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Introduction & Summary

» Gaussian process regression (GPR) is a widely used Bayesian technique for inference
in scientific applications with limited scattered data.

» Several physical processes are described by a well-posed boundary value problem
(BVP) of the form

{Lu(x) = f(x), x€Q, 1)

Bu(z) = g(z), x € 09,

where L denotes a linear partial differential operator, {2 a domain with boundary 952,
and B a general mixed boundary operator.

» We develop a framework for Gaussian processes regression constrained by boundary
value problems, which can infer the BVP solution when only scattered observations of
the source term are available.

» The framework benefits from a reduced-rank property of covariance matrices, so it
scales well to large data regimes.

» We demonstrate more accurate and stable solution inference as compared to
physics-informed (PDE-only) Gaussian process regression without BCs.



But first: a brief survey of constrained GPR

» Since we’ll combine two types of constraints, let’s start with a survey of the evolving
field of constrained GPR.

» Why constrained GPR? In many scientific applications a large amount of data may
not be available for training.

» Unlike data from internet or text searches, computational and physical experiments
are typically extremely expensive.

» Moreover, even if ample data exists, the machine learning model may yield behaviors
that are inconsistent with what is expected physically when queried in an
extrapolatory regime.

» To aid and improve the process of building machine learning models for scientific
applications, it is desirable to have a framework that allows the incorporation of
physical principles and other a priori information to supplement the limited data and
regularize the behavior of the model.



Basics of GPR: prior and likelihood
» In GPR, a function of interest u(x) is modeled by a Gaussian process with a given mean
function m(x) and covariance function given by K (z,z") = Cov(u(x),u(z")):
u~ GP(m, K). (2)
» That is, the vector of values u(X) over a finite collection of locations X has a multivariate
normal density
u(X) ~ N(m(X), K(X, X)), (3)
where m(X) is a vector of mean values of u and K (X, X) is the covariance matrix between
the values.

» One common choice of the covariance function is the squared-exponential kernel given by
72
K no_ 2 e =2 4
(o) = stexp (=125 (@

where s? and ¢? are magnitude and length-scale parameters that control the behavior of the
covariance function, i.e., the hyperparameters.

> We assume that data or observations y at the X locations are contaminated by independently
and identically distributed Gaussian noise with variance o2, giving a likelihood function

p(ylu, X) H _ exp (—M> ‘ (5)
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Basics of GPR: posterior prediction

» Gaussian process regression proceeds by invoking Bayes’ rule to compute the posterior
distribution of f as
_ p(ylu, X)p(u|X)

p(uly, X) = ; 6
(uly, X) = P (©)
with log-marginal-likelihood
log p(y|X) = /p(y\%X)p(UIX)du
1 1 N ™
= — §yT(K(X,X) +0%In) "ty — 5 log | K(X, X) + o*Iy| — - log 2,
using the prior (3) and the Gaussian likelihood (5).
» Here, Iy denotes the identity matrix of size N x N. The predictive distribution for
u* = u(z") at a new point z* is a Gaussian with mean
Elu’] = K(2", X)(K(X, X) + 0 Ix) "y (8)
and variance
Var[u®] = K(z*,z") — K(z*, X)(K(X, X) + ¢’ In) ' K(X,z"). (9)

» The most common way to obtain hyperparameters to use maximum likelihood optimization
of the log-marginal-likelihood with respect to the covariance hyperparameters.
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GPR: A Complete Example

—f(@)
=420 training data
= f(z)
B Two standard deviations
2.5 —Two standard deviations +20,, . . .
Figure: Noise is added to some locations
2 on the black curve to generate data
15} (black crosses).
1 GPR fits a mean posterior to the data
5 after filtering out some noise with a
= 05 Gaussian likelihood, with the posterior
:2, 0 variance giving an esimate of uncertainty
05 in the prediction.
The Gaussian likelihood allows us to
1 infer white noise in the data.
-15¢
2 -1 0 1 2
x
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Strategies & Differences to look for

» Each step of GPR — sample space/prior, likelihood, posterior - gives opportunities to
enforce constraints.

» The difficulty with applying constraints to a GP is that a constraint typically calls for
a condition to hold globally — that is, for all points x in an interval I — for all
realizations or predictions of the process.

» A priori, this amounts to an infinite set of point constraints for an infinite
dimensional sample space of functions.

» This raises a numerical feasibility issue, which each method circumvents in some way.

