

Sandia
National
Laboratories

Projected climate security risks in the arctic motivate advances in situational awareness

World Conference on Climate Change and Sustainability

Frankfurt, Germany September 1, 2022

PRESENTED BY

Rob Leland, Sandia National Laboratories

Diana Bull, Richard Garrett, Elizabeth Kistin Keller, Daniel Kroccheck,
Howard Passell, Natalie Prittinen

Support from Sharon DeLand, Diana Hackenburg, Mary Ann Córdova,
and Doug Prout

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2022-11174 C

SUMMARY MESSAGES

- Climate change is occurring and is significantly concentrated in the Arctic
- Climate change is a global security challenge
- A broad set of activities and advances are required to address these global security challenges
- **Situational awareness will play a foundational role in characterizing the activities and advances needed to respond effectively to climate change in the Arctic and more broadly**

[1]

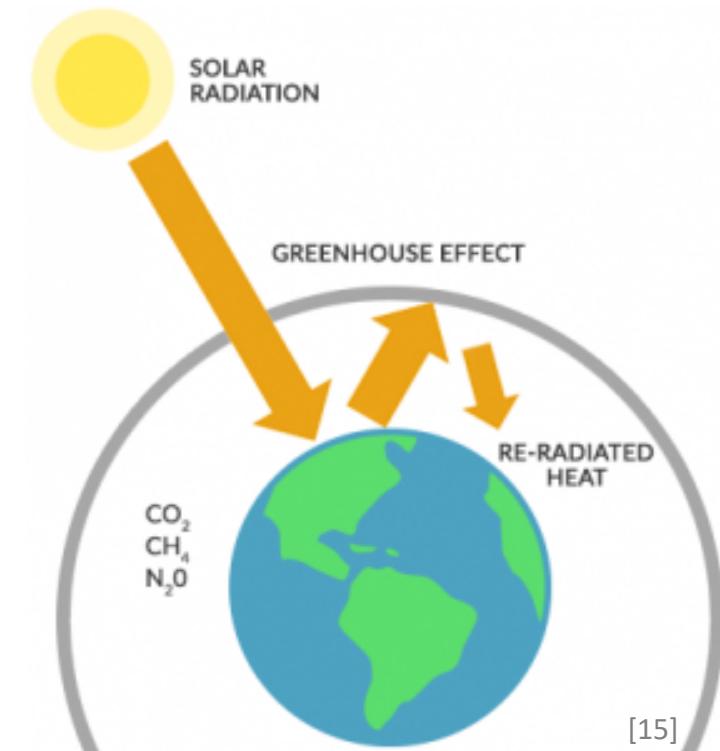
“No nation can find lasting security without addressing the climate crisis”
- U.S. Secretary of Defense Austin, April 2021^[2]

[2]

Society's influence on climate change from the IPCC's Assessment Reports (ARs)

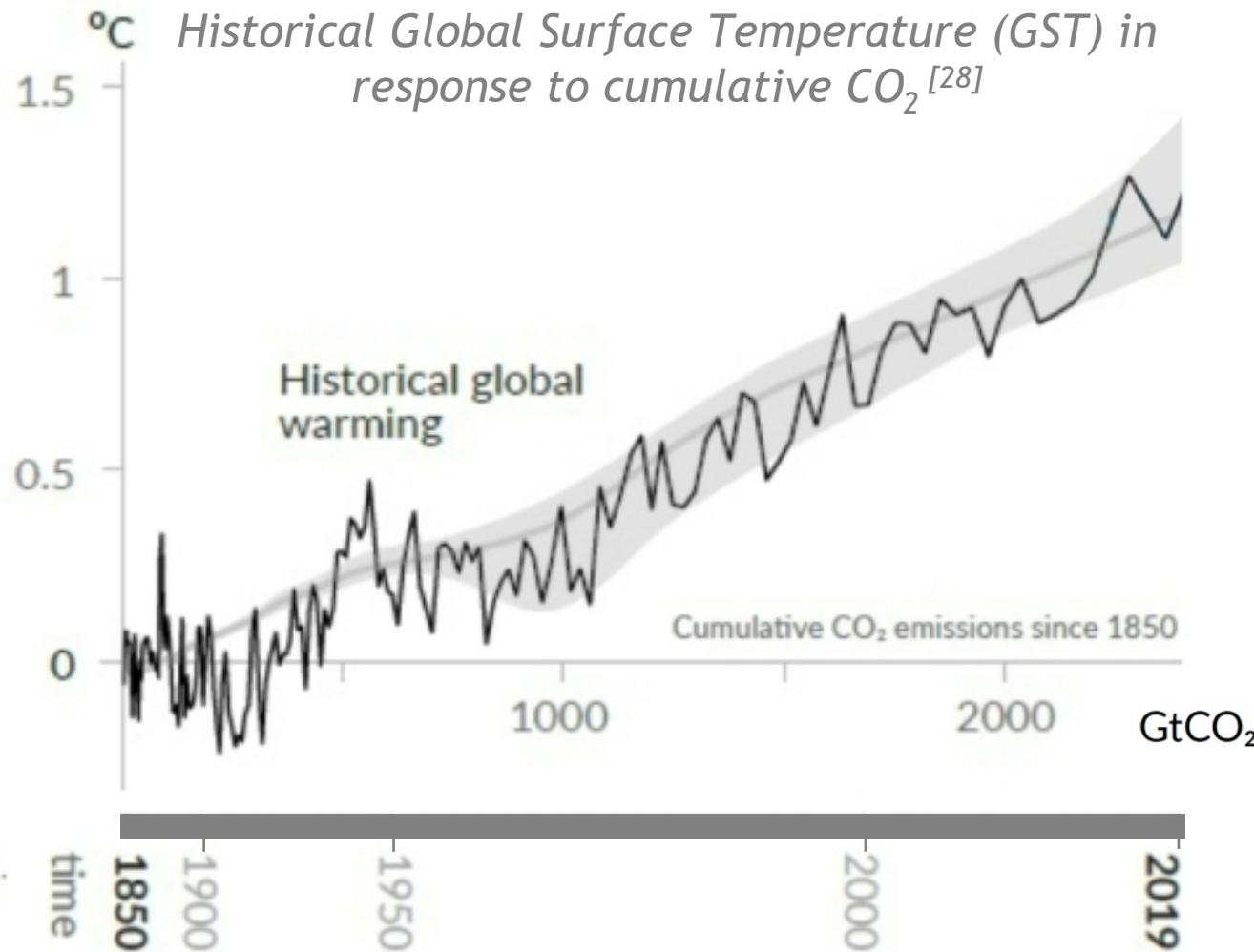
“Consistent”
1990, AR1^[3]

“Discernible”
1996, AR2^[4]


[Likely]
2001, AR3^[5]

“Very Likely”
2007, AR4^[6]

“Clear”
2014, AR5^[7]


“Established fact”
2021, AR6^[8]

- Global average temperature is **1.09°C** ^[17] elevated; the ocean has increased by **0.88°C** ^[18] and land by **1.59°C** ^[18]
- Cumulative amounts of greenhouse gasses, GHGs, (e.g., CH₄, N₂O, and CO₂) increase global temperatures^[11]
- “Human driven warming is nearly irreversible on time frames of 1000 years or more^[12, 13] ”^[14]

Greenhouse effect established in 1896 by Arrhenius^[16].

