This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressediin
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

LDMS Darshan Connector: For
Run Time Diagnosis of HPC

Application 1/O Pe.r_fo__rma_nc

Sara Walton, SNL
Omar Aaziz, SNL
Ana Luisa V. Soldérzano, Northeastern University

Ben Schwaller, SNL

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly.owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration/under contract' DE-NA0003525.

SAND2022-11736C

@cENERGY NIYSA

onsl Nuclodr Securty Aaminstrston

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

> | Introduction & Motivation

Many efforts to identify the origin of application I/O performance variation have been performed in post-run
analyses.
> /O Characterization tools (e.g. Darshan, Datadog, etc.)
o Linux tools for disk I1/O monitoring (e.g. iotop, dstat, etc.)
However, I/O Performance continues to show high variations on large-scale production systems. This can be
caused by a variety of system related components (i.e. system usage, file system, network congestion, etc.)
o Difficult to determine root cause of I/O related problems

o Difficult to have a thorough understanding of throughput for system-specific behaviors and 1/0O performance in similar
applications across a system

Limitations with existing 1/0O characterization tools
> The 1/O application data is used for post-run analysis.

> Possible to get a set timeseries during an application run.
o Unable to see what happens before or after this set of data.

Other collaborators (e.g. Northeastern University) have found a full set of timeseries data will benefit their
studies.

Developed a tool that collects and provides runtime access to I/O event timeseries data.
Results show the success of capturing runtime 1/O behavior and patterns.

s I Approach

Time

HPC System

Application

I/O Event Data

v

Storage/Analysis System

Transport

I

Analysis and
Visualization
Infrastructure

3

Database

4 ‘ Approach - Continued

This tool collects runtime data via absolute timestamps. The runtime timeseries data will the allow further insights into the
I/O behavior:

> |dentify the root cause(s) of I/O performance variability.

o Detect when an 1/O performance variability occurs during application runtime.

> Able to quickly detect and address any operational issues.

o Reveal correlations between I/O performance variability and system behavior.
o |Investigate any irregular or inconsistent timeseries related analyses.

> Produce new and meaningful analyses and visualizations.

I/O event data will be collected, stored, analyzed and visualized with the Darshan LDMS Integration - A framework that
integrates multiple tools to provide low-latency monitoring of I/O event data during runtime:

1. Darshan — A lightweight 1/O characterization tool that transparently captures application I/O behavior from HPC
applications with minimal overhead.

o Generates a binary file of I/0O traces post-run.

2. Lightweight Distributed Metric Service (LDMS) — A low-overhead production monitoring system that can run on HPC
machines.

o Capability to collect, transport, aggregate and store timeseries data during runtime.

3. An Analysis and Visualization Infrastructure for LDMS
o Demonstrates further insights into 1/0O behavior through analysis modules and a web interface.

5 ‘ Integration: Darshan

Darshan (lightweight 1/0O characterization tool) data is used to tune 1/0O behavior of HPC applications for increased
scientific productivity or to gain insight into trends in large-scale computing systems.

Provides detailed statistics about file accesses from MPI and non-MPI applications with the following modules:
> POSIX, MPI-IO, STDIO, and many more.

> Darshan eXtended Tracing (DXT): Provides a more detailed profiling of I1/0O software stacks such as kernel I/O traces and
systematic analysis on the I/O behavior of applications.

o Ex: Start and end time of read and write operations for MPIIO and POSIX.

Two main parts:

o darshan-runtime: The instrumentation portion of the Darshan characterization tool. Intent includes the collection of I/O
characterization information of MPI & non-MPI applications.

> Produces a binary file containing the I/O traces.
> darshan-util: A collection of tools for parsing and summarizing log files produced by Darshan instrumentation.
o Darshan log files are platform-independent.

Darshan uses absolute timestamps for reporting time related I/O event data
> Does not report the raw absolute timestamps due to memory limitations on host node.

o Modifications were made to expose this.

