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Physical aging - material evolution in the
glassy state (T<Tg) as thermodynamic
state variables evolve towards equilibrium
(usually very slowly!)
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For high-reliability designs that need to perform over decades, the
need for accurate models of physical aging are clear
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engineering stress (NMPa)
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Previous attempts at modeling physical aging

/ « Nonlinear viscoelastic constitutive model

« Simplified Potential Energy Clock (SPEC) model [1-5]

Experiments reach Simulations continue
Adolf et af equilibrium to evolve
Polymer, 2004 95 :
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Although SPEC can gualitatively predict physical aging, but quantitative
predictions are very sensitive to model parameterization.

Objective: Evaluate ability of SPEC to predict multiple measures of material
evolution using a single set of parameters
« Search for a robust calibration procedure
« Identify issues preventing accurate predictions
828/T403 (Tg ~ 900Q)
828/DEA (Tg ~ 75C)

828/T403 - Yield stress vs aging time
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[1] Caruthers et al., Polymer, 2004
[2] Adolf et al., Polymer, 2004
[3] Adolf et al., Polymer, 2009

[4] Talamini et al. SAND2021-9851CTF
[5] Cundiff et al. SAND2021-11193
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. 4 Volume Strain Contributions N [ Shear Strain Contributions A
dl, dI, dH9eV dH9ev
¥(t) = W,(H,0) +—KD(9)fff1(t — st —u )——dsdu +GD(9)fff2(t — st —u") & : 0 dsdu
\ J J
t t ¥ (t)
dodh . | [Co(6) do do — =0
. ¥ ok gk - ") —— aH
LD(B)fffB(t st t"—u" 1 du 20, J‘fﬁt(t u )ds T dsdu| Coleman- NoII>
[ ]
Thermal-Strain Contributions Thermal Contributions

o

All relaxation functions monotonically decrease from 1 to 0

Strain
* H -Hencky strain : Material time related to laboratory time by WLF-like shift factor
« I, =tr(H) -Volume strain ¢
« H9, deviatoric strain . L du C,N(t)
Integral Prefactors adt® =dt, t"—s"= J’m loga = G IN®D
« "D" -difference between glassy and rubbery s ?

Xp(0) = Xg(g) — X (6)
* K - bulk modulus
* G -shear modulus

* ( - Constant-strain heat capacity




P Stress and Relaxation Functions

dev
o(t) =|Kp1l ffl(t —s*)—ds—Lplff3(t — )—cls ZGfoz(t —5") s ds| + [Keoly — Lo (B — Op)]1 + 2Go HYEY
+ All relaxation functions monotonically decrease from 1 to 0
« Typically parameterized using stretched exponentials
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P Material Clock Definition

Material time related to laboratory time by WLF-like shift factor
du C,N(t) High shift factor - slow clock > Glassy

adt* =dt, t"—s"= fm loga = Y0 Low shift factor - fast clock > Rubbery
N(t) =0 — Oref — jfg t*—s )—ds Thermal Contribution Hotter - faster clock
dl
+Cz| I = Iy rof — ffl(t* _ S*)d—lds Volume Contribution Less dense - faster clock
’ S
t t
deev deev
"'(:4[ ffz(r —s5t" —u’) e dsdu Shear Contribution Shear strain = faster clock
00




P How does SPEC predict physical aging?

- Memory of thermal history causes shift factor to lag behind WLF.
« As the memory is forgotten, the shift factor increases, slowing relaxation processes in the model

The key to physical
aging predictions!

S m—— g=1 °C/min

do i
N(t) =6 — Orer — [f3(t* — S*)EdS 4 AN ——— ¢=10°C/min

\ - WLF

. .. an
+03( = e = [ e =59 G2 ds

Shift Factor, loga [-]

bl deev deev
+C4J’ff2(t* —s5t"—=u") T du dsdu - - - - ~

Temperature, 6 [°C]




/ Standard Calibration Approach
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Parameters: 29

« Reference Temperature 0 ef: 1

« Integral prefactor terms: 16
* K,G,a,C
* Rubbery and glassy for each
« Linear temperature dependence for each

+ Kg(0) = KJ*" + Kj(6 — Oref) :

. Relaxation functions: 8 : RIS [ ;). c.0).f: = £
+ Four relaxation functions f; '
« Two parameters per function

Bi
. ﬁ(t) =exp|— (TLL) ] Differential Scanning

Calorimetry (DSC)
* Clock Parameters: 4
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Standard Calibration Approach

