
An Automated Approach to Re-Hosting Embedded
Firmware by Removing Hardware Dependencies

Austin Ketterer∗ψ, Asha Shekar∗†, Edgardo Barsallo Yi†, Saurabh Bagchi†, Abraham Clements‡
ψAMD, Fort Collins, USA. austinketterer@gmail.com

†Purdue University. West Lafayette, USA. {shekara, ebarsall, sbagchi}@purdue.edu
‡Sandia National Labs*. Alburquerque, USA. aacleme@sandia.gov

Abstract—Firmware emulation is useful for finding vulnerabil-
ities, performing debugging, and testing functionalities. However,
the process of enabling firmware to execute in an emulator
(i.e., re-hosting) is difficult. Each piece of the firmware may
depend on hardware peripherals outside the microcontroller
that are inaccessible during emulation. Current practices involve
painstakingly disentangling these dependencies or replacing them
with developed models that emulate functions interacting with
hardware. Unfortunately, both are highly manual and error-
prone. In this paper, we introduce a systematic graph-based
approach to analyze firmware binaries and determine which
functions need to be replaced. Our approach is customizable
to balance the fidelity of the emulation and the amount of effort
it would take to achieve the emulation by modeling functions.
We run our algorithm across a number of firmware binaries
and show its ability to capture and remove a large majority of
hardware dependencies.

Index Terms—emulation, firmware, static analysis

I. INTRODUCTION

In today’s world, the utilization of embedded systems is al-
most guaranteed. As they become more connected, they are ex-
posed to cyber-security concerns such as remote-exploitation.
However, ensuring the correct operation and security of
embedded systems is complicated by the tight coupling of
the firmware with its hardware. Re-hosting firmware in an
emulator enables deep inspection of a firmware’s execution
because every element of its execution can be monitored.
Thus, firmware emulation can facilitate vulnerability detection
and mitigation, embedded software testing, verification of safe
behavior, and firmware analysis beyond the capabilities of
physical hardware [15].

HALucinator [5] is a promising approach to embedded
firmware re-hosting that leverages high level emulation. It pro-
vides hand-written proxy functions to replace functions used in
embedded firmware that rely on non-standard hardware. Thus,
the firmware can be run in an emulated environment and be
inspected for vulnerabilities. However, this approach involves
a considerable manual effort from the analyst and relies on
their familiarity of the firmware to identify the parts that need
to be modeled to decouple the firmware from the hardware
and to create the proxy functions. This paper puts forth an
automated approach for decoupling firmware from hardware
when using high level emulation for re-hosting. This process is
meant to inform emulation carried out by high-level emulators

∗These authors contributed equally.

like HALucinator and QEMU. Interaction with hardware, for
example, may cause trouble when the firmware is waiting on a
hardware action to continue. With no hardware, the firmware
may get stuck waiting forever. Decoupling a firmware from
hardware involves identifying which of its functions cannot
execute correctly without hardware. To date, this has been a
tedious, manual, and iterative process — identify and replace
a function with a stub and run the firmware to see if it exhibits
the expected behavior; if not, replace some other function. We
aim to change the process of identifying the functions to be
modeled from an art to an automated solution that leverages
dependency information to identify functions that should be
modeled, removing a firmware’s dependency on its hardware
while balancing the effort required to model the functions.

Our solution is based on two algorithms for the firmware
analysis: Min-Cut and Simulated Annealing. Both algorithms
rely on the idea that firmware, at the function level, can
be partitioned into a retained set and a removed set. The
retained set contains the firmware’s functions that would
be retained in their original form for emulation, while the
removed set contains the firmware’s functions that should be
removed entirely or replaced with models. A subset of the
retained set is called the must retain set. These are nodes
the user has required to be kept in the firmware. There is
also a subset of the removed set called the must remove
set. Functions in the must remove subset are required to be
removed from execution as they include hardware dependent
functions. The remaining functions can either be retained or
removed depending on the results of our algorithms, placed
in either the suggested retain subset or suggested remove
subset. The output of the algorithms is a list of the removed
functions and another list of the retained functions. The former
list, called removed set, includes the functions that need to be
modeled and replaced with proxy functions prior to emulation.
While the task of creating models for the removed functions
is still required, the manual task of iteratively running the
emulation to identify where the firmware crashes is replaced
with our algorithm that identifies the set of functions that needs
modeled to satisfy the dependencies of the retained executable
portions of firmware.