» Some methods relax the global constraints to constraints at a finite set of “virtual”
points.

» Other methods transform the output of the GP to guarantee the predictions satisfy
constraints,

» Further methods construct a sample space of predictions in which every realization
satisfies the constraints.

» These distinctions should be kept in mind when surveying constrained GPs.



Bound constraints: warping functions and non-Gaussian likelihoods

» Bound constraints of the form a < f(x) < b over some region of interest arise
naturally in many applications, such as chemical concentration data.

» Warping functions can be used to transform bounded observations z; to
unbounded observations u; which can be treated with unconstrained GPR, then
transformed back (Jensen et al.).

> E.g., the probit function (the inverse of the CDF ® of a standard normal random
variable) transforms bounded values z € [0, 1] to unbounded values u € (—o0, 00) via
u=®"1(2).

» In addition to using warping functions, bound constraints can also be enforced using
non-Gaussian likelihood functions p(y|X, f,#) that are constructed to produce
GP observations which satisfy the constraints (Jensen et al.).

» There are a number of parametric distribution functions with finite support that can
be used for the likelihood function to constrain the GP model, such as the truncated
Gaussian or the beta distribution.

» Other approaches involve truncated MVNs and spline expansions.



Bound constraints via spline expansions

> Assume that a 1D process being modeled is restricted to the domain [0,1]. Let h(x)
be the standard tent function, i.e., the piecewise linear spline function defined by

h(z) = max(1 — |z|,0) (10)

and define the locations of the knots to be x; =i/M for i =0,1,...M, with M + 1
total spline functions.

» For any set of spline basis coefficients &;, the function representation is given by
M M
f(z) = Zfz‘h(M(l’ — ) = Zﬁihi($)~ (11)
i=0 i=0

This function representation gives a C° piecewise linear interpolant of the point
values (z;,&;) for all i =0,1,..., M.

> a< f(x) <bifa <& <b- a finite-dimensional constraint.

» Suppose we are given a set of NV data points at unique locations (x;,y;). Define the

matrix A such that
Aij = hi(w;). (12)



Bound constraints via spline expansions

» Then any set of spline coefficients £ that satisfy the equation

A=y (13)

will interpolate the data exactly. Solutions to this system of equations will exist only
if the rank of A is greater than N.

» We now assume the knot values £ to be governed by a Gaussian process with
covariance function K.

» Because a linear function of a GP is also a GP, the values of £ and y are
governed jointly by a GP prior in the form

- (] [ ) )

where each entry of the covariance matrix is understood to be a matrix.

10



Linear PDE Constraints via co-kriging or block covariance approach
» Gaussian processes may be constrained to satisfy linear operator constraints of the form
Lu=f (15)

given data on f and u. When £ is a linear partial differential operator of the form

(o3 Q. [0} g
L= ZC a=(ai, .., a4, 0% _ o o 9 (16)

8 oxe’ Ox> Ozt Oxy? T Oxgd’

the equation (15) can be used to constrain GP predictions to satisfy known physical laws
expressed as linear partial differential equations.

> If u(x) is a GP with mean function m(x) and covariance kernel k(x,x’),
u ~ GP(m(x), k(x,x")) (17)

and if m(+) and k(-,x’) belong to the domain of £, then LxL, k(x,x’) defines a valid
covariance kernel for a GP with mean function £xm(x). This Gaussian process is denoted
Lu:

Lu ~ GP(Lxm(x), LxLork(x,%)). (18)



Linear PDE Constraints via co-kriging or block covariance approach

» The notation “Lu” for the GP GP(Lxm(x), LxLx k(x,%)) is suggested by noting
that if one could apply £ to the samples of the GP u, then the mean of the resulting
stochastic process L[u] would indeed be given by

mean (L[u](x)) = E [L[u](x)] = LE [u(x)] = Lm(x). (19)
» The covariance would be given by
cov (L[u](x), L[u](x')) = E [Lx[u(x)] Ly [u(x")]]
=E [LxLx [u(x)u(x)]
= LxE [Ly [u(x)u(x)]

= Ly Lo E [u(x)u(x")] (20)

= Lx Ly [cov (u(x),u(x))]
= ,Cx,cx/k(X,X )

» This justification is formal, as in general the samples of the process
Lu ~ GP(Lxm(x), LxLx k(x,%x")) cannot be identified as £ applied to the samples of
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Linear PDE Constraints via co-kriging or block covariance approach

> If scattered measurements y; on the source term f in (15) are available at domain
points X, then this can be used to train and obtain predictions for Lu in the
standard way.