TEMPERATURE ANOMOLY LINEARLY RELATED TO CUMULATIVE CO₂

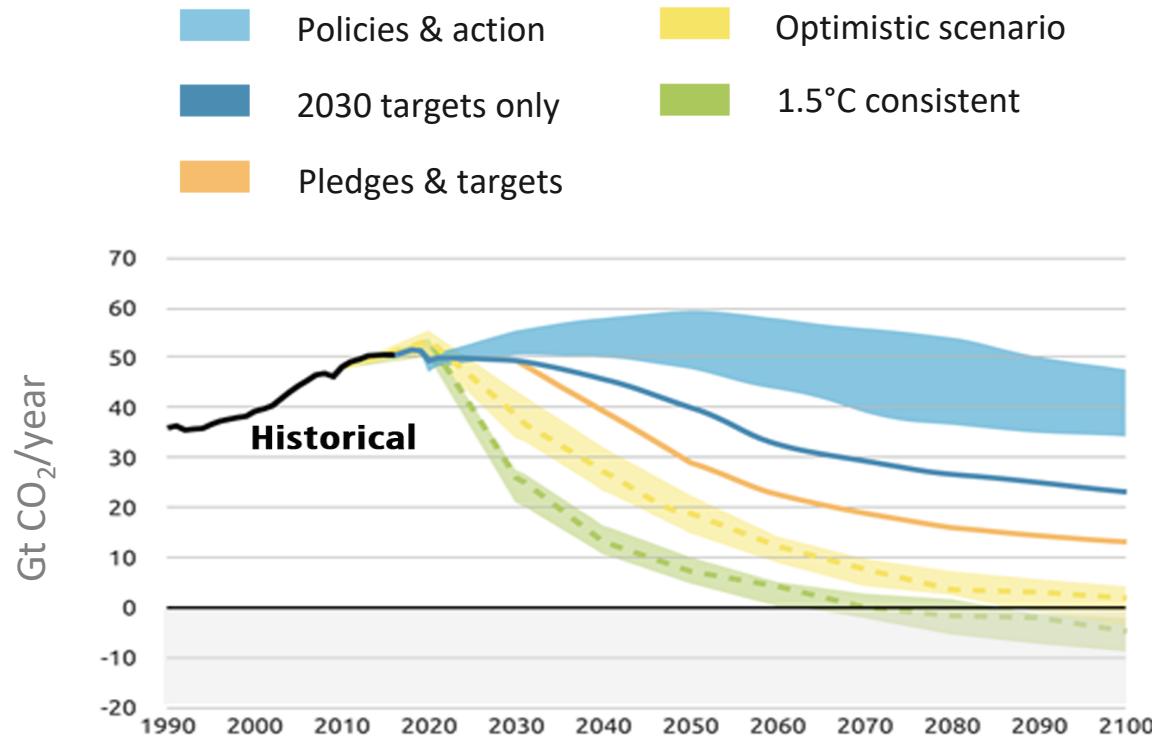
- Paris Accord aspiration: Keep global temperature well below an increase of 2°C^[29]
- Arctic now assessed to be warming at 4 times the average rate^[87]

CLIMATE ATTRIBUTED IMPACTS ARE ALREADY SIGNIFICANT

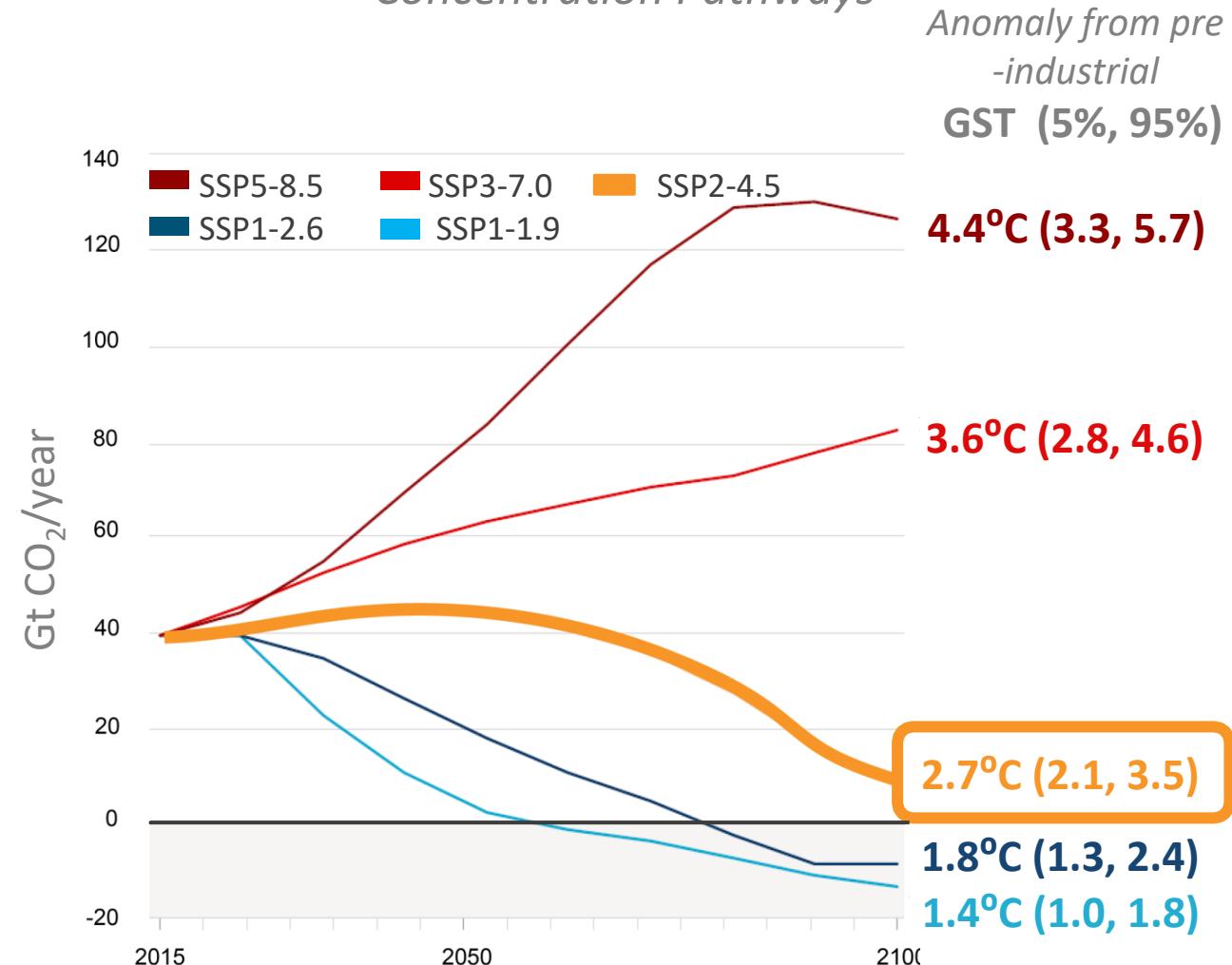
2021 Heat waves^[22]