This framework utilizes this tool to continuously collect I/O event data and absolute timestamp during application
runtime. This data is then published and transported via LDMS.

s I Integration: LDMS

Collection and transport process for system data.

The LDMS monitoring system collects data via samplers and

plugins: Collection | | Aggregation
o Sampler: Type of daemon that collects the data. I
> Plugin: Determines the kind of data collected/sampled, aggregated LDMS Transport
or stored. _
Provides absolute timestamp view of system conditions LDMSD ﬂ ﬁ LDMSD

through multi-hop aggregation.

Sampler - Memory Memory - Storage

> |Intermediate aggregators (transport) and head node aggregators

' ' Region Plugin
(storage). Plugin Region g g
> Does not take up host memory when collecting timestamped data. ﬂ
System
Darshan LDMS Integration leverages LDMS transport Metrics

functionality for 1/0O data injection.

<
=
Pul

Darshan LDMS Integration utilizes an LDMS functionality
consisting of a push-based method.

o Requires a push-based method to reduce memory consumed and
data loss on the node.

. | Integration: LDMS Streams

The push-based method for I/O event data injection is
achieved through the LDMS Streams API.

LDMS Streams API - LDMS Functionality that allows for the
aggregation of event-based application data.

o LDMS Streams: A publish-subscribe bus capability.

> Intended for publishing and subscribing to an LDMS streams tag
(e.g. Tag A) via publish API call.

> Tag needs to be specified in LDMS daemons and plugins to
publish and receive LDMS Streams data with matching tags.

o Enhanced to support the collection of I/O event data.

I/O event data is stored to a database designed to hold large
volumes of data.

Collection and transport process for event data.

Collection |1 | Aggregatio
| n
LDMS Transport
LDMSD I LDMSD
I LDMS
I Streams
| /
: Streams F’ Storage
| Subscriber Plugin
Tag A
Streams [
Publisher I
Tag A : Push=—> Database

s | Integration: Storage Database

The Distributed Scalable Object Store (DSOS) - A storage
database designed to manage large volumes of HPC data
efficiently.

> Allows for interaction via a command line interface.
o Fast query testing and data examination.

> Provides scalable data ingest and ability to query and store large
volumes of data.

DSOS cluster - Consists of multiple instances of DSOS daemons,
dsosd, that run on multiple storage servers on a single cluster.

Queried results are sorted based on joint indices selected by user
to provide different query performances

> For published LDMS Streams |/O event data, the indices consist of
combinations of job ID, rank and timestamp.

This framework transports /O event data, via LDMS Transport, to
the DSOS database. It is then queried with the analysis and
visualization infrastructure.

LDMSD LDMSD LDMSD
sos S0S e - s0s
Database Database Database
1 b 1
DSOSD DSOSD DSOSD
T | t
Query Result Query Result Query Result
I + I L4 I +
DSOS Client Library
t
Query Result
I +

Sort by joint indices example: “job_rank _time” where
data will by ordered by job, rank then timestamp and
search the data by specific rank within a specific job
over time.

I I Em B

o | Integration: Analysis and Visualization Infrastructure

Module
call

Query
>
DSOS
Database

Grafana
Web

Browser

Frame

Frame

HPC Web Services — An analysis and visualization infrastructure for LDMS that integrates an open-source web
application, Grafana, with a custom back-end web framework (Django).

o Calls python modules for analysis and visualization of HPC data.

o Used to query, analyze (Python analysis modules) and view (Grafana) sorted I/O event data in real time.

Grafana — An opensource visualization tool tailored towards time-series data from various database sources.
> Provides charts, graphs, tables, etc. for viewing and analyzing queried data in real time.
> Enables wide variety of visualization options for the data and allows users to save and share those visualizations to others.

Python Analysis Module — Where the queried data from DSOS to the Grafana dashboard is transformed,
calculated, analyzed, etc. and then returned back to Grafana.

> Uses a custom DSOS-Grafana API specified in a Grafana query.
> Many analysis modules already exist for other types of system and application data.
> Allow for complex calculations, transformation and aggregations of I/O event data.