» If, in addition, measurements y, of u are available at domain points X, a GP
co-kriging procedure can be used, forming the joint Gaussian process [u; f].

» Given the covariance kernel k(x,x’) for u, the covariance kernel of this joint GP is
k X1 Xll _ k(Xl,Xll) ,Cx/k(Xl,X/Q) _ K11 Ko (21)
X9 ’ XIQ £xk’(X2,X/1) EXEXII{Z(XQ,X12> K21 K22 ’
» In this notation, the joint Gaussian process for [u; f] is then

G o (o) [y ei)]). e

113



Linear PDE Example
Comparison of unconstrained and PDE constrained GP. The PDE is —1 = d?u/dx? on the
interval [0, 1]. Data is generated from sampling the solution u = £[(2z — 1) — 1].

-0.9
=== fop(x)
— flx)

0.08

0.06

-1.0

0.04

0.02

=== ugp(x) —== ugp(x)
— u(x) 0.00 — u(x)

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 -Ll 0.0 0.2 0.4 0.6 0.8 1.0

Figure: Left: Reconstruction of u (red line) with an unconstrained GP (black line) using
10 data points (red dots) in [0.2,0.8]. Center: Reconstruction of u (red line) with a PDE
constrained GP (black line) using the same 10 data points (red dots) in [0.2,0.8]. Right:
Right-hand side f of the PDE, with 10 additional data points in [0, 1] used for the PDE
constraint. Note the improved accuracy of the constrained GP outside [0.2,0.8] due to this
constraint data.



Monotonicity and convexity: exploiting linearity and bound constraints

» Roughly speaking, given a method to enforce bound constraints, monotonicity
constraints can be enforced by utilizing this method to enforce £/ > 0 on the
derivative of the Gaussian process in a “co-kriging” setup for the joint GP [f; f'].

> Since monotonicity constraints are positivity (bound) constraints on the derivative
part of such a joint GP, the “co-kriging” setup can be combined with methods for
bound constraints to implement monotonicity constraints.

» The spline approach and truncated multivariate normal approach we reviewed for
bound constraints have both been applied to monotonicity constraints.

» The story is similar for convexity constraints in one dimension, which can be
expressed as f” > 0, but more complicated in higher dimensions, where convexity
becomes a nonlinear constraint between the second partials of a GP.



Curl-free and div-free constraints for vector-valued GPs: exploting linearity again

» Curl-free and divergence-free vector-valued GPR was developed by Narcowich &
Ward and Fusilier Jr.

» Curl-free constraint Lf =V x f =0 for f : R? — R3; f can be written f = Vg.

v

Divergence-free constraint V - f = 0 for f; f can be written f =V x g.

» Putting a GP prior on g with a square-exponential covariance kernel, curl-free and
div-free covariance kernels for the GP f can be derived analytically.

Figure: Curl-free (left) and div-free (right) GP vector field regression, from Macedo and Castro.
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Boundary Value Constraints

» In many experimental setups, measurements can be taken at the boundaries of a
system in a cheap and non-invasive way that permits nearly complete knowledge of
the boundary values.

» The work of Solin et al. introduced a method based on the spectral expansion of a
desired stationary isotropic covariance kernel k(x,x’') = k(]Jx — x’|) in eigenfunctions
of the Laplacian.

» For enforcing zero Dirichlet boundary values on a domain ), we use the spectral
density (Fourier transform) of the kernel,

s(w) = /]Rd ek (|x|)dx. (23)

» This enters into the approximation of the kernel:

m

k(x,x") = > s(Ae)ge(x)pe(x'), (24)

r=1
where A\; and ¢; are the Dirichlet eigenvalues and eigenfunctions, respectively, of the
Laplacian on the domain €.
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Samples drawn from GPs with zero Dirichelt boundary values based on Matérn kernels

¥

Matérn, Matérn, Matérn, Matérn, Matérn,
v=17240=1 v=>5/2,4=1 v="124=1 v=3/2,4=1 v="5/20=1
D
Matérn, Squared exponential, Matérn, Squared exponential, Matérn,
rv=372{4=1 L=1 v=>3/2£0=.1 =1 v=32£=.1

Figure 1: Random draws from Gaussian process priors constrained to 2D domains of various shapes. The process
goes to zero at the boundary (black line). The approach allows for non-convex and disconnected spaces. For each
domain, a random draw from a GP is shown and the assigned covariance function is shown next to the domain.
The scales are arbitrary and the color map is the same as in Fig. 3.