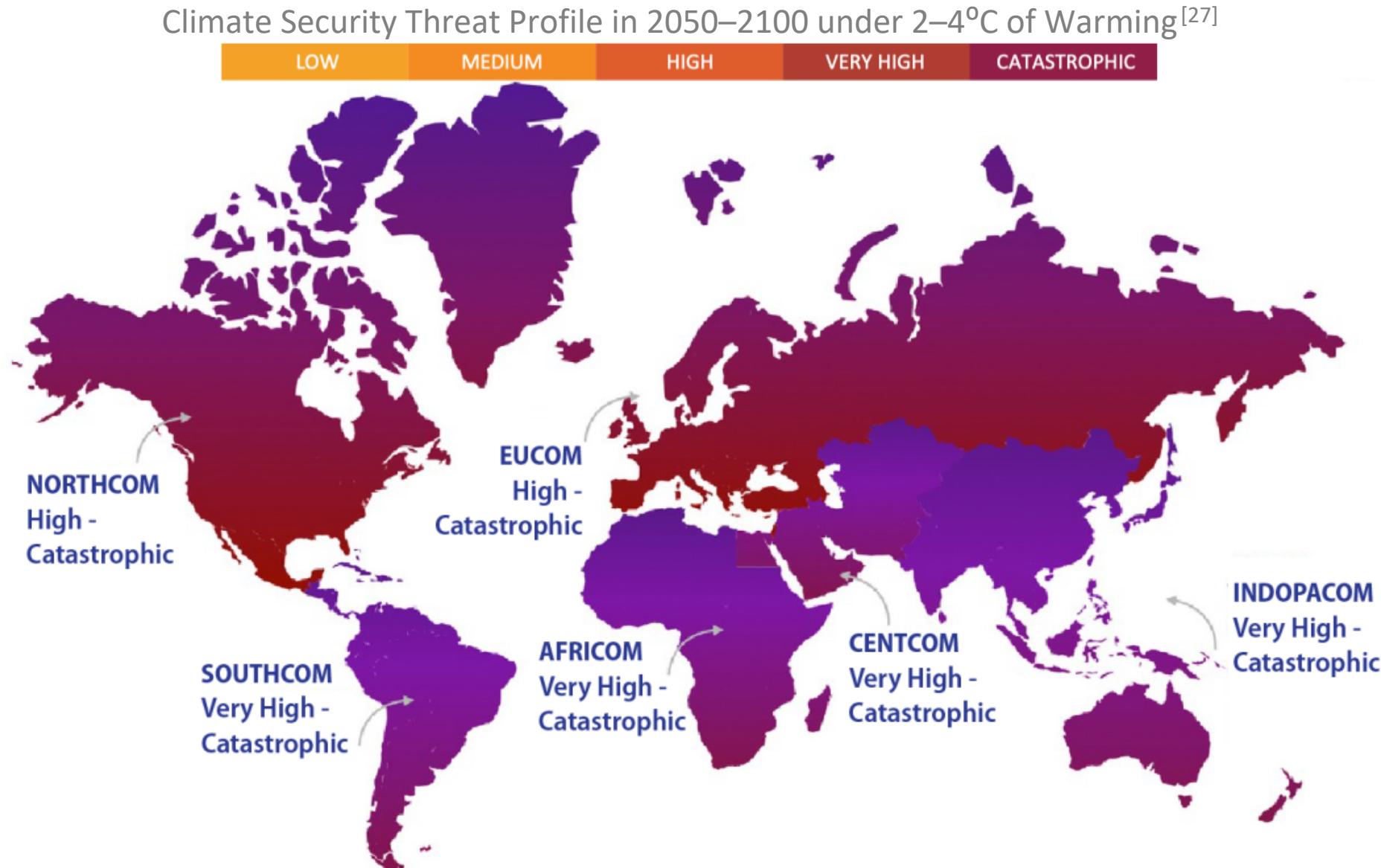
2021 Flooding in Germany^[23]

2021 Hurricane Harvey^[24]



2020 Australian wildfires^[25]


LIKELY FUTURES THIS CENTURY WILL EXCEED 2.0°C


Paris Accord relevant yearly emission projections^[33]

Emission Scenarios: Projections of the Representative Concentration Pathways^[34]

CLIMATE CHANGE IS A GLOBAL SECURITY CHALLENGE

DIMENSIONS OF THE CLIMATE SECURITY CHALLENGE

Awareness

Establish environmental and socio/political situational awareness to support risk analysis and prioritization of efforts

Mitigation

Decrease the anthropogenic sources contributing to climate change

Adaptation

Reduce climate impacts affecting both human and natural systems

Intervention

Undertake deliberate, large-scale actions to modify the Earth's climate system

CLIMATE RISK ARISES FROM SYSTEM INTERACTIONS

- Non-climate stressors are as important, dynamic, and regionally varied as climatic ones in defining climate risk
- With little adaptive capacity, climatic risks fall disproportionately on the most vulnerable populations

IPCC Risk Analysis Framework^[26]

