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Miguel Jiménez-Aparicio
Sandia National Laboratories

Albuquerque, NM, USA

Matthew J. Reno
Sandia National Laboratories

Albuquerque, NM, USA

Felipe Wilches-Bernal
Sandia National Laboratories

Albuquerque, NM, USA

Abstract—This paper proposes a framework to explain and
quantify how a Traveling Wave (TW)-based fault location clas-
sifier, a Random Forest, is affected by different TW propagation
factors. The classifier’s goal is to determine the faulty Protection
Zone. In order to work with a simplified, yet realistic, distribution
system, this work considers a use case with different configura-
tions that are obtained by optionally including several common
distribution elements such as voltage regulators, capacitor banks,
laterals, and extra loads. Simulated faults are decomposed in
frequency bands using the Stationary Wavelet Transform, and
the classifier is trained with such signals’ energy. SHapley
Additive exPlanations (SHAP) are used to identify the most
important features, and the effect of different fault configurations
is quantified using the Jensen-Shannon Divergence. Results show
that distance, the presence of voltage regulators and the fault
type are the main factors that affect the classifier’s behavior.

Index Terms—Power System Protection, Traveling Waves,
Distribution Systems, Machine Learning, Stationary Wavelet
Transform, SHapley Additive exPlanations

I. INTRODUCTION

The development of Traveling Wave (TW)-based protection
schemes for the distribution level is a common topic in the
research community. Advanced signal processing techniques
are used to get insightful information on those fast transients
[1]. Most of the proposed approaches use Machine-Learning
(ML) or Deep-Learning models (DL) when it comes to pre-
dicting the fault location or type. However, to our knowledge,
this technology is still not used in commercial relays.

One of the main disadvantages of ML/DL approaches is
that the models are black boxes: given some inputs, the
model returns some distance to the fault or some fault type
classification. This situation is considered too risky for the
power system protection industry. Our daily lives rely on
electricity supply, and the reliability and security of the power
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system cannot rest on black-box types of solutions. Besides
these concerns on the ML/DL applicability, there are also
debugging and interpretability issues. First, the model may
be biased or wrong, but usually no insights can be directly
obtained from its internal behavior. Second, these models may
be able to unveil patterns in the data that are not obvious even
to human experts. However, if their behaviors are not analyzed,
the opportunity to expand our knowledge is lost.

In the last decades, there has been some effort in the
ML community to develop techniques that help to explain
the models’ behavior. What is perhaps the most advanced
of these, the SHapley Additive exPlanations (SHAP) [2], has
been selected for this work. The main contributions are:

• Proposing a framework, based on SHAP, to identify the
most important features in a TW fault location classifier.

• Using the SHAP values to describe the classifier’s behav-
ior on different TW propagation scenarios, and quantify-
ing the effect of several factors in the classifier’s response
using the Jensen-Shannon Divergence (JSD).

II. BACKGROUND

The application of ML for the detection and classification
of faults has taken multiple and heterogeneous approaches in
recent years. While either traditional distance protection [3],
or more recent TW relays [4], provide reliable and consistent
protection schemes for the transmission level, the intrinsic
complexity of the distribution network requires more advanced
techniques to protect distribution systems.

On the one hand, some approaches try to adapt legacy
distance protection to the new challenges [5]. On the other
hand, there is a trend to use faster time-domain methods, which
usually depend on the detection and analysis of TWs, in order
to find the fault location. The TWs are wide-band signals that
propagate at almost the speed of light when a fault occurs [6].
In this regard, multiple approaches have been developed to
get insightful information on those fast transients [1]. It has
been shown that ML-based protection approaches can return
an accurate fault location using a shorter window of time than
more traditional approaches (as low as 100 µs) [7]–[9]. These
papers use Random Forests (RFs), an algorithm is based on
Decision Trees (DTs), to predict the fault location. This work
revisits the method exposed in [7].