In summary, our contributions are as follows: 1) We pro-
vide an algorithmic technique to aid high level emulation
in deciding which functions to model. This enables one to
partition a firmware such that it is decoupled from its hardware

SAND2022-11704CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

dependencies yet retains its core functionality 2) We provide
a policy-driven approach for users to indicate what part of the
emulation needs to be performed with fidelity and what parts
can be skipped. 3) We perform binary analysis on the firmware
to determine the types of dependencies present and decide
which need to be removed. 4) We show that our approach
enables high level emulation of various firmware from Atmel
and STMicroelectronics using HALucinator.

II. BACKGROUND

Our approach relies on function call graphs (CFGs) and
Data Dependency Graphs (DDGs) to represent the information
recovered from the binary analysis. A CFG represents the
known calls possible within a program. Each of the nodes
are functions, and the edges represent a call from the source
to the destination. Nodes and edges contain data about the
functions and their relations to one another. We apply various
weights to the nodes and edges to capture information about
how difficult modeling a particular function would be and how
removing it would impact the rest of the program.

A

B C D

E

G H

Fig. 1. Example CFG

A

B

HW

C

HW

Fig. 2. Example of Utility Issue

Figure 1 shows the CFG of a section of a program. Nodes
represent functions, and the arrows represent calls. The dashed
line represents a cut being made. Our algorithms seeks to
identify a cut that is the border where functions in the removed
set will be replaced with models during emulation. In the
example, we can see that four nodes remain on the top retained
half, and three nodes are in the bottom removed half. The
nodes that are called across the line are border nodes. By
this cut, C and D will not call E but call a model built on
HALucinator that will mimic E’s behavior. Although three
nodes are removed by the cut, E is the only one that has to
be modeled as it is the only one called from the retained set.
Therefore, when considering the effort to implement this cut
in HALucinator, it is important to look at how many removed
nodes are on the border rather than the total number of
removed nodes. We now introduce different possible scenarios
which were considered when designing both algorithms.
Trivial Case. The trivial case is to remove all nodes interacting
with hardware (i.e., all functions that read/write hardware
registers are put in the must remove set). This ensures the
program is decoupled from hardware so that we may emulate
it. Therefore, if G was the only node in the graph we knew
interacted with hardware, we could cut to just remove G.
Loss of Functionality. In the previous scenario, we simply cut
out any node that interacts with hardware. If we are willing to
sacrifice functionality, however, there are times when we can
make cuts that remove more nodes but reduce the number of

nodes on the border. This results in fewer functions to model,
hopefully leading to less implementation work.
Global Write. Let us say we have the scenario where we want
to cut E, G, and H as we decided to sacrifice E functionality.
In this case, a simple model for E could serve as a fine
replacement. However, if E makes changes that affect the
program outside the scope (e.g., E writes to global memory
that is used in another part of the program), this may have
major repercussions on the flow of the program. If the global
write is read from another function, say B, in the retained set,
we need to ensure the model for E properly initializes the
global structure (i.e., increasing the complexity of the model)
or to remove B from the emulation. Thus, our models become
simpler if all functions dependent on external data are retained
or removed. We seek to capture this dynamic in our algorithms.
Pointer Write. Finally, many functions take a pointer and
write to the address to which it points. Determining this
address can be difficult; however, we can follow a similar
approach to the previous scenario for constant pointers. If E
receives a pointer to data in B, we can remove the dependency
by removing both. Here, we want to consider E’s writes while
also monitoring if E calls any other functions and passes on
the pointer where it could be written there.