Climate Generated Risks

Human Health

Ecosystem Health

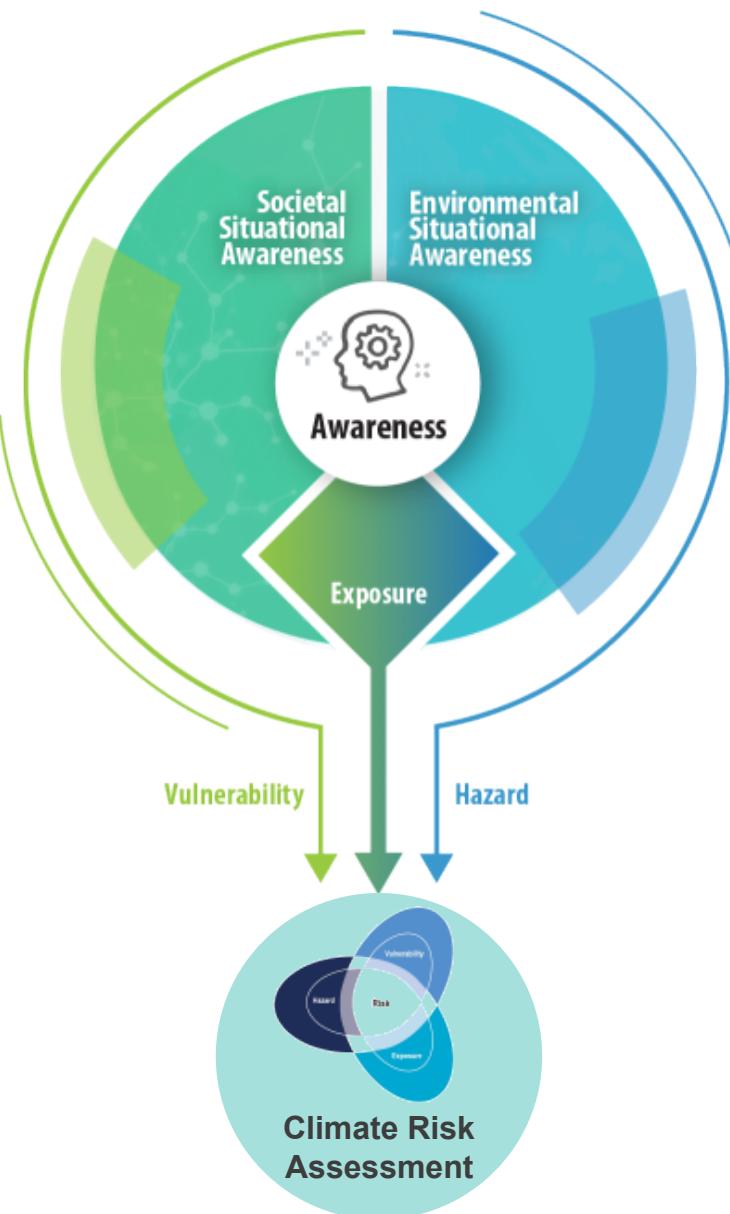
Infrastructure

Operations

Economy

Equality

Governance



Migration

Conflict

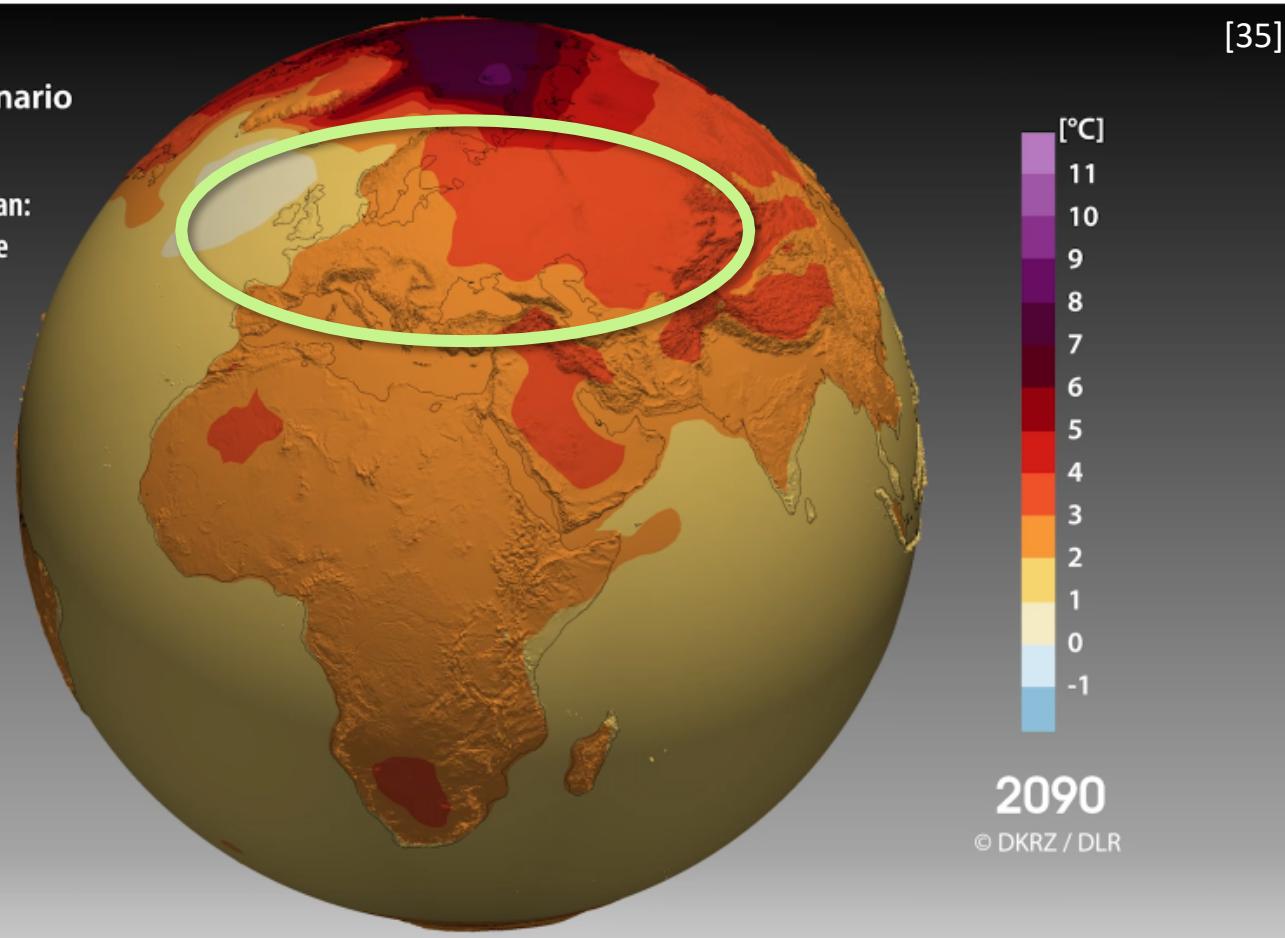
AWARENESS: EVALUATE THE COUPLED CLIMATE-HUMAN SYSTEM TO SUPPORT RISK ANALYSES & PRIORITIZE EFFORTS

Awareness is achieved by accomplishing these three tasks:

Monitor – collect observations to enhance knowledge of and projection accuracy for climate and human conditions

- Data-fusion frameworks
- Observational relationships

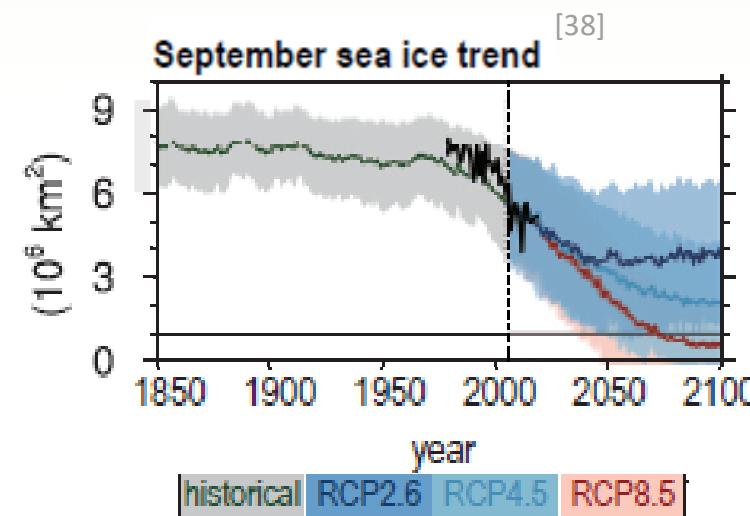
Project – model climate and human systems to anticipate future impacts and response efficacy

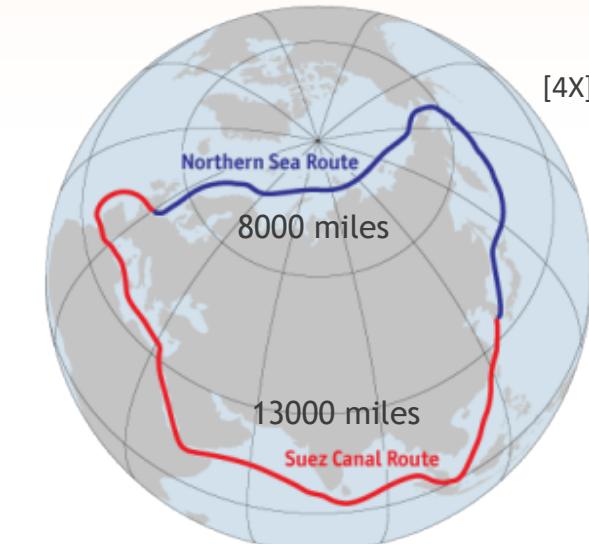

- Predictive accuracy
- Intelligible outcomes

Assess – establish climate risk and empower decision-makers with response options

- Multisector tools coupled with climate models^[47]
- Multi-objective system analyses

Intermediate Scenario
(SSP2-4.5)


CMIP6 Multi Model Mean:
Projected Mean Surface
Temperature Change
relative to 1995-2014