200 ERAN , .
=, temp (C)
c-mo. © 29.9
_. 150 | (ema e 5 zgg .
© (DA ¢ .
o H 53.5
= (AN & o 61.2
~ (DAL ¢ 844
o 100 | O VAA ¢ vV 84.4 J
> vv‘f&‘o 4913
3 o AAe L ?9'7
o VAN e ® 1099
o 50 | Ol VAA® -
Ol VAN ®
B> VAAG®
q« ] o VAN ®
0 . L % 'V‘UA—A%,!Q—
081 082 083 084 0.85 0.86 0.87

specific volume (cm®g)

10 | | : ] |
ref
§ g | (OK/OT),= gKg =4.9 GPa|
T} -14 MPa’K
3 "[%0eee 1
% (aKw/aT)P=
(o] 4 - . —]
2 () P -12 MPa/°K
= :
Ll /M
re .
K “=3.2 GPa T o )
0 ] 1 : ] ]
20 40 60 80 100 120

temperature (C)

0.87 . — :
Adolf et al., o =570x10°/°K O P=0 MPa
Polymer, 2004 = 086 L ® P=50
(;9 . 1 P=100
- 6 H P=150
§ o5 Po16001077% o P=200
g Sc dT /dP = 0.2PK/MPa
3 084 | g - .
3 ?zﬂ C; is related
2 o . 1 todd,/dp
Q
Q L
2 082 | -
So0C
0.81 1 ] 1 1 I I
20 40 60 80 100 120 140

temperature (C)

| Start! Choose 6,4

d  Thermo-mechanical
: Analyzer (TMA)
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/" Standard Calibration Approach | Start! Choose By
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Standard Calibration Approach
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Linear CTE, ap [1078/°
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/" Standard Calibration Approach | Start! Choose By
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/" Alternative Calibration Approaches

Start! Choose 8¢

t
16
N(t)=#6 —H,.,_,E-—fﬁ;[t‘ —_q');—qu+
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/ F o m e 2 Most important part of
403,68, Cu Ca N(t) for isothermal aging
___________ - -----_—-
% : - i, N A ! D
TMA-Based f; (Traditional) Compression-Based f; Aged DSC-Based f;

fs=h

Differential Scanning
Calorimetry (DSC)

Thermo-mechanical
Analyzer (TMA)

f3=Ja

|
: Slow cool (Aged) DSC
|

| ; I
Thermo-mechanical
: Analyzer (TMA) frrag(6), ac (0) :




Solid - Model fit

Calibration Fits: 83§/T403 Dashed - Experiments
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Yield Stress Evolution (828/T403)
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/" What determines successful predictions of yield stress evolution?

Shift factor at
start of
loading

increases 2>
larger barrier
to yield

If tau2<tau3,
the thermal
history is
forgotten
before yield
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So why was the DSC method most successful?

828/T403

= fo(t)

== f3(t), TMA

=Q= f3(t), Compression
== f5(t), DSC
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— (1)
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=Q@= f3(t}), Compression
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== Oi5c =55°C, B1paa=55"C A
. oA
= sim A-'*"A pr
& exp W

10! 102 103 104
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828/T403

TMA-, 23.8
Compression-f; 33,900
DSC-f, 946.

TMA-f3 21.6

Compression-f;  0.664

» DSCDtifed gives té?ﬂoﬁ 1000, which
seems to be the sweet spot for yield stress
evolution at low aging temperatures

» Near Tg predictions are still inaccurate.
* The equilibrium yield stress is not predicted.
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Enthalpy Recovery (828/T403)
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/" Enthalpy Recovery Parameter Studies

/" Revisit DSC-based f; = f, for 828/T403
/4 * but use different coolingrates (0.5, 1, 5,9, 13,15 °C/min)
« reheating rate is constant (10 °C/min)

2.0
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MOGA - multi-objective genetic algorithm
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Objective functions formed on all 6 cooling
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shown here.

Aged condition favors longer function (higher ;)
Unaged condition favors shorter function
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/" What determines successful predictions of enthalpy recovery?

Aged condition favors broader function (lower )
Unaged condition favors shorter function
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/" So why was the compression method most successful?
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» Compression method does the best for 828/T403 simply because it gives the broadest relaxation
function (low )
+ Likely a coincidence, since the success does not repeat for 828/DEA

» Does f3; change with aging? This would imply the material is thermo-rheologically complex
» Does the WLF-shift factor lead to “over-aging™?
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7 Previous attempts at modeling physical aging
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Calibration Fits: 838/DEA
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Relaxation Functions
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Model Parameterization for 828/T403

Table 4-1. SPEC parameters produced by the baseline calibration for B28T403.