III. DESIGN & IMPLEMENTATION

We now explain how our algorithms partition a firmware
into the retained set and the removed set in order to facilitate
successful firmware emulation.
A. Cut-Sets

We classify the part of the program that must be removed
as the must remove set. These are the set of nodes that
interact with hardware and are likely to cause issues with
emulation. Although breaking all hardware dependencies may
not be needed for firmware re-hosting (e.g., a read value is
not used), our algorithms target the removal of all known
hardware dependencies as this will ensure reliable behavior
during emulation.

Similarly, there is also a must retain set. While not
required, our algorithms allow the user to place functions in
this set to specify that they must be retained in all generated
solutions. However, to guarantee the must retain set is kept,
it must be reachable from an entry point through a path of
must retain nodes. Suppose a node is in must retain but is
only reachable through nodes not in must retain, then it may
be removed as a result of those nodes’ removal. The Min-
Cut algorithm may generate a solution that removes all the
callers of the must retain nodes; thus, while the nodes remain
in the retain set, they will be unreachable during execution.
To prevent this, a shortest path between the entry point and
must retain nodes not otherwise connected is added to the
must retain set to ensure they are not indirectly cut.

All nodes not included in a “must” set are then classified by
the algorithm as either suggested remove or suggested retain.
Different trade-offs come with deciding to optionally remove
a node. One situation in which removing a node makes the
program easier to emulate is when it reduces the total number

of functions that need to be replaced. For example, there may
be one function that is not hardware dependent (e.g., not in
must remove set) that calls three separate hardware dependent
functions. If we decide to remove hardware-dependent nodes,
we would need to replace three functions. Instead, cutting
one level above requires only replacing a single function and
removes the same dependencies. Another situation where an
optional cut is beneficial is if it removes a global dependency.
In these cases, eliminating the function may reduce the risks
of having problems due to improper model implementations
during the emulation. An engineer may have two major goals
in trying to emulate firmware: to have as much functionality
retained in the original firmware as possible and to get this
emulation done promptly. These two goals are at odds as more
accurate emulation generally requires more time. These are the
two metrics that our algorithms attempt to optimize.
B. Preprocessing

To analyze the firmware, we use the reverse engineering
software Ghidra. From this analysis, we obtain information
about a function’s parameters, calls, writes and reads. The calls
are used to establish a call graph, while the writes and reads
are used to build a DDG. However, some issues may arise due
to the challenges of alias analysis and errors in Ghidra. For
example, Ghidra may miss identified targets of calls due to the
handling of ARM Thumb instructions. In Thumb instructions,
calls are made with odd addresses as the least significant bit
indicates to execute the calling function in Thumb mode. Thus,
Ghidra does not realize that a call to a function pointer+1

is not a call to a separate function but a call to the function at
function pointer. Therefore, when a pointer+1 is stored in a
data structure and then called later, Ghidra did not identify a
call for this. To fix this issue, we develop a script to establish
an edge between all functions that use that portion of the
data structure to the function stored within. This may be an
overestimate, but a few major connections in the graph were
missing without this analysis.
Hardware Identification. The DDG provides information
regarding the list of addresses, their lengths, and the functions
that have read from or written to that location. Assuming the
firmware’s intended board is known, the information about the
memory map can be found. From this information, hardware
write and reads, as well as global writes and reads, can be
identified by their address.
Escape Analysis. Another valuable input is knowing the dy-
namic scope of the functions, i.e., the function either generates
or uses data that persists after the function returns. Telling
where all possible memory locations to which a pointer could
point is difficult. We use Ghidra to determine if a write is
made to pointers that are not in the current function’s context.
We also look for pointers that are passed in and subsequently
passed as arguments to functions.

C. Min-Cut Based Algorithm

Based on the Edmonds-Karp Min-Cut algorithm [8], this
algorithm is able to separate two nodes by removing the
directed weighted edges that connect them with minimal cost.