Climate Conditions

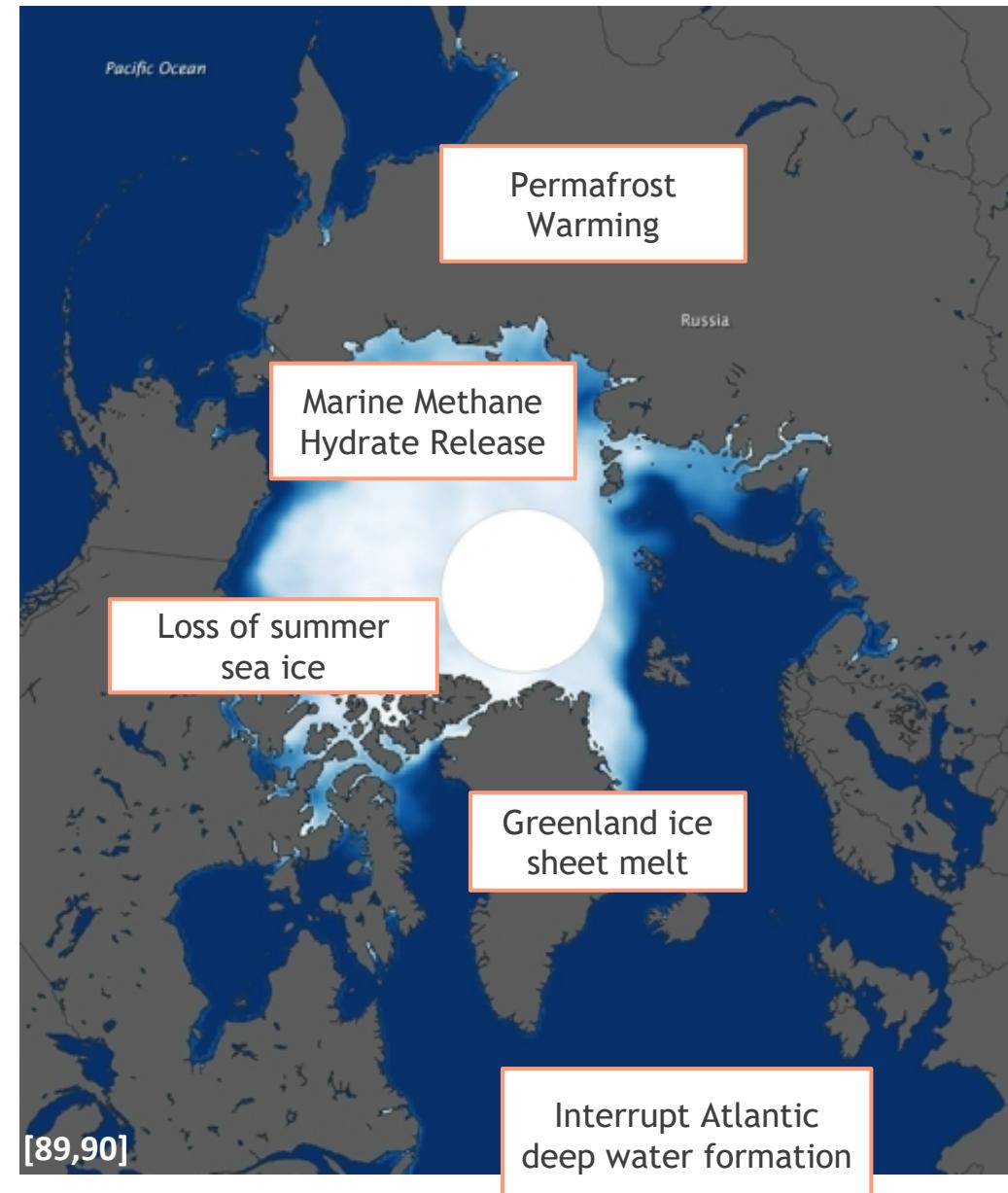
- +5.8°C average surface temperature^[36]
- Permafrost degradation over an area larger than China^[47, 88, 91]
- By 2100 more than one length of soccer field eroding per yr. into the ocean along entire Arctic coastline^[48]
- ~75% reduction in summer sea ice^[38]

Societal Conditions

- ~50% indigenous population^[39]
- Over \$20 trillion in natural resources^[40, 41]
- **New trade routes (40% shorter) to connect 90% of world's international trade** ^[42, 43]
- Competing capability development across Arctic region^[44, 45]
- \$4.2 billion in projected cumulative expense for climate-related damage to AK public infrastructure^[37]

Needed Advances in Awareness

Monitor: Terrestrial & submarine permafrost, Greenland ice sheet & sea ice, Atlantic deep water formation, etc.


Project: Permafrost carbon dynamics, soil thermal dynamics, wetting between land & ocean, etc. in models

Assess: Reduce uncertainty in characterization of climatic hazard and high-latitude transitions

To Better Characterize Climate Risk

Natural feedback loops have potential to shift climate trajectory far beyond anthropogenic-only estimates

- Releasing GHGs pushes mitigation efforts off track
- Melting Greenland ice sheet raising global sea levels
- Weakening of Atlantic Meridional Overturning (AMO) Circulation altering N. American and European weather

Needed Advances in Awareness

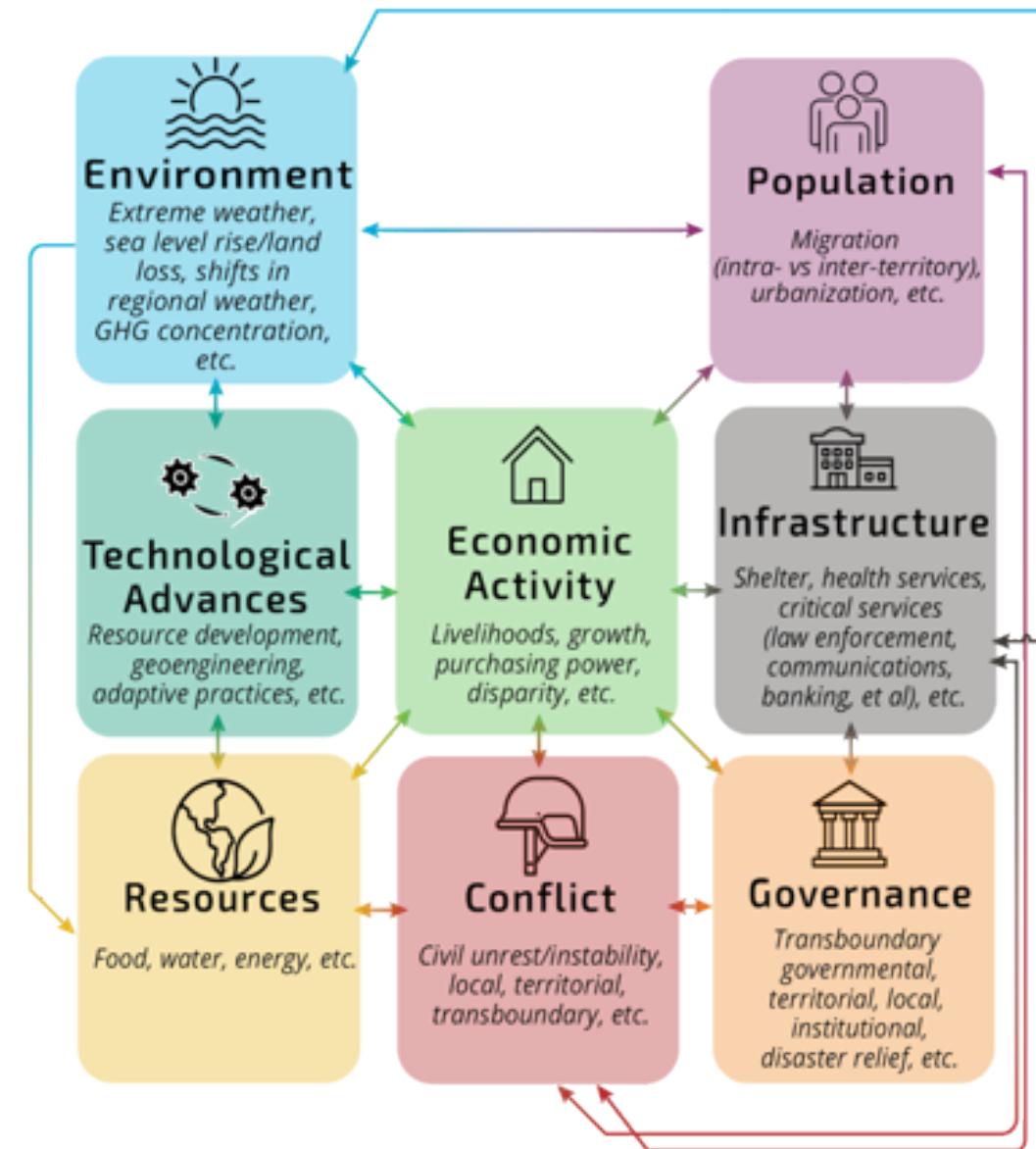
Monitor: Infrastructure development, transportation, population movement, etc.