Parameter  Value  Units Experiment Reference
KJ':}" 4.9 GPa Legacy [11], Table 3-1
KI:, _ —12 MPa/K Legacy [11]., Table 3-1
K 35 GPa Legacy [11]. Table 3-1
K —12 MPa/K Legacy [11]. Table 3-1
GL'}"- 0.959  GPa Shear master curve Fig. 4-2¢

G, —2.959 MPa/K Isofrequency temperature sweeps  Fig. 4-4

Gt 8.267 MPa Shear master curve Fig. 4-2¢

G, 22918 kPa/K Isofrequency temperature sweeps  Fig. 4-4

! 2011 107%K TMA Fig. 4-6

(v 0.5 107%K? T™MA Fig. 4-5

[rasl 557 107K TMA Fig. 4-6

ol 0.5 107%/K? TMA Fig. 4.5

[ 0.605 MI/(m*-K) DSC Fig. 4-9

c 198 KJ/(m'-K?) DSC Fig. 4-9

(e 0.991 MI/(m’-K) DSC Fig. 4-9

o 1.82 kJ/(m*-K?) DSC Fig. 4-9

2 a5 °C Chosen

G 9.6 - Shear master curve Fig. 4-2a

() 327 K Shear master curve Fig. 4-2a

Oy oo K Legacy [11]. Table 3-1
Oy 22500 K Compression Fig. 4-7

P 1176 kg/m’ Legacy [3]. Table 4

T 0,835 = TMA Fig. 4-6

B 0,235 - TMA Fig. 4-6

i) 00186 s Shear master curve Fig. 4-3

i3 021 - Shear master curve Fig. 4-3

T3 0.835 s T™MA Fig. 4-6

By 025 - TMA Fig. 4-6

T 0.132 s DsC Fig. 4-9

(i 022 - DsC Fig. 4-9

proach are listed here, see Table 4-1.

Table 4-3. SPEC parameters produced by the compression-focused calibra-
tion for B28T403. Only parameters that have changed from the baseline ap-

Table 4-4. SPEC parameters produced by the DSC-focused calibration for
B28T403. Only parameters that have chagned from the baseline approach
are listed here, see Table 4-1.

Parameter  Value Units Experiment  Reference
o 0.983 MI/(m"-K] DSC Fig. 4-15
c, 197 kI/(m*-K?} DSC Fig. 4-15
(o 1,195 MI/(m*- K] DSC Fig. 4-15
L 1.38 kJ/(m*-K*) DSC Fig. 4-15
y 1e00 K Compression  Fig. 4-13
T| 129 s Compression  Fig. 4-13
B 015 - Compression  Fig. 4-13
T 129 s Compression  Fig. 4-13
B 015 - Compression Fig. 4-13
Ty 4u8 s DSsC Fig. 4-15
P 067 - DSC Fig. 4-15

Parameter  Value  Units Experiment  Source

T 0,996 MI/(m*-K) DSC Fig. 4-17
C, 386 kl/(m' K7) DSC Fig. 4-17
e 1180 MI/(m*-K) DSC Fig. 4-17
C, .54 kJ/im* K% DSC Fig. 4-17
Cy 14700 K Compression  Fig. 4-18
T3 17.6 s DSsC Fig. 4-17
[if 0.2 - DSC Fig. 4-17
Ty 17.6 s DSC Fig. 4-17
[i 021 - DSsC Fig. 4-17
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Table 5-1. SPEC parameters produced by the baseline calibration for 828DEA. Table 5-4. SPEC parameters produced by the compression-focused calibra- Table 5-5. SPEC parameters produced by the DSC-focused calibration for
Parameter Value  Units Experiment Reference tion for 828DEA. Only paramet;lers that have changed from the baseline ap- B2BDEA. Only parameters that have changed from the baseline approach are
ered 19 GPa Legacy [3]. Table 3 proach are listed here, see Table 5-1. listed here, see Table 5-1.