0 | Integration: Overview

Time

HPC System

v

Application

Darshan

l

LDMS Streams

Storage/Analysis System

v

LDMS Transport

HPC Web Services

NS

LDMS
Streams DSOS

11

Integration: Darshan-LDMS Connector

Q: How is data sent from Darshan to an LDMS daemon?
A: Darshan-LDMS Connector

A Darshan-LDMS Integration functionality that collects both DXT and Darshan’s original I/O tracing and optionally
publishes a message in JSON format to the LDMS Streams interface.

o Current stages of connector only collect a subset of this data due to the large volume of metrics Darshan uses for I/O tracing and
post-processing calculations.

o Uses a single unique LDMS stream tag for the Darshan I/O data.

> Uses environment variables to establish a connection to an LDMS daemon.

o Little to no interference with Darshan’s original program.

> Absolute timestamp is included in JSON message with the name “timestamp”.

Overview of the Darshan-LDMS connector, configurations and defined metrics will be covered in the following slides.

Integration: Darshan-LDMS Connector

Connector Darshan
v v
HAVE_LDMS
v module_initialize
— darshan_ldms_initialize !
‘ open** _l
| module_read module_write

close

* ENABLE_LDMS

!

darshan_ldms_connector_send
[} runtime data

JSON buffer
\ 4

a

* Check if any <module>_ENABLE_LDMS env variable is set.
= Check if connection to LDMS daemon succeeded.

streams store plugin
\ 4 ** Gather meta data of /0 activity.

13

Integration: Configuration

Darshan — Easy to use and initialize

> Only need to set the LD_PRELOAD environment variable to the full path of the Darshan shared library before
executing an application.

o EX: srun -n 4 --export=LD_PREL OAD=<path-to-shared-library> <application>

LDMS - Simply set the following list of environment variables to connect to an LDMS streams daemon
and published I/O event data:

o *MODULE* ENABLE_LDMS -> Set to publish *MODULE* module data to LDMS daemon.
o DARSHAN_LDMS_ PORT -> Port number that the LDMS daemon is listening on.

o DARSHAN_LDMS HOSTNAME -> Hosthame that the LDMS daemon is running on.

o DARSHAN_LDMS_ XPRT -> Type of transport the LDMS daemon is listening on.

o DARSHAN_LDMS_ STREAM -> Name tag (identifier) of the stream.

Darshan-LDMS Integration — Easy to build and install Darshan against LDMS library:
o Only need to include --with-ldms=<path-to-LDMS-install> to the configuration line.

Integration: Defined Metrics

uuid User ID of the job run

exe Absolute directory of the application executable

module Name of the Darshan module data being collected

ProducerName Name of the compute node the application is running on

switches Number of times access alternated between read and write

file Absolute directory of the filename where the operations are performed

rank Rank of the processes at I/O

flushes Number of “flush™ operations. It is the HDFS file flush operations for H5F, and the dataset flush operations for H5
record id Darshan file record ID of the file the dataset belongs to

max_byte Highest offset byte read and written per operation

type The type of ISON data being published: MOD for gathering module data or MET for gathering static meta data
job_id The Job ID of the application run

op Type of operation being performed (i.e. read, write, open, close)

cnt The count of the operations performed per module per rank. Resets to 0 after each “close™ operation

seq A list containing mefrics names per operation per rank

seg:pt_sel HDF5 number of different access selections

seg:dur Duration of each operation performed for the given rank (i.e. a rank takes "X" time to perform a r/w/o/c operation)
seg:len Number of bytes read/written per operation per rank

seg:ndims HDF5 number of dimensions in dataset’s dataspace

seg:reg_hslab HDF35 number of regular hyperslabs

seg:irreg_hslab | HDF5 number of wregular hyperslabs

seg:data_set

HDF5 dataset name

seg:npoints

HDF35 number of points in dataset’s dataspace

seg:timestamp

End time of given operation per rank (in epoch time)

15 1 Integration: Summary

Data Collection
o Darshan to collect timeseries 1/O event data during application runtime.

o Darshan-LDMS Connector to collect Darshan I/O data and publish to LDMS Streams interface.

o Configuration and setup for Darshan and LDMS is quick and easy.
> Various I/O event metrics are collected from Darshan’s 1/O tracing.