Project: Economic dynamics, needed technological advances, resource demand, etc.

Assess: Develop multi-sector tools capable of capturing the system dynamics that influence geopolitical relationships

To Better Characterize Geopolitical Risks

Increased protection of sovereign borders:


- Active ports of entry and centers of trade
- Expanded economic and military activity

Increased geopolitical tensions:

- Access to natural resources (e.g., minerals, food)
- Newly defined borders

New diplomatic considerations

Arctic System Interconnection Diagram ⁹²

Needed Advances in Awareness

Monitor: Integration of local measurements and accessibility of data

Project: Relevant scales and for culturally relevant measures

Assess: Incorporate and prioritize local objectives in system analyses to ensure equitable treatment of risk

To Better Characterize Lifestyle & Equity Risks

Threats to traditional lifestyles:

- Food security
- Transportation and infrastructure
- Cultural heritage

Equity concerns:

- Local interests highly susceptible to global preferences

Eight tribal representatives testified in 2019 about the importance of protecting the [Arctic National Wildlife Refuge](#)

ARCTIC METHANE SITUATIONAL AWARENESS, ASSESSMENT, & POLICY DIRECTIONS^[36]

Key Takeaways

Arctic methane **underestimated** in current carbon budgets, yet it has significant potential to drive accelerated warming.

- Major scientific/technical gaps in measurement, monitoring & modeling capabilities
 - Limited capability for modeling permafrost thaw & associated methane emissions
 - No integrated, strategic approach to track/predict emissions from thawing permafrost

- Need integrated focus for science assessments, policy decisions at pan-Arctic scale
- Pan-Arctic collaboration is critical

- No direct technical solutions for mitigating permafrost methane release
- War in Ukraine has reduced access to critical data, information and scientific collaborations for both Russian permafrost and oil and gas operations

Contact: Rob Leland, SNL, leland@sandia.gov

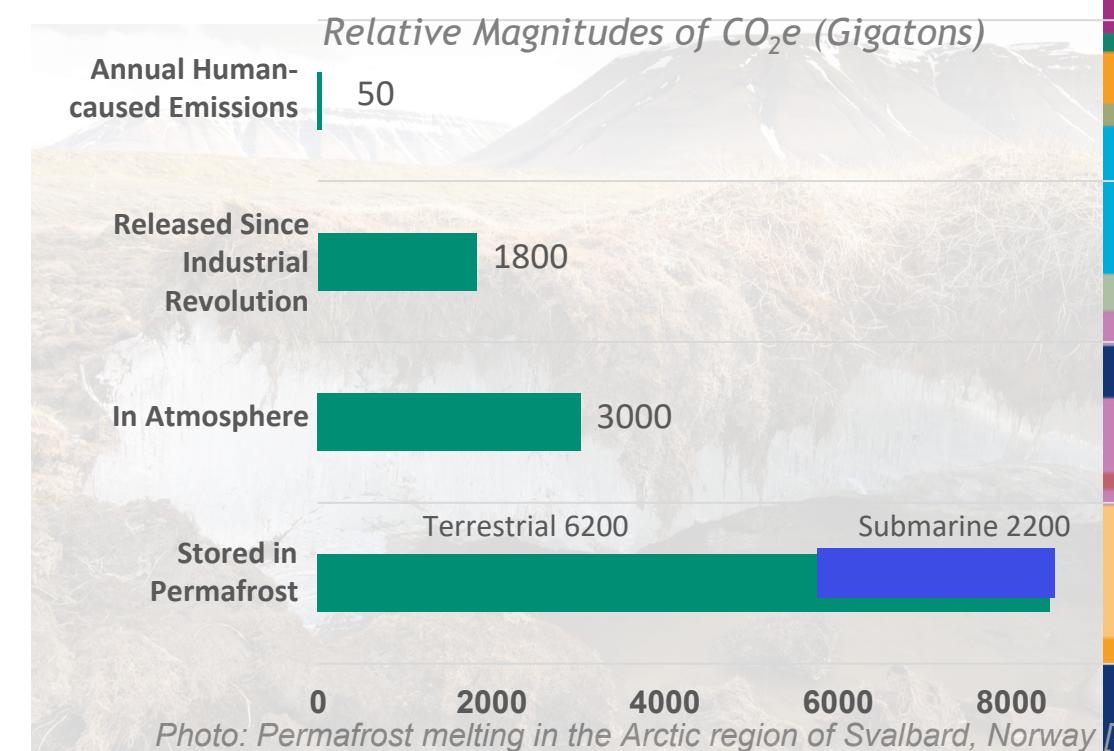
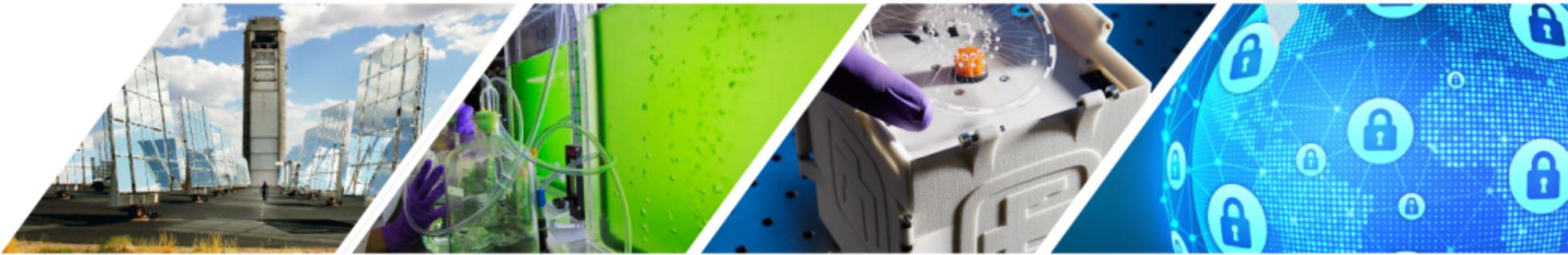


Photo: Permafrost melting in the Arctic region of Svalbard, Norway [37]


Wilson Center/Sandia Workshop Speakers & Participants:

- **John Holdren**, President's former Science Advisor
- **Rick Duke**, Deputy Special Envoy for Climate Change
- **David Balton**, Executive Director, White House Arctic Executive Steering Committee
- **Mike Sfraga**, Chair, U.S. Arctic Research Commission
- Indigenous communities
- International representatives from Canada, Iceland, & Norway
- Universities
- US Federal Agencies – DOE, NASA, NOAA, NSF, State, USGS
- US Intelligence Community
- Woodwell Climate Research Center

“No nation can find lasting security without addressing the climate crisis”
- U.S. Secretary of Defense
Austin, April 2021^[2]