In this particular use case, the source node points to all entry
points and interrupts of the program, and the sink node is
pointed to by all hardware interactions which need to be
removed. The intuition behind this algorithm is that the min-
cut algorithm could provide the optimal solution by weighting
the functions based on how difficult they would be to remove
and how much benefit they provide by being retained. The
difficulty of replacing a function is only based on the effort
to implement the script itself (that will emulate the function)
and is not affected by the number of invocations. However,
the algorithm outputs the edges, not nodes, that need to be
removed. Hence, to overcome this, we assign each call edge
an infinite weight and turn each node into a pair of nodes
with a weigthed edge between them. This edge corresponds
to the weight of the function, and when it is cut, it suggests
that the given function should be removed. The formula for
establishing a node’s weight is as follows:

weight = µ× effort + (1− µ)× utility (1)

The effort is established by looking at the difficulty of the
function’s implementation. This difficulty stems from how the
function could escape its local scope. If a function is self
contained, it is much easier to cut than one which affects
the rest of the program. Escaping the local scope can be
achieved by making a write to the global memory space
or to a pointer. If either of these two situations occur, the
node’s weight is increased. The specific values to be used
for any of these weights is up to the user, as the difficulty
to overcome this issue is subjective. However, this metric is
flawed in Min-Cut since each node needs a set weight before
the cut determination begins. Further, how the effort should
be weighted depends on the cut. An example is if function A
writes to a global that is only read by function B. If only A
is cut, we are left with a now missing global dependency. If
A and B are cut, there is no global dependency that needs to
be fixed. Therefore, knowing the cut is essential to properly
weighting A, but the weights cannot be established after the
cut in Min-Cut.

Based on the description of utility (i.e., valuing how much
of the program is kept) the nodes should have a weight that
describes how many nodes will be lost if a cut is made at
that location. The following examples are based on Figure 2.
If just B needs to be cut, then B should have a weight of 2,
accounting for itself and the hardware (HW) node to which
only it points. If just A should need to be cut, it should have a
weight of 1 just accounting for itself. If A and B are cut, the
result would be 3 but with them both gone a total of 5 nodes
are lost. Due to these situations in which the proper weight is
only known after the cut, an estimate of utility can be made
but it cannot be done perfectly.

To serve as an estimate for utility, a metric calculates
roughly how many nodes are between the given node and the
sink node. To do this a depth-first search is done, and then
the nodes are iterated through in a post-order traversal. Each
node that points at the sink directly is given a utility of 1.
For nodes that do not point at the sink, their utility value is

the added utility of the nodes to which that node points. For
example, if a node had two outward edges, one to a node with
utility 2 and one to a node with utility 1, its own utility would
be 3. As stated earlier, a perfect calculation is impossible for
min-cut, but this gives an estimate of each node’s utility.

These weights are then added together, and, as with both
factors, an increase in value implies it would be preferable not
to cut at that location. If a function takes more effort to remove
or has a great benefit in being retained, it would be best not
to cut it. The µ constant, a value between 0 and 1, allows
for bias towards one of the factors. Adjusting this allows to
focus on achieving the most easily implementable solution or
the solution which retains the most functionality while still
removing all directly hardware dependent functions.

D. Simulated Annealing (SA)

Simulated Annealing, inspired by the annealing procedure
of metal working [13], was devised as an effort to improve
upon the combinatorial optimization heuristic of iterative im-
provement. SA starts with an initial state as the current state
and as the best state and an initial maximum temperature as the
current temperature. While the current temperature is greater
than 0, the following process occurs. A potential neighboring
state (where a border node is moved across to the other set) is
chosen based on a move function. The energy (or cost) of that
neighboring state is calculated using the objective function.
The difference (△E) between the energy of the neighboring
state and the energy of the current state is found. If △E ≤ 0
(the chosen neighboring state is better than or the same as the
current state), the neighboring state is set as the current state
and best state. Else if △E > 0 (the chosen neighboring state
is worse than the current state), then the probability that the
neighboring state is accepted is P(△E) = e

−△E
T , where T is

the current temperature. A random number r is chosen from
the interval (0, 1). If r < P (△E), then the neighboring state
is set as the current state. If r ≥ P (△E), then the current state
is not changed. The current temperature is updated based on
the cooling schedule. Once the current temperature reaches 0,
the system “freezes,” and the best state found is the solution
output. Our implementation of SA involves defining how a
state represents the program, how the optimized parameter
is calculated, how neighboring states of a current state are
determined, and how current temperature T changes as the
algorithm progresses.