However, as ML algorithms become more complex, getting
insights into their behavior and the data patterns that they learn978-1-6654-9921-7/22/$31.00 ©2022 IEEE
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is much more difficult. There are several model-independent
(agnostic) approaches to compute such feature importance,
which vary in complexity and explanatory capabilities. This
can be done either globally or by aiming just at individual sam-
ples. Some basic techniques are sensitivity analysis, Individual
Conditional Expectation (ICE) or Permuted Feature Impor-
tance (PFI). Another option is to train a surrogate model [10].
Another technique, called Local Interpretable Model-agnostic
Explanations (LIME), focuses on training interpretable models
to approximate the model behavior for individual predictions
[11]. However, there is one technique that stands above the
rest for the amount of information that it retrieves: SHAP.
This tool is further explained in Section III-C1 and is the
one selected in this work. In power systems, there are just a
handful of works that uses SHAP. Some works use SHAP for
dimensionality reduction [12], but most of them use SHAP for
feature importance calculation [13], [14].

III. THE METHOD

A. Data processing and feature creation
Provided that the TWs’ frequency spectrum varies as the

wave propagates through the system, a time-frequency decom-
position of the fault signals is justifiable for feature creation.
The first step is the decomposition of the 3-phase voltages
and currents into decoupled modes (one ground mode and two
aerial modes) using the Karrenbauer Transform. Some inter-
esting properties can be attributed to these modes as outlined
in [15]: the ground mode is more sensitive to attenuation due
to distance and seems especially suitable for Single-Line-to-
Ground (SLG) faults. However, aerial modes are less prone
to show the effect of attenuation and, in general, the fault
signals are more energetic. In parallel, the TW arrival times
are computed using the approach based on the dynamic mode
decomposition presented in [16]. Each modal component is
then fed into a time-frequency decomposition stage, based on
the Stationary Wavelet Transform (SWT), to divide the signal
in frequency bands, extracting the portion of the signal that is
associated with each of them. In this regard, 6 decomposition
levels to analyze the high-frequency part of the spectrum over
100kHz. The frequency ranges, for Fs equal to 10 MHz, are
detailed in Table I. Finally, the Parseval’s Energy (PE) of the
decomposed voltage and current signals are calculated.

TABLE I: SWT Boundaries for Frequency Bands

Decomposition Level Lower Frequency Upper Frequency
1 2.5 MHz 5 MHz
2 1.25 MHz 2.5 MHz
3 625 kHz 1.25 MHz
4 312.5 kHz 625 kHz
5 156.25 kHz 312.5 kHz
6 78.125 kHz 156.25 kHz

B. Machine-Learning training
The selected algorithm is a RF, which is composed of

several DTs. In each tree (or “estimator”), nodes are itera-
tively split into leafs in such a way that the purity of the

resulting dataset division increases (i.e., the decision rules
split the dataset better into classes). For this application, the
RF selects energy values in the time-frequency decomposed
signals to predict the faulty PZ. In order to study the fault
type sensitivity to the employed decoupled modes, 3 different
training approaches are compared in this work:

• A single RF model, trained only with the ground mode.
• A single RF model, trained with the 3 decoupled modes.
• 3 RF models, each one trained with the cases of a specific

type of fault (which are SLG, LL or 3P). All of them are
trained with 3 decoupled modes.

C. Interpretation of results

This work relies on SHAP for analyzing the classifier’s
behavior, and on the JSD to quantify such differences.

1) SHAP: It is an efficient implementation of the Shapley
values theory, which was developed under the context of
cooperative game theory as a method for finding out the
players’ contribution to a final payout [17], [18]. In this
project, SHAP quantitatively determines how much the relay
prediction would have changed depending on the values of the
energy levels, which provides suggestions about how much is
the relative importance of each level in a given decision. These
results are especially insightful when these contributions are
analyzed under different fault scenarios.