Energy &
Homeland Security

References

References

1. Figure taken from: Scott, A. and M. Taylor, Sandia National Laboratories (2021). Cat 5 hurricane simulated by the E3SM v0 at 13 km resolution. [Energy Exascale Earth System Model \(E3SM\) Version 0](#). <https://e3sm.org/>
2. Vergun, D. (2021) "Defense Secretary Calls Climate Change an Existential Threat." DOD News. <https://www.defense.gov/News/News-Stories/Article/Article/2582051/defense-secretary-calls-climate-change-an-existential-threat/>
3. Intergovernmental Panel On Climate Change (1990). [Climate Change: The IPCC Scientific Assessment](#), Cambridge University Press.
4. Intergovernmental Panel on Climate Change (1996). [Climate Change 1995: The Science of Climate Change: The Working Group I contribution to the Second Assessment Report of the Intergovernmental Panel on Climate Change](#), Cambridge University Press.
5. Intergovernmental Panel on Climate Change (2001). [Climate Change 2001: The Scientific Basis: The Working Group I contribution to the Third Assessment Report of the Intergovernmental Panel on Climate Change](#), Cambridge University Press.
6. Intergovernmental Panel on Climate Change (2007). [Climate Change 2007: The Physical Science Basis: The Working Group I contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change](#), Cambridge University Press.
7. Intergovernmental Panel on Climate Change (2014). [Climate Change 2013: The Physical Science Basis: The Working Group I contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change](#), Cambridge University Press.
8. Intergovernmental Panel on Climate Change (2021). [Climate Change 2021: The Physical Science Basis: The Working Group I contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change](#).
9. Le Quéré, C., et al. (2018). "Global carbon budget 2018." [Earth System Science Data](#) **10**(4): 2141-2194.
10. Intergovernmental Panel on Climate Change (2021). [Climate Change 2021: The Physical Science Basis: The Working Group I contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change](#). pg. SPM-5
11. Intergovernmental Panel on Climate Change (2018). [Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty](#). V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield. **1**.

References cont.

12. Matthews, H. D. and K. Caldeira (2008). "Stabilizing climate requires near-zero emissions." *Geophysical Research Letters* 35(4).
13. Solomon, S., et al. (2009). "Irreversible climate change due to carbon dioxide emissions." *Proceedings of the national academy of sciences* 106(6): 1704-1709.
14. Intergovernmental Panel on Climate Change (2018). Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield. Cross-Chapter Box 8.
15. Figure taken from: EarthHow (2021). How the Greenhouse Effect Traps Heat and Warms Earth. EarthHow. <https://earthhow.com/greenhouse-effect/>
16. Arrhenius, S. (1896). "On the influence of carbonic acid in the air upon the temperature of the ground." *The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science* 41(251): 237-276.
17. Intergovernmental Panel on Climate Change (2021). Climate Change 2021: The Physical Science Basis: The Working Group I contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. pg SPM-5
18. Intergovernmental Panel on Climate Change (2021). Climate Change 2021: The Physical Science Basis: The Working Group I contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. pg SPM-6
19. Iturbide, M., et al. (8/9/2021). "Repository supporting the implementation of FAIR principles in the IPCC-WGI Atlas." <https://github.com/IPCC-WG1/Atlas>. DOI: 10.5281/zenodo.3691645. *Trends determined over the period of 1980-2015*.
20. Jiang, L.-Q., et al. (2019). "Surface ocean pH and buffer capacity: past, present and future." *Scientific Reports* 9(1): 18624.
21. Oschlies, A. (2021). "A committed fourfold increase in ocean oxygen loss." *Nature Communications* 12(1): 2307.
22. Figure taken from: Newburger, E. (2021). Historic heat wave linked to hundreds of deaths in Pacific Northwest and Canada. CNBC. <https://www.cnbc.com/2021/07/01/heat-wave-linked-to-hundreds-of-deaths-in-pacific-northwest-canada-.html>
23. Figure taken from: Morris, L. H., Jennifer; Beck, Luisa (2021). At least 95 dead and some 1,300 missing as flooding rages across Europe. The Washington Post, The Washington Post. <https://www.washingtonpost.com/world/2021/07/15/germany-flooding-buildings-collapse/>
24. Figure taken from: Huber, C. (2018). 2017 Hurricane Harvey: Facts, FAQs, and how to help. World Vision. <https://www.worldvision.org/disaster-relief-news-stories/2017-hurricane-harvey-facts>

References cont.

25. Figure taken from: Zee, G. T., Ella (2020). More than 1 billion animals estimated dead in Australia wildfires: Expert. ABC News. <https://abcnews.go.com/International/billion-animals-estimated-dead-australia-wildfires/story?id=68143966>
26. Field, C. B., et al. (2018). IPCC, 2012: "Summary for Policymakers: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation". Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change.
27. Guy, K. (2020). A Security Threat Assessment of Global Climate Change: How Likely Warming Scenarios Indicate a Catastrophic Security Future. Femia, F. and C. Werrell. Washington, D.C., Center for Climate and Security.
28. Intergovernmental Panel on Climate Change (2021). Climate Change 2021: The Physical Science Basis: The Working Group I contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Figure SPM.10
29. United Nations Climate Change. "The Paris Agreement." <https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement>
30. Rissman, J., et al. (2020). "Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070." Applied Energy 266: 114848.
31. Bouckaert, S., et al. (2021). "Net Zero by 2050: A Roadmap for the Global Energy Sector." International Energy Agency.
32. National Academies of Sciences, Engineering, and Medicine. 2021. Accelerating Decarbonization of the U.S. Energy System. Washington, DC: The National Academies Press. <https://doi.org/10.17226/25932>
33. Zhongming, Z., et al. (2021). "Global update: Projected warming from Paris pledges drops to 2.4 degrees after US Summit: analysis." <https://climateanalytics.org/latest/global-update-projected-warming-from-paris-pledges-drops-to-24-degrees-after-us-summit-analysis/>
34. Intergovernmental Panel on Climate Change (2021). Climate Change 2021: The Physical Science Basis: The Working Group I contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Figure SPM 4 & Table SPM.1
35. Figure taken from: Heise, R. (2021). NATO is responding to new challenges posed by climate change. NATO Review. https://www.nato.int/docu/review/articles/2021/04/01/nato-is-responding-to-new-challenges-posed-by-climate-change/index.html?utm_medium=email&utm_campaign=NATO%20Review%20Climate%20change&utm_content=NATO%20Review%20Climate%20change+CID_b2c24644d5ff9c8a88e838e17f079ac4&utm_source=Email%20marketing%20software&utm_term=READ%20MORE
36. Intergovernmental Panel on Climate Change (2021). Climate Change 2021: The Physical Science Basis: The Working Group I contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Table 4.2 (temp) and pg. 12-98 (permafrost)
37. Yu, Q., et al. (2017). "Circumpolar arctic tundra biomass and productivity dynamics in response to projected climate change and herbivory." Global Change Biology 23(9): 3895-3907.

References cont.