Transport and Storage
o LDMS to provide and transport live run time data feed about application I/O events.

> DSOS to store and query large volumes of I/O data generated on a production HPC system.

Analysis and Visualization
o HPC Web Services to analyze and present run time 1/O data.
> Able to demonstrate further insights into the application 1/0O behavior, patterns, etc.
> Provides the ability to identify correlations between 1/O performance and system behavior.

6 | Integration: Summary

Time

HPC System

v

Application

Darshan

Darshan
LDMS
Connector

LDMS Streams

Storage/Analysis System

v

LDMS Transport

HPC Web Services

NS

LDMS
Streams DSOS

17 I Results: LDMS Overhead

HACC-I0 MPI-10-TEST
File System NFS Lustre File System NFS Lustre
Nodes 22 22
Nodes 16 16 Block Size 16%1024*%1024 16%1024%1024
Particles/Rank | 5000000 | 10000000 | 3000000 | 10000000 Tierations 0 0
J"-‘l.\"g. MESSHEEE 1663 1774 1995 1711 Collective Yes No Yes MNo
Rate (msgs/sec) 2 I 3 2 Avg. Messages 50390 6397 25770 15676
Average Runtime(s) Rate (msgs/sec) 37 7 95 38
Darshan 882.46 135387 417.14 1616.87 Average Runtime(s)
ac 77574 136524 16774 1007 44 Darshan 1376.67 880.46 24997 428.18
G 00 R 0 R S S 2 BB B R 5
Standard Deviation(s) Standard Deviation(s)
Darshan 37.08 87.24 25.03 154.53 Darshan 3818 70 43 7 85 31,49
dC 53.68 46.97 142.77 256.62 dC 96.63 76.58 1.07 8.17
% Variance -14.65% 4.08% -17.25% | 47.36% % Variance -5.25% -8.10% 9.22% 2.39%
Overview: Key Takeaways:
o Framework is evaluated by analyzing sampled I/O data captured from - Decrease in overall runtime time in 3 out of 4 experiments
two HPC applications for both applications
o MPI-IO-TEST: Darshan utility to test MPI 1/O performance on HPC > Most likely due to file system performance issues as tests
machines. were ran 1-2 weeks apart
> HACC-IO: I/O Proxy for the Hardware Accelerated Cosmology Code. > Variance statistically significant to determine the overhead
- Experiments tested on Lustre and NFS file systems with various calculations are inconclusive.
configurations.

> 5 runs for each configuration for a total of 40 job submissions.

Results: Grafana Visualization

Number of I/0 Requests and Amount of Bytes (Aggregated across ranks)

18

BK

4K

3K H

Count / 10 Operatian

1K
L
0 ==

T _;l \ | 4 | I' ||I' \ Iﬁ'x |
| | \

16:26:30 16:28:00 16:29:00 16:29:30

= Chi_write' - cnt_raad

. .
. \ \
.._il'llll .'r h
HI ,I\.uu,_ﬂl e _-'s_,]“.
0 16:31:30 16:32:00 16:32:30
lien_read

uaedd i £ saukg

3GB

o8

len_"write

Figure above presents a Grafana visualization of MPI-10 job_id 2 writes (blue) and reads (green) operations and number of bytes

read/written aggregated across all ranks.
o Uses the absolute timestamp metric collected with Darshan LDMS Integration.

o @Grafana offers the interactive front-end view where users can easily filter though speci

fic times and metric intervals.

o Representation using absolute timestamps facilitates the correlation of I/O performance congestion with system behavior

monitoring.