Figure: From Solin and Kok, “Know your boundaries” (2019).
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Boundary Value Constraints

» s is available in closed form for many stationary kernels, such as the squared
exponential (SE) and Matérn (M,) kernels.

» Given n data points {(x;,y;)}I,, the covariance matrix is approximated using (24) as

m
Kij = k(xi, %) = > du(xi)s(Ae)de(x;). (25)
=1
» Introducing the n X m matrix &,
Qo= (%), 1<i<n, 1<L<m, (26)

and the m x m matrix A = diag(s(A¢)),1 < ¢ < m, this can be written

K~ ®ADT. (27)
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Boundary Value Constraints

» Thus, the covariance matrix K is diagonalized and, for a point x*, we can write the

n x 1 vector
n

k, = [k(x*,x;)] Z be(x)s(N)pe(x*)| = PAD,, (28)
=1 i=1
where the m x 1 vector ®, is defined by
[®.], = de(x"), 1<L<m. (29)
» The Woodbury formula can be used to obtain the following expressions for the

posterior mean and variance over a point x* given a Gaussian likelihood
Yi = f(xl) + €€~ N(O,UQ):

E[f(x")] =k (K +0°1)~"
=@/ (@"d+oA ) 10Ty,
VIf(x)] = k(x*,x") =k (K +0*1) "'k,
=o?®] ("D 2N H)!
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Background

» The work of Raissi et al. studied linear differential equation constraints of the form
Lu(z) = f(x) for GPR of a function u(z) through a “co-kriging” setup when
scattered observations of u(x) and the forcing term f(x) were available, extending the
approach of Graepel which considered the case of observations of f only.

» Solin and Kok demonstrated that zero Dirichlet boundary values can be enforced in
GPR by using a covariance kernel expanded in the Dirichlet eigenfunctions of the
Laplacian. Rather than merely adding scattered observations of the boundary values,
they obtained a noiseless, global enforcement of the boundary condition over 0f).

» We combine such covariance kernels for boundary conditions with the differential
equation constraints of Raissi et al. within ) to obtain a GPR model constrained by
a full, well-posed BVP.

» We also considering general mixed boundary conditions, such as Dirichlet conditions
in certain regions of €2 and Neumann conditions in other regions.



PDE-constrained GPR

» If u ~ GP(m(x), k(z,2')) and Lu = f for a linear operator L, and if
m(-),k(-,2") € dom(L) then L, L, k(z,z") defines a valid covariance kernel for a GP
with mean function L,m(z). This Gaussian process is denoted Lu:

Lu ~ GP(Lym(x), Ly Ly k(z,2')). (31)

» The PDE-constrained co-kriging procedure requires forming the joint Gaussian
process [u(x1); f(z2)]. The covariance kernel of this joint GP is

NS 2|\ _ | k() Lyk(zy, 25)| _ |[Ku Kz (32)
To|’ 73/2 le‘(.’lig, $/1) LILJ;/k(Z‘Q, .73/2) Ko1 Kool
» The joint Gaussian process for [u; f] is then

o R P v i B

where Kqa(z1,22) = [K21(x2,x1)}T. Given N,, observations (X, y,) of u and Ny
observations (Xy,ys) of f, GPR for [u; f] can be performed to improve accuracy of
predictions for wu.

29



GPR with boundary conditions: spectral expansion covariance kernels

» The posterior mean prediction (8) for u, given data (X,y) = {(xi,v:)}/=1, can be written as
N
i=1

for coefficients ¢; € R? that depend on k, the hyperparameters, and the data (X, ).

» The spectral theory of elliptic operators provides a variety of conditions under which the
solution of an elliptic BVP can be expanded in orthonormal eigenfunctions defined by

Lon(x) = Andn(z), z€Q,
aipn(z) + biVn(x) - A(z) =0, ze€ly, i=1,..,n,

for some eigenvalues A, and orthonormal eigenfunctions ¢y,.

(35)

> Any convergent expansion in ¢, (z)¢, (z") will then satisfy the boundary conditions. Solin
et. al proposed that the covariance function be given by the specific expansion

ko) = i S (V) 6n(@)n(a), (36)

where S (\//\n) is the spectral power density (Fourier transform) of an “original” covariance
function of interest.

o » Solin et. al also demonstrated a reduced-rank property provided by such kernels.