States represent a certain configuration of the whole
firmware. Thus, a state is defined by how we have di-
vided the firmware’s functions: the sets must-retain, must-
remove, suggested-retain, and suggested-remove. Functions in
the suggested-retain set have the potential to be moved to
the suggested-remove set and vice versa. Our initial state
is the output of the Min-Cut algorithm, with the goal of
determining if there are potential “better” solutions near the
solution provided by the Min-Cut algorithm.

An objective function is used to calculate the energy (E),
the optimized parameter, of a state. E is calculated as the
weighted difference between the total effort and total utility of

a given state. The total utility is calculated as the number of
functions that are retained, as that best represents the utility
of the state relative to the full utility offered by the entire
firmware. The total effort represents how difficult it would be
to account for the removed functions to make the firmware
runnable. The total effort is calculated as the sum of the
number of functions in the removed set that are called from
any function in the retained set and the number of writes
to a global variable in the removed set that are read by the
retained set. A user-determined weight is applied to the effort
and utility. we+wu = 1. Therefore, if preference wants to be
given to effort required to make the firmware runnable, then
we > wu, whereas wu > we if preference to utility of the
firmware is desired. The objective function is as follows:

(we × effort)− (wu × utility) (2)

IV. EVALUATION

Methodology. We evaluated our approach over a series of
firmwares sourced from different vendors: a) STM32-Cube
HAL library for STM32F4 boards (”STM-”) [2]; b) a se-
lection of programs for the STM Nucleo chosen to use in
Pretender [10]; c) Atmel’s Advanced Software Framework
for SAM R21 boards(”Atmel-”) [1]. Through our evaluation,
we show that as we vary the weighting between utility and
effort, our approach comes up with viable solutions that
scale as planned—which also meet the basic requirement of
removing all must remove nodes and retaining all must
retain nodes. The complete set of results can be found at
https://github.com/purdue-dcsl.
Variation of Utility Weight. Figure 3 shows how the Min-Cut
algorithm performed over variation of the utility weight. Only
the utility weight is shown as the effort weight is implied
to be 1 − utility. The important factors to look at are the
performance of the cut at 0 and 1. A cut at 0 represents a graph
purely weighted by effort, while a cut at 1 is purely weighted
by the utility. As shown in the figure, as the weight utility get
closer to 1, more nodes are retained. Note that the percentage
is shown as the number of suggested nodes retained. These
nodes can be either removed or retained. Therefore, the value
of the utility increases as the number of nodes retained.

Although the trend in Figure 4 is that the number of border
nodes increases as weight utility, this does not necessarily need
to be the case. As the number of border nodes does not purely
calculate weight effort, it can vary in either direction as weight
utility increases. A few nodes that do not escape their context
may be less work to implement than single nodes that write
to many globals. For example, Atlem-SD-FatFS begins with
10 border nodes in a pure effort weighting and then drops to
8 border nodes when the utility increases.
Pointer Enhancement. Fixing the Thumb mode pointer is-
sue did not significantly increase the number of reachable
functions in the call graph as shown in Table I. The labels
in the table are Total Fxns, the total number of functions in
the binary, Reachable, for all functions that were found to be
statically reachable from the initial Ghidra analysis, and En-
hancement, for all nodes that were found to be reachable after

0 0.2 0.4 0.6 0.8 1
0.6

0.7

0.8

0.9

1

Weight Utility

%
N

od
es

R
et

ai
ne

d

STM-UDP-Client(n=279)
STM-TCP-Server(n=264)
Atmel-SD-FatFs(n=188)
Nucleo-Rd-HT(n=183)

Fig. 3. Effect of Wu on % Nodes Retained (Min-Cut)

0 0.2 0.4 0.6 0.8 1
4

8

12

16
17

Weight Utility

#
of

B
or

de
r

N
od

es STM-UDP-Client(n=279)
STM-TCP-Server(n=264)
Atmel-SD-FatFs(n=188)
Nucleo-Rd-HT(n=183)