‘ Results: Analysis

Node _
5 101520
- [job _id 1][job _id 2 |[job_id 3] job id 4][job id 5 _
Il ciose [] Open 3001 : : : : Duration (s) ® 50 ® 100 @ 150
45 —
o . 2004 -
€ 304 g E
z I_. 100 O
® B 154 o w
D —_— - 2
S5 5 b |
oo U = 300
[o] 45 — .
ro . a . . -
g 30+ g 209 .2 -kt o :'j e
5 5 o % | » ;- '; T
[. o nn " i - L
15= 1004 2 e = s
g " ;ﬁ'-{c& : '% .ﬂi__ .'-“—-5-. 0 50 100 150 200 250 300 350 400
0 .) e el " e | Execution Time (s)
012345678 910111213141516 0 250500 0 250500 0 250500 0 250500 0 250500
Node Rank

1. Post-Run Analysis of 1/0O event data: Number of
I/0 requests per node for close and open operations of
2 HACC-IO jobs. Can be produced with Darshan and
framework.

2. Runtime Analyses of I/O event timeseries data:
Duration of reads and writes per rank of 5 MPI-10
jobs (job_id 1-5) without collective operations. Only
produced with framework.

3. Runtime Analyses of I/O event timeseries
data:

Distribution of job_id 2 to display application 1/0
pattern and behavior over time. Only produced with
framework.

Key Takeaways
Variation is seen between two runs of the same experiment in the far left (1).
> Possible data loss from connector and is currently under investigation.
o Darshan LDMS Integration makes is possible to create the meaningful analyses and visualizations (2 and 3).

> Ability to see when an operation occurs, it's duration and variability between runs.
> Allows for further insights into I/O behavior and patterns during application execution.
o Experiment on the far left shows the aggregate I/O behavior which can be created with Darshan alone (e.g. post run data).
> Unable to analyze when an operation occurs and duration of each operation.
> Prevents further insights into 1/0 behavior and patterns during application execution.

20 ‘ Related Work

PASSION Runtime Library for parallel I/O proposed by Syracuse University
o Optimizes I/O intensive applications through Data Prefetching and Data Sieving.

IOPin: Runtime Profiling of Parallel 1/0O in HPC Systems

> Proposes dynamic instrumentation to show the interactions from a parallel I/O application to the file system.

Design and Implementation of a Parallel I/O Runtime System for Irregular Applications
> Proposes two different collective I/O techniques for improving I/O performance.

Other Open-Source Tools
o jostat — Linux command that collects and reports I/O device statistics and loads between physical disks.
o ioprof — Provides insights into /O workloads.

How Is Darshan LDMS Integration Different?
o This work leverages and enhances existing applications and tools
> Integrates LDMS’s timestamped data collection and storage capabilities with Darshan.
> |Integrates python analysis modules and open-source web application for the analyses and visualizations.

> Provides extensive I/O tracing (i.e. statistics of individual I/O operations) of applications.
> Implemented a database to allow for efficient queries of large volumes of data.

21 I Conclusions & Future Work

Overview:

> This framework utilized Darshan’s I/O event data tracing and LDMS Streams interface to capture timeseries data of
I/O events during application runtime.

> Provided the capability to query, analyze and view the timeseries data via DSOS and HPC web services.
o Demonstrated further insights into application I/0O behaviors and patterns with visualizations and analyses.

Completed work:
o Ability to enable or disable the LDMS Streams functionality for specific Darshan modules.

o Establish a simple connection from Darshan to LDMS via the LDMS Streams API to publish runtime data
generated by Darshan.

o Completed multiple 1/0 application runs with the Darshan LDMS Integration and successfully collected runtime
timeseries data of the 1/O events.

o Full timeseries data can be collected throughout entire application execution.

Future work:
o Characterize the Darshan LDMS connector overhead with a variety of 1/O intensive applications.

> Further validate any data loss by comparing Darshan’s output log files to the timeseries data.
o Utilize this framework to investigate impact of file system performance on I/O intensive applications.
° Incorporate existing analyses and create new analyses to present in a Grafana dashboard.

QUESTIONS?