29



Ilustration of covariance kernels satisfying boundary conditions
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» For example, for the squared-exponential covariance kernel (4), the spectral power density is

0.0

S(w) = s2(2n0*)?? exp (f%£2w2> .

Dirichlet

Neumann

1.0 4
0.8
0.6
0.4
— M=2 — M=4
— M=8 0~2',, — M=8 N
--- SQ_EXP --- SQ_EXP
Q. 0.0 A o
0.00 025 050 0.75 1.00 0.00 025 0.50 0.75 1.00

X

X

(37)

Figure: Comparison of the squared-exponential kernel k(x,x’ = 0.5) with the corresponding

spectral expansion kernel (36) at ' = 0.5 for z € Q = (0, 1), defined using homogeneous

Dirichlet (left) and Neumann (right) spectrum for different M. The squared-exponential

kernel satisfies neither zero Dirichlet nor zero Neumann boundary conditions.
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The reduced rank advantage to spectral expansion covariance kernels

» Using a spectral expansion covariance kernel with M terms, the covariance matrix
augmented with a Gaussian likelihood (white noise) is given by

K=K +0’Iy =®A®" + oIy, (38)
where ® is the N x M matrix of eigenfunctions at the point locations,
[@];; = ¢j(xi), 1<i<N, 1<j<M, (39)

and A is the M x M diagonal matrix of the spectral power density evaluated at the
eigenvalues A; corresponding to the ¢;,

A = diag (s (\/[A1 A2 )\M})). (40)
» The inverse of the N X N covariance matrix (38) can be calculated as
~ 1 _
K= Uy —®Z T, (41)

where we have defined the M x M matrix Z = 0?A" ' + &' ®.

» Solin and Sarkka showed that posterior prediction and likelihood estimation can expressed in
terms of Z~1, which no longer scales as N®.



Combining Boundary Value and Linear PDE Constraints

» Given: observations of both the function v and f at potentially disjoint locations X, and Xy.

> We also assume that a kernel function of the form (36) is used in which the eigenfunctions
and eigenvalues are consistent with the BVP defining the constraint.

» We compute the covariance between the solution u and forcing term f as

Cov(u(z), f(z')) = Cov(u(x) ZS( ) z)Lo;(z ZS( ) Ajoj(x)e;(x"),

Cov(f(2), f(z')) = Cov(Lu(x) ZS( VA ) N5 (2)5 ().

» The covariance matrix between the solution and forcing observations can therefore be
constructed in a block-matrix form as

u(Xy) m(Xy) -
6] ~ o (L] ) @)
where
Kioint = Z;‘i1 S(\/)Tj)‘bj(xu)qu(xu)T ij
o S S(VAN G (X )i (Xu) T S0 S(VADA 65 (X p) s (Xs) T



Combining Boundary Value and Linear PDE Constraints

» Defining the N, x M matrix ®, and the Ny x M matrix ®; as

[@.)i; =¢j(x:i), 1<i< Ny, z€Xy, 1<5<M,
[®f]i; = Nidj(wi), 1<i< Ny, xi€Xy 1<j<M,

and the block matrix

0]
CI)joimt - |:CI);:| )

the covariance matrix (43) augmented by the Gaussian likelihood can be written as

I 2 T 2
Kjoint = Kjoint +o INu+Nf = (I)jointA(I)joint +o INu+Nf‘

(47)

» The form of this kernel mimics that of (38). Defining Z with ®jeint in place of @ allows the
entire reduced-rank framework to be utilized, with the matrix ®join¢ in place of ® throughout.

» Allows for reduced-rank GPR with noisy data enhanced by PDE and BC prior knowledge.

» Also allows for a new application: inference of solution u to a BVP with only IC and BC

conditions, and scattered observations of f rather than w.
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Comparison of unconstrained and constrained GPR for —u” = f,  u(0) =u(1) =0

Unconstrained Boundary Condition

Figure: Top Left: Unconstrained
GPR using a standard Sq.Exp. kernel;
rel. £2 error of 42.5%.

Top Right: BC-constrained GPR
using the spectral expansion kernel;
rel. €% error of 14.6%.

Bottom Left: PDE-constrained GPR
using a squared-exponential kernel; rel.
22 error of 25.9%.

Bottom Right: BVP-constrained
GPR,; rel. ¢2 error of 9.3%.