o 4T AP S re o hle —_—
T(E" :‘l_; r.:l_l?‘l' K Ezﬁ:i {j} I:::}: :: Parameter  Value  Units : Experiment  Reference Parameter  Value  Units Experiment  Reference
K., ~12 MPa/K  Legacy [4]. Table 3 G’ 1135 MJ/(m”-K)  DSC Fig. 5-16 G 1172 MJ/(m*-K)  DSC Fig. 5-18
et 0.9 GPa Legacy [4], Table 3 ('E. 1.22 kl/{m :‘-K-:- DSC F!g. .f-lh {'; 2.6 I-;J,-’[m"\- K-) DSC Fig. 5-18
Gi —42 MPa/K Legacy [4], Table 3 o ].3[3(? M.Tl,.-.'[n‘:' K‘] DSC F!g. :_:n—Iﬁ e 1.381 MJ.;'{II}' IE; nscC F?g. 5-18
G 45 MPa Legacy [4], Table 3 Ca 0.83 kI/(m”-K%) DSC ~  Fig 316 Co 0.69 kI/(m-K) DSC Fig. 3-18
G, 0 KkPa/K Legacy [4], Table 3 Cy 24300 K Compression  Fig. 5-14 Cy o000 K Compression  Fig, 5-19
! 220 10-°/K TMA Fiz. 5-5 T 142 s Compression  Fig. 5-14 T 8590, s DSC Fig. 5-18
af 0 Hl_“f-"KE TMA Fi:. 55 i 021 - Compression  Fig. 5-14 [ 022 - DSC Fig. 5-18
Hﬁ.f 562 m_f:f.K T™A FL: 5.4 T 142 s Compression  Fig, 5-14 Ty 800, s DSC Fig. 5-18
G'z 0.7 m_&'} K2 T™A F_L; 5.4 B 027 - Ct.llr]ll‘p]'e.‘-'sim\ Fig. 5-14 By 022 - Dsc Fig. 5-18
cr 1146 MI/(m-K) DSC Fig. 5-8 i o o L
c, 129 kI/(m*-K?) DSC Fig. 5-8 : S - i
el 1L379 MJ/(m-K) DSC Fig. 5-8
C 065 kl/im*. K?) DSC Fig. 5-8
Brer 5 °C Chosen
¢ 1.6 - Shear master curve  Fig. 5-1a
) 4000 K Shear master curve  Fig. 5-1a
Oy 1 K Legacy [4]. Table 3
Cy 13700 K Compression Fig. 5-6
o 1176 kg/m? Legacy [3]. Table 4
7 4.0 s TMA Fig. 5-5
Bi 0.26 — TMA Fig. 5-5
T 1.25 s Shear master curve  Fig. 5-2
iR 0.23 - Shear master curve  Fig. 5-2
T3 410 s T™MA Fig. 5-5
Bs 026 - TMA Fig. 5-5
Ty 6.80 s DSC Fig. 5-8
B 0.36 - DSC Fig. 5-8
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Parameter 8§28T403 828DEA  Units
TI=T 0.835 41.0 8
B1 = B3 0.25 0.26
T 0.0186 .25 8
B 0.21 0.23
T4 0.132 6.80 3
ﬁ4 0.22 .36
Tl fl’g — T_J.f.f"Tg 45 33
T4/ T2 7 5
100_
10714
10—2_
=@— f,(t/1;), TA03
10,3_ == f,(t/T2), DEA
=Q= f3(t) = fL(t/T2), T403
== f3(t/12) = fi(t/12), DEA
=@= f,(t/1;), TA03
== f,(t/T;), DEA
10_4 T T T T T T T T
10~ 1073 10°! 10! 103 105 107 10°
Time, t [s]

Relaxation Function Parameters

Compression f3

Parameter 828T403 828DEA  Units
T =13 129 1.42 s
Bi = Bs 0.15 0.27
(%) 0.0186 1.25 S
B> 0.21 0.23
T4 49 8 15.8 s
B4 0.67 0.34
‘|'.'|;'a‘|'.'_".n_ — ‘L'_:.j'fg 6935 1.1
T4/ T 2667 13
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£ 10!
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g
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o =0— f,(t/7;), TA03
=—fy= £, (t/T;), DEA
104 T T : T . w T T
107> 1073 107! 10! 10° 105 107 10°
Time, t [s]

DSC f;

Parameter 828T403 828DEA  Units
T 0.835 41.0 5
B 0.25 0.26
T 0.0186 1.25 s
B 0.21 0.23
T3="T4 17.6 890). s
B3 = P4 0.21 0.22
T/ T 45 33
T3/ =T/D 046 712
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Yield Stress Evolution, Stress-strain curves (828/T403)
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Comp. f3

Yield Stress Evolution (828/DEA)
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Yield Stress Evolution, Stress-strain curves (828/DEA)
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/" What determines successful yield stress evolution?
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/" Enthalpy Recovery (828/DEA)
3
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