Fig. 4. Effect of Wu on # of Border Nodes (Min-Cut)

the enhanced pointer analysis. A few binaries did see sections
that were missing in the call graph get attached through new
edges, but many functions are still never reachable. This can be
attributed to two possible causes: 1) the dynamically computed
calls are still missing from the call graph; 2) as these binaries
were compiled, library functions that are unused were included
(e.g., dead code). If the compiler chose not to optimize them
out, then they may be included in the binary even if they are
unreachable in the normal flow of the program. To test how
compilation affected the results, The FatFS file was tested at
O0 – which was used for all other examples as well – and also
O2 as a comparison. When increasing the optimization level,
the number of both functions reachable and unreachable both
dropped. This can be explained by potential for functions to be
inlined and more aggressive removal of dead code. However,
it is possible both dynamic calls are used which could not be
identified statically are still present and also some dead code
is still present. Total Fxns Reachable Enhancement

STM-UART 71 57 57
STM-FatFS O0 277 157 157
STM-FatFS O2 222 122 122
STM-UDP-echo-client 464 257 279
STM-UDP-echo-server 459 247 269
STM-TCP-echo-client 473 259 267
STM-TCP-echo-server 474 256 264
STM-plc 994 310 338
Atmel-SD-FatFS 47 40 40
Atmel-LwIP-HTTP 223 188 188
Atmel-6LoWPAN-Sender 483 155 168
Nucleo-blink-led 189 142 142
Nucleo-read-hyperterminal 304 175 183
Nucleo-rf-door-lock 335 185 193
Nucleo-thermostat 304 175 183

TABLE I
POINTER ENHANCEMENT BENEFIT (# OF FUNCTIONS)

Simulated Annealing. To compare the benefits of SA, we
use the results from the Min-Cut as a baseline. Table II shows
which solutions turned out to be better or equal after running
SA. Only in a handful of situations, SA was able to find a
better solution, showing that min-cut can be improved. Some
reasons that explain this include: a) the Min-Cut was able to
find the best solution instantly most of the time; b) SA was
not given enough time to run and explore. Table III shows
the runtime in seconds of Min-Cut and of SA at different
iterations ran. Min-Cut is a much simpler algorithm that
runs faster than even SA at its lowest # iterations. As SA
iterates, its runtime grows linearly. Given that the total number
of combinations that n nodes could reach between having sets
of retained and removed nodes is 2n, it is possible that the #
of iterations was not high enough, and better solutions may

appear at higher # iterations. We can conclude that from 10K to
100K iterations, SA could not find a better, less costly solution.

0 0.2 0.4 0.6 0.8 1
STM-UART ✓ - - - - -
Atmel-UART - ✓ ✓ - - -
Atmel-SD-FatFs - - ✓ - - -
Nucleo-blink-led ✓ - - - - -
Nucleo-Rd-HT ✓ - - - - -
Nucleo-rf-door-lock - - - ✓ - -
Nucleo-thermostat ✓ - - - - -

TABLE II
SA GENERATED BETTER SOLUTIONS

RT
Min-cut 0.19
1000 1
10000 9
100000 98

TABLE III
RUNTIME OF MIN-CUT VS

SA VARYING # ITERATIONS

Basic Block Coverage. Next, we look at the total number of
basic blocks that are reachable from our generated solutions
in Table IV. This gives an understanding of how much of
the original firmware we are removing with our cuts and how
much is retained. The table shows: TTL or total # of basic
blocks of the binary; RCH or the # nodes that appear to
be reachable from a static analysis; PRTN or the # of basic
blocks that PRETENDER was able to reach in its runs; IDL
or the ideal # of basic blocks for the best cut solution (fully
effort weighted/fully utility weighted); and DYN or dynamic
analysis. Regarding PRTN, recall that PRETENDER uses
QEMU to determine basic block counts, so it is possible that
Ghidra and QEMU define basic blocks differently. Further,
PRETENDER also dynamically measured their basic blocks;
thus, their number is highly dependent on the inputs given to
the system. Finally, the dynamic analysis has only been done
for one basic program. Although it was originally intended
for all the programs, we revised this decision. Making ideal
models and input for these systems is time intensive, and the
ideal is already known. Further, it is also not fully known how
many should be able to be hit if the firmware is being used
as intended. A HAL function, for example, could support five
different ways of using it, but if it is only being used for part
of its functionality, it will likely never hit certain blocks.

