DARSHAN_LDMS_XPRT -> Type of transport the LDMS daemon is listening on.
◦ DARSHAN_LDMS_STREAM -> Name tag (identifier) of the stream.

Darshan-LDMS Integration – Easy to build and install Darshan against LDMS library:
◦ Only need to include --with-ldms=<path-to-LDMS-install> to the configuration line. 

13



Integration: Defined Metrics 



Integration: Summary
 Data Collection

◦ Darshan to collect timeseries I/O event data during application runtime.
◦ Darshan-LDMS Connector to collect Darshan I/O data and publish to LDMS Streams interface.
◦ Configuration and setup for Darshan and LDMS is quick and easy.
◦ Various I/O event metrics are collected from Darshan’s I/O tracing.

 Transport and Storage
◦ LDMS to provide and transport live run time data feed about application I/O events. 
◦ DSOS to store and query large volumes of I/O data generated on a production HPC system. 

 Analysis and Visualization
◦ HPC Web Services to analyze and present run time I/O data. 

◦ Able to demonstrate further insights into the application I/O behavior, patterns, etc. 
◦ Provides the ability to identify correlations between I/O performance and system behavior.

15



Integration: Summary16

DSOS

LDMS Streams

Application 

Darshan 
LDMS 

Connector

LDMS 
Streams 

HPC Web Services

Time

HPC System Storage/Analysis System

Darshan 

LDMS Transport



Results: LDMS Overhead17

Overview: 
◦ Framework is evaluated by analyzing sampled I/O data captured from 

two HPC applications
◦ MPI-IO-TEST: Darshan utility to test MPI I/O performance on HPC 

machines.
◦ HACC-IO: I/O Proxy for the Hardware Accelerated Cosmology Code. 

◦ Experiments tested on Lustre and NFS file systems with various 
configurations.

◦ 5 runs for each configuration for a total of 40 job submissions.

Key Takeaways:
◦ Decrease in overall runtime time in 3 out of 4 experiments 

for both applications
◦ Most likely due to file system performance issues as tests 

were ran 1-2 weeks apart
◦ Variance statistically significant to determine the overhead 

calculations are inconclusive.



Results: Grafana Visualization 18

Figure above presents a Grafana visualization of MPI-IO job_id 2 writes (blue) and reads (green) operations and number of bytes 
read/written aggregated across all ranks. 

◦ Uses the absolute timestamp metric collected with Darshan LDMS Integration.
◦ Grafana offers the interactive front-end view where users can easily filter though specific times and metric intervals.
◦ Representation using absolute timestamps facilitates the correlation of I/O performance congestion with system behavior 

monitoring. 



Results: Analysis19

Key Takeaways
◦ Variation is seen between two runs of the same experiment in the far left (1).

◦ Possible data loss from connector and is currently under investigation. 
◦ Darshan LDMS Integration makes is possible to create the meaningful analyses and visualizations (2 and 3). 

◦ Ability to see when an operation occurs, it’s duration and variability between runs.
◦ Allows for further insights into I/O behavior and patterns during application execution.

◦ Experiment on the far left shows the aggregate I/O behavior which can be created with Darshan alone (e.g. post run data). 
◦ Unable to analyze when an operation occurs and duration of each operation. 
◦ Prevents further insights into I/O behavior and patterns during application execution. 

1. Post-Run Analysis of I/O event data: Number of 
I/O requests per node for close and open operations of 
2 HACC-IO jobs. Can be produced with Darshan and 
framework.

2. Runtime Analyses of I/O event timeseries data:
Duration of reads and writes per rank of 5 MPI-IO 
jobs (job_id 1-5) without collective operations. Only 
produced with framework.

3. Runtime Analyses of I/O event timeseries 
data:
Distribution of job_id 2 to display application I/O 
pattern and behavior over time. Only produced with 
framework.



Related Work

PASSION Runtime Library for parallel I/O proposed by Syracuse University 
◦ Optimizes I/O intensive applications through Data Prefetching and Data Sieving.

IOPin: Runtime Profiling of Parallel I/O in HPC Systems 
◦ Proposes dynamic instrumentation to show the interactions from a parallel I/O application to the file system.

Design and Implementation of a Parallel I/O Runtime System for Irregular Applications 
◦ Proposes two different collective I/O techniques for improving I/O performance.

Other Open-Source Tools
◦ iostat – Linux command that collects and reports I/O device statistics and loads between physical disks.
◦ ioprof – Provides insights into I/O workloads. 

How Is Darshan LDMS Integration Different?
◦ This work leverages and enhances existing applications and tools 

◦ Integrates LDMS’s timestamped data collection and storage capabilities with Darshan.
◦ Integrates python analysis modules and open-source web application for the analyses and visualizations.

◦ Provides extensive I/O tracing (i.e. statistics of individual I/O operations) of applications.
◦ Implemented a database to allow for efficient queries of large volumes of data. 

20



Conclusions & Future Work

 Overview:
◦ This framework utilized Darshan’s I/O event data tracing and LDMS Streams interface to capture timeseries data of 

I/O events during application runtime.  
◦ Provided the capability to query, analyze and view the timeseries data via DSOS and HPC web services.
◦ Demonstrated further insights into application I/O behaviors and patterns with visualizations and analyses.

 Completed work: 
◦ Ability to enable or disable the LDMS Streams functionality for specific Darshan modules.
◦ Establish a simple connection from Darshan to LDMS via the LDMS Streams API to publish runtime data 

generated by Darshan.
◦ Completed multiple I/O application runs with the Darshan LDMS Integration and successfully collected runtime 

timeseries data of the I/O events. 
◦ Full timeseries data can be collected throughout entire application execution.

 Future work: 
◦ Characterize the Darshan LDMS connector overhead with a variety of I/O intensive applications.
◦ Further validate any data loss by comparing Darshan’s output log files to the timeseries data.
◦ Utilize this framework to investigate impact of file system performance on I/O intensive applications.
◦ Incorporate existing analyses and create new analyses to present in a Grafana dashboard.

21



QUESTIONS?

22