38. Meredith, M., et al. (2019). "Polar Regions. Chapter 3, IPCC Special Report on the Ocean and Cryosphere in a Changing Climate." Special Report for the Intergovernmental Panel on Climate Change. Figure 3.3 (sea ice)
39. Alaska Natives Commission Staff. Demographic & Geographic Sketches of Alaska Natives. Alaska Natives Commission Final Report. M. Irwin.
40. Bird, K. J., et al. (2008). Circum-Arctic resource appraisal: Estimates of undiscovered oil and gas north of the Arctic Circle, US Geological Survey.
41. Borgerson, S. (2013). "The coming Arctic boom: As the ice melts, the region heats up." Foreign Affairs. 92: 76.
42. Ross, E. (2017). How China's Arctic Empire will Upset the Global Balance of Power. Newsweek.
43. Humpert, M. and A. Raspotnik (2012). "The future of Arctic shipping, The Arctic Institute." Center for Circumpolar Security Studies.
44. Based on reporting by AP, RIA, TASS, and Interfax (2017). On Northern Tour, Putin Urges Greater Arctic Presence For Russia.
45. Department of the Air Force (2020). Arctic Strategy: Ensuring a Stable Arctic Through Vigilance, Power Projection, Cooperation, and Preparation. Washington, DC. Accessed at <https://www.af.mil/Portals/1/documents/2020SAF/July/ArcticStrategy.pdf>
46. Forsyth, M. (2018). "Why Alaska and the arctic are critical to the national security of the United States." Military Review 98(1): 113.
47. Moss, R. H., et al. (2016). "Understanding Dynamics and Resilience in Complex Interdependent Systems, Prospects for a Multi-Model Framework and Community of Practice." Workshop Report, US Global Change Research Program Interagency Group on Integrative Modeling.
48. Persson, Å. (2019). "Global adaptation governance: An emerging but contested domain." Wiley Interdisciplinary Reviews: Climate Change 10(6): e618.
49. Intergovernmental Panel on Climate Change (2021). Climate Change 2021: The Physical Science Basis: The Working Group I contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. pg 12-47 (1:100yr), 12-46 (sea level), and 12-47 (ocean temp)
50. Yamada, Y., et al. (2017). "Response of tropical cyclone activity and structure to global warming in a high-resolution global nonhydrostatic model." Journal of Climate 30(23): 9703-9724.
51. Woetzel, J., Pinner, D., & Samandari, H. (2020). *Climate Risk and response in Asia*. McKinsey Global Institute. <https://www.mckinsey.com/business-functions/sustainability/our-insights/climate-risk-and-response-in-asia>
52. Vousdoukas, M. I., et al. (2020). "Sandy coastlines under threat of erosion." Nature climate change 10(3): 260-263.
53. Barford, E. (2013). "Rising ocean acidity will exacerbate global warming." Nature News.
54. Szmigiera, M. (2021) Forecast of the world population in 2019 and 2100, by continent. Statista. <https://www.statista.com/statistics/272789/world-population-by-continent/>
55. Lloyd's List (2020). Lloyd's List One Hundred Ports 2020. L. Nightingale, Lloyd's List. <https://lloydslist.maritimeintelligence.informa.com/one-hundred-container-ports-2020>

References cont.

56. Richter, F. (2020). These are the top 10 manufacturing countries in the world. World Economic Forum. <https://www.weforum.org/agenda/2020/02/countries-manufacturing-trade-exports-economics/>
57. Figure taken from: AJOT (2019). Port of Guangzhou (Nansha) up in 2018 Global Port Rankings. American Journal of Transportation. <https://www.ajot.com/news/port-of-guangzhou-nansha-up-in-2018-global-port-rankings>
58. Lam, V., et al. (2016). "Projected change in global fisheries revenues under climate change." *Scientific Reports* 6(1): 1-8.
59. Buchholz, K. (2020). Rising Sea Levels Will Threaten 200 Million People by 2100. Statista. <https://www.statista.com/chart/19884/number-of-people-affected-by-rising-sea-levels-per-country/>
60. Figure taken from: Myers, S. L. (2020). "After covid, China's leaders face new challenges from flooding." *The New York Times*. <https://www.nytimes.com/2020/08/21/world/asia/china-flooding-sichuan-chongqing.html>
61. Figure taken from: LovePik (2020). Guangzhou Huangpu Port. <https://lovepik.com/image-501618574/guangzhou-huangpu-port.html>
62. Figure taken from: Khan, M. R., et al. (2021). "High-density population and displacement in Bangladesh." *Science* 372(6548): 1290-1293.
63. Shi, L. and S. Moser (2021). "Transformative climate adaptation in the United States: Trends and prospects." *Science*.
64. Rohat, G., et al. (2019). "Projections of human exposure to dangerous heat in African cities under multiple socioeconomic and climate scenarios." *Earth's Future* 7(5): 528-546.
65. Spinoni, J., et al. (2020). "Future global meteorological drought hot spots: a study based on CORDEX data." *Journal of Climate* 33(9): 3635-3661.
66. Mbow, C., et al. (2019). Food Security. Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D.C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley. Figure 5.4
67. Intergovernmental Panel on Climate Change (2021). Climate Change 2021: The Physical Science Basis: The Working Group I contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. pg 12-37
68. Vousdoukas, M. I., et al. (2020). "Sandy coastlines under threat of erosion." *Nature climate change* 10(3): 260-263.
69. Hallum, C. and K. W. Obeng (2019). "The West Africa Inequality Crisis: How West African governments are failing to reduce inequality, and what should be done about it." Oxfam International. <https://oxfamlibrary.openrepository.com/bitstream/handle/10546/620837/bp-west-africa-inequality-crisis-090719-en.pdf>
70. International Crisis Group (2020). Violence in Nigeria's North West: Rolling Back the Mayhem. *Africa Report N°288* Brussels, Belgium.

References cont.

71. Fragile States Index (2021). "Measuring Fragility: Risk and Vulnerability in 179 Countries." Retrieved 10/14/2021, 2021, <https://fragilestatesindex.org/>
72. Muggah, R. (2021). In West Africa, Climate Change Equals Conflict. Foreign Policy.
73. Jalloh, A., et al. (2013). "West African agriculture and climate change: a comprehensive analysis." International Food Policy Research Institute, Washington, DC.
74. Figure taken from: IOM (2020). Responding to the pandemic amid multi-layered crises in the Sahel: "Stop the virus, not the people". Africa Renewal. <https://www.un.org/africarenewal/news/coronavirus/responding-pandemic-amid-multi-layered-crises-sahel-%E2%80%9Cstop-virus-not-people%E2%80%9D>
75. de Lima, C. Z., et al. (2021). "Heat stress on agricultural workers exacerbates crop impacts of climate change." Environmental Research Letters 16(4): 044020.
76. Figure taken from: Matthews, B. (1996). "Climate engineering." A critical review of proposals, their scientific and political context, and possible impacts, compiled for Scientists For Global Responsibility, School of Environmental Sciences, UEA, Norwich, November: 1-38.
77. National Research Council (2015). Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration. Washington, DC, The National Academies Press.
78. Field, C., et al. (2021). "Reflecting Sunlight: Recommendations for Solar Geoengineering Research and Research Governance," National Academies of Sciences, Engineering, and Medicine.
79. National Academies of Sciences, Engineering, and Medicine (2015). Climate Intervention Is Not a Replacement for Reducing Carbon Emissions; Proposed Intervention Techniques Not Ready for Wide-Scale Deployment. <https://www.nationalacademies.org/news/2015/02/climate-intervention-is-not-a-replacement-for-reducing-carbon-emissions-proposed-intervention-techniques-not-ready-for-wide-scale-deployment>
80. McNutt, M. A., Waleed; Doney, Scott; Titley, David. (2015) "Climate Intervention", Presentation to National Research Council of the National Academies, Board on Atmospheric Sciences and Climate: 18. <https://www.nap.edu/resource/18805/climateinterventionpresentation.pdf>
81. Mora, C., et al. (2017). "Global risk of deadly heat." Nature climate change 7(7): 501-506.
82. Spinoni, J., et al. (2020). "Future global meteorological drought hot spots: a study based on CORDEX data." Journal of Climate 33(9): 3635-3661.
83. Intergovernmental Panel on Climate Change (2021). Climate Change 2021: The Physical Science Basis: The Working Group I contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. pg. SPM-5, and Figure SPM-1

References cont.

84. Intergovernmental Panel on Climate Change (2021). [Climate Change 2021: The Physical Science Basis: The Working Group I contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change](#). pg. SPM-15
85. Lynas, M., et al. (2021). Greater than 99% consensus on human caused climate change in the peer-reviewed scientific literature. [Environmental Research Letters](#), 16(11), 114005.
86. Intergovernmental Panel on Climate Change (2021). [Climate Change 2021: The Physical Science Basis: The Working Group I contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change](#). pg. SPM-10, Figure SPM-3
87. Rantanen, et. al. (2022). "The Arctic has warmed nearly four times faster than the globe since 1979". [Communications earth and environment](#) (2022)3:168. www.nature.com/commsenv