For a given prediction, SHAP studies what is the aver-
age contribution of each feature in the result under several
coalitions of features. By coalition, it is meant for a certain
subset of features. By assessing the predictions of each of the
coalitions and averaging out the differences, the Shapley value
for that level is calculated. The Shapley value ϕ for a certain
feature j can be calculated using the following expression:

ϕj =
1

M

MX
m=1

(f(xm
+j)− f(xm

−j)), (1)

where M is the total number of coalitions, xm
+j is the subset

of features including feature j, xm
−j is the subset of features

excluding feature j and f(x) is the algorithm prediction
function [19]. Note that using both sets of predictions, what is
actually computed is the difference from the average prediction
in the dataset when the feature j is considered.

2) Jensen-Shannon Divergence: This metric quantifies the
similarity between two probability distributions. In informa-
tion theory, the Shannon entropy H(X) is the amount of
information required to describe a variable X (which is
inherently a probability distribution). The JSD comes from
the mixture of the Jensen divergence and the Shannon entropy
theorems. First, the Jensen divergence states that, being Ψ a
given concave function and X random variable, the expected
value of P, E(X), evaluated on Ψ, is larger than the expected
value of Ψ(X). Therefore:

Ψ(E(X))− E(Ψ(X)) ≥ 0. (2)

In the JSD, the concave function Ψ becomes the Shannon
entropy H . For 2 variables, X and Y , the JSD becomes:



Fig. 1: Distribution system use case with relays and fault locations marked
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The JSD has 2 desirable properties: first, the result is
bounded between 0 and 1 (the larger the mismatch, the larger
the divergence) and, second, the result is symmetric (which
means that JSD(X||Y ) = JSD(Y ||X)). In literature, the
square root of the JSD is preferred over the base definition
because it satisfies all the properties to be considered a metric
of distance (or a “true” metric) [20]. Therefore, in this paper,
the

√
JSD will be the metric of comparison between the

SHAP values distribution per energy level.

IV. THE USE CASE

The selected system aims to represent a simplified distri-
bution system [15]. In order to provide additional variability
to the data, several load scenarios and elements participation
configurations are considered. Therefore, at the instant where
the fault is produced, the number of laterals in the system,
the presence of extra branches within the protection zones
(PZs), and the presence of regulators and capacitor banks can
be controlled by their respective switches. The combinations
for the different elements can be observed in Tables II - V.
The system is composed of 2 PZs (named “Protection Zone
1” or PZ1, and “Protection Zone 2” or PZ2). To make a fair
comparison, the topology of both PZs is identical. The voltage
and current data are recorded at the points labeled as “Relay
1” and “Relay 2” (R1 and R2, respectively), which are the
locations of the considered protection devices. The sampling
frequency is 10 MHz. The system is shown in Fig. 1.

The total number of simulated fault cases is 6,440. This
considers 7 types of faults (3 types of SLG faults, 3 types of
Line-to-Line (LL) faults and 3-Phase (3P) fault), 5 resistance
values between 0.01 and 10 ohms, 6 fault locations (3 in each

PZ), 3 load combinations regarding laterals participation, 3
load combinations regarding the presence of extra branches
in the PZs, 2 combinations for the regulator (either present or
not in the system), and 4 combinations for the capacitor banks
(same, either present or not in the system). In total, for this
system, 32 different scenarios are considered.

TABLE II: Laterals Combinations Showing the State of Each
Switch as Either Open (0) or Closed (1)

Combination L1 L2 L3 L4
A 0 1 0 0
B 0 1 1 0
C 0 0 1 0

TABLE III: PZ Extra Branches Combinations Showing the
State of Each Switch as Either Open (0) or Closed (1)

Combination SW1 SW2
A 0 1
B 1 0
C 1 1

TABLE IV: Regulator Combinations Showing the State of
Each Switch as Either Open (0) or Closed (1)

Combination R1
A 0
B 1

TABLE V: Capacitor Banks Combinations Showing the State
of Each Switch as Either Open (0) or Closed (1)

Combination C1 C2
A 0 0
B 0 1
C 1 0
D 1 1



In order to study the behavior of a TW-based fault location
classifier, 2 experiments are considered:

1) Area Protection: The model is trained with data from R1.
The goal is to classify if the fault occurred in PZ1 (next
PZ) or PZ2 (somewhere downstream). The data is split
in 80/20% for training and testing purposes, respectively.