TTL RCH PRTN IDL DYN
STM-UART 497 469 ✗ 246/256 66
STM-FatFS 2296 1687 ✗ 1416/1416 ✗
STM-UDP-echo-client 5682 3935 ✗ 2110/3600 ✗
STM-UDP-echo-server 5240 3436 ✗ 2046/3111 ✗
STM-TCP-echo-client 5905 3444 ✗ 2041/3106 ✗
STM-TCP-echo-server 5495 3398 ✗ 2008/3073 ✗
STM-plc 9371 4080 ✗ 3566/3701 ✗
Nucleo-blink-led 2165 1916 218 573/1580 ✗
Nucleo-read-hyperterminal 2781 545 828 658/1847 ✗
Nucleo-rf-door-lock 2840 1992 665 1615/1770 ✗
Nucleo-thermostat 2781 2183 1263 658/1847 ✗

TABLE IV
BASIC BLOCK COVERAGE OF SOLUTIONS

Affecting Resulting Outcome. Here we present an example

on the UDP-echo-client firmware to show how manually
putting nodes in the must retain and must remove sets can
affect the overall outcome. The results are shared for the Min-
Cut and SA algorithms. First, at a utility weight of 0.2, the
initial cut suggested by the algorithms was to cut at a border
comprised of 6 must remove nodes and a single suggested
remove node, being the BSP Config function. Then, we added
the BSP Config function to the must retain set. After doing so,
the cut comes out to a border of 10 must remove nodes. This
shows that the suggested cut of removing the BSP Convig
function saved the work of implementing one node on the
border instead of 4. To test manually adding nodes to must
remove, a random function, User Notification was added.
Previously it was not included in the cut, but after being put
in must remove, it was then included as a suggested border
node to be cut.

V. RELATED WORKS

Avatar2 [11], PROSPECT [12], and SURROGATES [14]
employ HITL (Hardware-in-the-Loop) to emulate system ex-
ecution. This method is beneficial since it makes emulating
peripherals unnecessary, thus overcoming the challenge with
high confidence. However, the drawback of HITL is that
requiring physical hardware during emulation execution, or
even worse, requiring specialized embedded hardware, limits
scalability and increases the emulation’s effort, ultimately
limiting its potential for application. Meanwhile, Pretender
[10] uses a ML-based technique, where physical hardware
is used to train peripheral models during emulation setup.
Although this technique takes less effort, the accuracy of
execution and data fidelity suffers as it is hardware dependent.

Costin Firmware Analysis [6], [7], Firmadyne [4], P2IM
[9], and HALucinator [5] are some of the emulators that do
not require the use of physical hardware during the process
of attaining emulation. Not requiring specialized hardware
allows the techniques to be scalable and reduces the effort of
having to configure the technique to each specific hardware.
However, not being able to rely on the physical hardware for
emulation implies that the firmware needs to be patched up
to handle any hardware accesses. All four of these techniques
use QEMU [3] as its base emulator, which does not handle
peripherals being accessed by firmware. The methods among
these techniques for handling peripherals vary, but the common
aspect is that patching up the firmware to handle hardware
access is a manual process that takes time and effort. Contrary,
our proposed approach aids to reduce the effort invested by
the developer patching the firmware.

VI. LIMITATIONS

Our approach is based on the information that Ghidra is
able to provide about the control flow and data dependencies.
This base is, as of now, imperfect. Any improvements to this
process would help create a more accurate result. Furthermore,
the Min-Cut algorithm has limitations in that it can only
estimate the level of effort and utility and cannot give a true
measurement. SA is much more capable but is limited by the

amount of space it can search, so it has no guarantee of finding
the best solution in the entire search space.