-7 — True Sol.
=7 s Solution Obs.
-=- GPR Mean
—= GPR Mean =20
GPR Mean = 2 St. Dev.

0.0 0.2 0.4 0.6 08 1.0

/ x  Location of RHS Obs.

0.0 02 0.4 06 08 10 00 02 04 0.6 08 10

5 observations (black dots) of the function u at randomly sampled points in [0, 1], obtained by
sampling v and adding white noise with ¢ = 0.01. PDE and BVP constrained problems use 5
observations of f sampled at the black “x” marks. The relative errors are between the posterior



Inferring the solution to —u” = f,  u(0) = u(1) = 0 with BVP data only (no interior observations)

s 0.08 PDE 0.08 BvP

—— Solution u
8 --- Inferred u
X Location of RHS Obs.

DY _0.02 _002{ — Solution u
x  Location of RHS Obs. --- Inferred u
® Solution Obs. x  Location of RHS Obs.
-4 -0.04 -0.04
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure: Effect of enforcing the boundary conditions when inferring w from 5 observations of f.

» When using the PDE-GP method (left), inference fails without observations of u, as even
with complete knowledge of f, u is only determined up to an arbitrary linear function.

» When BCs are treated in the PDE-GP method as point observations of u (center), accurate
inference is possible although uncertainty is nonzero in contrast to the BVP-GP method.

» In the BVP-GP method (right), the boundary conditions are enforced with certainty via the
covariance kernel, not as discrete observations, which is advantageous in higher dimensions.
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Error w.r.t. number of observations and noise in observations
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Relative £2 error, LHC spaced obs. Relative £2 error, uniformly spaced obs.
0.20 —+ Noise = 0.1 0.06 —+ Noise = 0.1
—#— Noise = 0.01 —#— Noise = 0.01
—4— Noise = 0.001 0.05 —a— Noise = 0.001

=}
=
v

Relative £2 error
o
i
o
Relative £2 error
o
o
w

0.02
0.05
0.01
0.00 0.00
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
> Number of RHS f obs. Number of RHS f obs.

Figure: Plot of the error between the posterior mean prediction u* and the true
solution u, measured in the relative 2 norm over 100 uniformly spaced test points in
[0,1]. For the relatively large value of white noise standard deviation o = 0.1 (applied
to observations of f), the trend is less consistent, but for o = 0.01 and o = 0.001 the
error trends more consistently and saturates around 1% for both observations at LHC
sampled locations and on the uniform grid.
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Error w.r.t. number of observations and kernel expansion order
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102 Relative £2 error, uniformly spaced noiseless obs. Spectral Expansion Kernel (Dirichlet BC)

— =025M=8

.25, M =64
— 1=0.025,M=8
e 1=0.025,M = 64

0.8

-
15}
1

K(x,x'
°
=

mM=23
mM=24 0.2
M=25
M=2°
M=27 0.0

Relative £2 error (log scale)
=
15
IS
=0.5)
°
o

RERE;

25 27 29 Pin 213

0.0 0.2 0.4 0.6 0.8 1.0
Number of RHS f obs. (log scale)

x

Left: Convergence in log-log scale of the error between the posterior mean prediction v* and
the true solution w, trained with noiseless observations, measured in the relative 2 norm
over 100 uniformly spaced test points in [0, 1].

The noise/likelihood hyperparameter o is fixed to 1077, For fixed number M of

eigenfunctions defining the covariance kernel, the error decreases with the number ns of
observations. As M increases, the error decreases.

Right: Plotting the spectral expansion covariance kernel k(z,z’ = 0.5) for various M reveals

that artifacts are present when the correlation length hyperparameter ¢ (width of the parent
squared exponential kernel) is small, and increasing M reduces these artifacts.
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Ju" - u], PDE Constrained

1.0

012

Figure: Comparison of PDE
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Conclusion & Acknowledgements

» We have developed a framework that combines the use of spectral decomposition
covariance kernels with differential equation constraints in a co-kriging setup to
perform Gaussian process regression constrained by boundary value problems.

» Novel application of Gaussian process regression to BVPs with Neumann boundary
conditions and to inference of the solution v of BVP from knowledge of the boundary
condition and scattered observations of the source term alone.

» The lower-dimensional representation inherent to the spectral covariance kernel
yielded an efficient training and inference process.
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numerically computed eigenfunctions may be substituted.
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