2) Extrapolation to PZ2 R2: The same classifier is deployed
in R2. Only the faults in PZ2 (3,220 cases) are consid-
ered, and they are used for testing. It is expected that all
the faults are predicted to be on the next PZ. However,
due to a different location, the measured energy values
are not similar and the models’ accuracy is worse. This
experiment shows the behavior of a classifier for fault
cases for which it is not trained for, and where the TW
propagation factors have a larger effect on it.

V. RESULTS

A. Area Protection and Extrapolation to PZ2 R2 Results

For the first experiment, the 3 approaches have a 100%
accuracy, as can be seen in Table VI, which means that the 7
km line in between the PZs leads to a clear attenuation of the
faults coming from PZ2 [15]. For the second experiment, the 1
model/ 3 modes approach gives the best overall performance.
For this reason, and for the sake of simplicity, the rest of the
section is based only on this approach.

TABLE VI: Models’ Accuracies

Model Overall SLG LL 3P
Area Protection
1 model/ 1 mode 100% 100% 100% 100%
1 model/ 3 modes 100% 100% 100% 100%
3 models/ 3 modes 100% 100% 100% 100%

Extrapolation to PZ2 R2
1 model/ 1 mode 61.0% 86.2% 39.9% 48.9%
1 model/ 3 modes 63.4% 81.2% 50.0% 50.0%
3 models/ 3 modes 62.8% 80.8% 49.3% 50.0%

In order to gather more insights into the wrong predictions,
a summary of the underlying combinations for the previously
described factors is shown in Fig. 2. Overall, it seems that the
voltage regulator has a large influence, as all of the failures
correspond to combinations in which the regulator was present
between the zones. Secondly, comparing the 3 fault types, SLG
fault cases are less prone to cause a wrong prediction (as was
previously introduced in Table VI). Regarding other factors,
the errors are evenly distributed between all the combinations,
so they are not as relevant.

B. Model behavior analysis with SHAP values

SHAP is applied on a per fault case basis, and the output
is an array of SHAP values of length equal to the number of
features. Gathering the values for all the cases, it is possible
to rank the features. The magnitude of a SHAP value is
proportional to the feature’s importance in the decision. Fig. 3
shows the 10 most important features (from top to bottom) in
the 1 model/ 3 modes approach. The color indicates whether
that feature was high or low for that particular sample.

Fig. 2: Distribution of incorrect prediction per factor (for
Extrapolation to PZ2 R2 of 1 model/ 3 modes approach)

Fig. 3: Feature importance for the 1 model/ 3 modes according
to SHAP using the training set’s fault cases

If the 3 most important PE levels according to Fig. 3 are
selected, the corresponding SHAP values form a set of spatial
coordinates that can be visually analyzed. The rest of the
subsection qualitatively analyzes the difference in behavior
between a classifier that works correctly (as in the “Area
Protection” experiment), and one that does not (as in the
“Extrapolation to PZ2 R2” experiment). In order to analyze
how relevant is the scenario in which the fault was produced,
the different configuration cases are compared between them-
selves. It is considered that if the SHAP values point clouds
are significantly different between 2 combinations of the same
factor, therefore this factor is relevant for TW propagation
because it requires a larger change in the classifier’s behavior.

1) Area protection experiment: Fig. 4 show the behavior of
a classifier that is able to predict the faulty PZ. Point clouds
for different configurations are mostly overlapping. This clas-
sifier deals with faults under many different TW propagation
conditions, which requires just a slight accommodation of the
most important features to take into account in each case.