VII. CONCLUSION

Through this effort, a formal approach to removing de-
pendencies was started, creating a guided method through
which hardware dependencies can be removed more easily to
facilitate firmware re-hosting. Through binary analysis, users
are able to know which functions to remove to eliminate
hardware dependencies. They can tailor the algorithm through
use of retained and removed sets and a variable that instantiates
the trade-off between max utility and min effort. This method
has been shown to work for a few micro-controller firmwares.
These solutions have been shown to provide an implementa-
tion that will allow for a large amount of the original binary
to be analyzed in a completely virtual environment.

REFERENCES

[1] “Atmel advanced software framework,” 2021. [Online]. Available:
http://asf.atmel.com/docs/latest/architecture.html

[2] “STM32Cube MCU packages,” 2021. [Online]. Available: https:
//www.st.com/en/embedded-software/stm32cube-mcu-packages.html

[3] F. Bellard, “QEMU, a fast and portable dynamic translator,” in USENIX
Annual Technical Conference), Apr. 2005.

[4] D. Chen, M. Woo, D. Brumley, and M. Egele, “Towards automated
dynamic analysis for linux-based embedded firmware.” in NDSS, 2016,
pp. 1–16.

[5] A. A. Clements, E. Gustafson, T. Scharnowski, P. Grosen, D. Fritz,
C. Kruegel, G. Vigna, S. Bagchi, and M. Payer, “HALucinator: Firmware
re-hosting through abstraction layer emulation,” in 29th USENIX Secu-
rity Symposium, 2020, pp. 1201–1218.

[6] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti, “A Large-
Scale analysis of the security of embedded firmwares,” in 23rd USENIX
Security Symposium, 2014, pp. 95–110.

[7] A. Costin, A. Zarras, and A. Francillon, “Automated dynamic firmware
analysis at scale: A case study on embedded web interfaces,” in ACM
ASIA CCS, 2016, p. 437–448.

[8] J. Edmonds and R. M. Karp, “Theoretical improvements in algorithmic
efficiency for network flow problems,” J. ACM, vol. 19, no. 2, p.
248–264, apr 1972.

[9] B. Feng, A. Mera, and L. Lu, “P2IM: Scalable and hardware-
independent firmware testing via automatic peripheral interface mod-
eling,” in 29th USENIX Security Symposium, 2020, pp. 1237–1254.

[10] E. Gustafson, M. Muench, C. Spensky, N. Redini, A. Machiry, Y. Fratan-
tonio, D. Balzarotti, A. Francillon, Y. R. Choe, C. Kruegel, and G. Vigna,
“Toward the analysis of embedded firmware through automated re-
hosting,” in RAID, 2019, pp. 135–150.

[11] Z. Hu and B. Dolan-Gavitt, “Irqdebloat: Reducing driver attack surface
in embedded devices,” in IEEE Symposium on Security and Privacy,
2022, pp. 1465–1479.

[12] M. Kammerstetter, C. Platzer, and W. Kastner, “Prospect: Peripheral
proxying supported embedded code testing,” in ACM ASIA CCS, 2014,
p. 329–340.

[13] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

[14] K. Koscher, T. Kohno, and D. Molnar, “SURROGATES: Enabling Near-
Real-Time dynamic analyses of embedded systems,” in 9th USENIX
Workshop on Offensive Technologies, 2015.

[15] C. Wright, W. A. Moeglein, S. Bagchi, M. Kulkarni, and A. A. Clements,
“Challenges in firmware re-hosting, emulation, and analysis,” ACM
Comput. Surv., vol. 54, no. 1, jan 2021.

*This article has been authored by an employee of National Technology & Engi-
neering Solutions of Sandia, LLC under Contract No. DE-NA0003525 with the U.S.
Department of Energy (DOE). The employee owns all right, title and interest in and
to the article and is solely responsible for its contents. The United States Government
retains and the publisher, by accepting the article for publication, acknowledges that
the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide
license to publish or reproduce the published form of this article or allow others to do
so, for United States Government purposes. The DOE will provide public access to these
results of federally sponsored research in accordance with the DOE Public Access Plan
https://www.energy.gov/downloads/doe-public-access-plan.