2) Extrapolation to PZ2 R2 experiment: The SHAP values
between different combinations of the same factor tend to form
different point clouds in Fig. 5, which shows how the classifier
modifies its behavior to cope with slightly different input PE
level values. The changes in behavior are especially noticeable



(a) Capacitor banks (b) Laterals

(c) PZ extra branch (d) Voltage regulator

Fig. 4: 3D analysis of SHAP distributions per combinations of each factor for PZ1 and PZ2 R1

(a) Capacitor banks (b) Laterals

(c) PZ extra branch (d) Voltage regulator

Fig. 5: 3D analysis of SHAP distributions per combinations of each factor for PZ2 R2



in the case of the voltage regulator, which leads to two clearly
distinguishable point clouds.

C. Quantification using JSD

In order to quantify how similar is the behavior for different
combinations, the pair-wise similarity between the distribu-
tions is calculated using the JSD.

TABLE VII: Top Divergences per Level PZ1 R1

PE Level Factor Comb. 1 Comb. 2
√
JSD

V Aer. 1 Lev. 1 Lateral [0, 0, 1, 0] [0, 1, 0, 0] 0.772
V Gnd. Lev. 3 Lateral [0, 0, 1, 0] [0, 1, 1, 0] 0.606
V Gnd. Lev. 4 Lateral [0, 0, 1, 0] [0, 1, 0, 0] 0.526

TABLE VIII: Top Divergences per Level PZ2 R1

PE Level Factor Comb. 1 Comb. 2
√
JSD

V Aer. 1 Lev. 1 Regulator [1] [0] 0.616
V Gnd. Lev. 3 Regulator [1] [0] 0.644
V Gnd. Lev. 4 Lateral [0, 0, 1, 0] [0, 1, 0, 0] 0.593

TABLE IX: Top Divergences per Level PZ2 R2

PE Level Factor Comb. 1 Comb. 2
√
JSD

V Aer. 1 Lev. 1 Regulator [1] [0] 0.819
V Gnd. Lev. 3 Regulator [1] [0] 0.805
V Gnd. Lev. 4 Regulator [1] [0] 0.757

Tables VII-IX gather the top larger dissimilarities for each
decomposition level and PZ and relay combination. The dif-
ferences in the distributions in PZ1 R1 are mainly related to
laterals or extra branches in the PZ. However, for PZ2 R1
and PZ2 R2, the voltage regulator is the most relevant factor
that causes the large differences observed in the classifier’s
behavior. This matches the observations previously shown in
Fig. 2. In addition, for PZ2 R1, the divergences are relatively
smaller as faults are more attenuated due to the regulator.

VI. CONCLUSIONS

The behavior of a Traveling Wave (TW)-based fault location
classifier has been analyzed, using SHapley Additive exPla-
nations (SHAP) and the Jensen-Shannon Divergence (JSD),
under several TW propagation scenarios. SHAP provides the
feature contributions that led to a prediction in each fault case.
The difference in such contributions is quantified using the
square root of the JSD for the 3 most important features. A
small realistic system is employed to simplify the analysis.
Faults are simulated according to several system configurations
to enrich the classifier’s behavior (varying the number of
laterals, if the capacitor bank or the voltage regulator are
switched on or off, and if the protection zones had the
extra branch or not). A Random Forest model is trained to
provide area protection, which shows that the attenuation due
to distance is enough even in short distribution lines. The
classifier’s behavior is consistent for different fault and system
configurations. When this model is extrapolated to a fairly
similar task, there is a certain loss of accuracy in Line-to-Line
and 3-Phase faults due to the voltage regulator effect. This is

translated to erratic behavior, which can be appreciated both
visually in the SHAP values distributions and on the largest
JSD values in the most important energy levels. In conclusion,
the proposed framework analyzes and quantifies how certain
TW propagation factors disturbs the classifier’s behavior.
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