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Introduction & Summary

I Gaussian process regression (GPR) is a widely used Bayesian technique for inference
in scientific applications with limited scattered data.

I Several physical processes are described by a well-posed boundary value problem
(BVP) of the form {

Lu(x) = f(x), x ∈ Ω,

Bu(x) = g(x), x ∈ ∂Ω,
(1)

where L denotes a linear partial differential operator, Ω a domain with boundary ∂Ω,
and B a general mixed boundary operator.

I We develop a framework for Gaussian processes regression constrained by boundary
value problems, which can infer the BVP solution when only scattered observations of
the source term are available.

I The framework benefits from a reduced-rank property of covariance matrices, so it
scales well to large data regimes.

I We demonstrate more accurate and stable solution inference as compared to
physics-informed (PDE-only) Gaussian process regression without BCs.
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But first: a brief survey of constrained GPR

I Since we’ll combine two types of constraints, let’s start with a survey of the evolving
field of constrained GPR.

I Why constrained GPR? In many scientific applications a large amount of data may
not be available for training.

I Unlike data from internet or text searches, computational and physical experiments
are typically extremely expensive.

I Moreover, even if ample data exists, the machine learning model may yield behaviors
that are inconsistent with what is expected physically when queried in an
extrapolatory regime.

I To aid and improve the process of building machine learning models for scientific
applications, it is desirable to have a framework that allows the incorporation of
physical principles and other a priori information to supplement the limited data and
regularize the behavior of the model.
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Basics of GPR: prior and likelihood

I In GPR, a function of interest u(x) is modeled by a Gaussian process with a given mean
function m(x) and covariance function given by K(x, x′) = Cov(u(x), u(x′)):

u ∼ GP(m,K). (2)

I That is, the vector of values u(X) over a finite collection of locations X has a multivariate
normal density

u(X) ∼ N (m(X),K(X,X)), (3)

where m(X) is a vector of mean values of u and K(X,X) is the covariance matrix between
the values.

I One common choice of the covariance function is the squared-exponential kernel given by

K(x, x′) = s2 exp

(
−|x− x

′|2

2`2

)
(4)

where s2 and `2 are magnitude and length-scale parameters that control the behavior of the
covariance function, i.e., the hyperparameters.

I We assume that data or observations y at the X locations are contaminated by independently
and identically distributed Gaussian noise with variance σ2, giving a likelihood function

p(y|u,X) =
N∏
i=1

1√
2πσ2

exp

(
− (yi − ui(Xi))2

2σ2

)
. (5)
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Basics of GPR: posterior prediction

I Gaussian process regression proceeds by invoking Bayes’ rule to compute the posterior
distribution of f as

p(u|y,X) =
p(y|u,X)p(u|X)

p(y|X)
, (6)

with log-marginal-likelihood

log p(y|X) =

∫
p(y|u,X)p(u|X)du

= − 1

2
y>(K(X,X) + σ2IN )−1y − 1

2
log |K(X,X) + σ2IN | −

N

2
log 2π,

(7)

using the prior (3) and the Gaussian likelihood (5).

I Here, IN denotes the identity matrix of size N ×N . The predictive distribution for
u∗ = u(x∗) at a new point x∗ is a Gaussian with mean

E[u∗] = K(x∗, X)(K(X,X) + σ2IN )−1y (8)

and variance

Var[u∗] = K(x∗, x∗)−K(x∗, X)(K(X,X) + σ2IN )−1K(X,x∗). (9)

I The most common way to obtain hyperparameters to use maximum likelihood optimization
of the log-marginal-likelihood with respect to the covariance hyperparameters.
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GPR: A Complete Example

Figure: Noise is added to some locations
on the black curve to generate data
(black crosses).
GPR fits a mean posterior to the data
after filtering out some noise with a
Gaussian likelihood, with the posterior
variance giving an esimate of uncertainty
in the prediction.
The Gaussian likelihood allows us to
infer white noise in the data.
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Strategies & Differences to look for

I Each step of GPR – sample space/prior, likelihood, posterior - gives opportunities to
enforce constraints.

I The difficulty with applying constraints to a GP is that a constraint typically calls for
a condition to hold globally – that is, for all points x in an interval I – for all
realizations or predictions of the process.

I A priori, this amounts to an infinite set of point constraints for an infinite
dimensional sample space of functions.

I This raises a numerical feasibility issue, which each method circumvents in some way.

I Some methods relax the global constraints to constraints at a finite set of “virtual”
points.

I Other methods transform the output of the GP to guarantee the predictions satisfy
constraints,

I Further methods construct a sample space of predictions in which every realization
satisfies the constraints.

I These distinctions should be kept in mind when surveying constrained GPs.
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Bound constraints: warping functions and non-Gaussian likelihoods

I Bound constraints of the form a ≤ f(x) ≤ b over some region of interest arise
naturally in many applications, such as chemical concentration data.

I Warping functions can be used to transform bounded observations zi to
unbounded observations ui which can be treated with unconstrained GPR, then
transformed back (Jensen et al.).

I E.g., the probit function (the inverse of the CDF Φ of a standard normal random
variable) transforms bounded values z ∈ [0, 1] to unbounded values u ∈ (−∞,∞) via
u = Φ−1 (zi).

I In addition to using warping functions, bound constraints can also be enforced using
non-Gaussian likelihood functions p(y|X, f , θ) that are constructed to produce
GP observations which satisfy the constraints (Jensen et al.).

I There are a number of parametric distribution functions with finite support that can
be used for the likelihood function to constrain the GP model, such as the truncated
Gaussian or the beta distribution.

I Other approaches involve truncated MVNs and spline expansions.
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Bound constraints via spline expansions

I Assume that a 1D process being modeled is restricted to the domain [0,1]. Let h(x)
be the standard tent function, i.e., the piecewise linear spline function defined by

h(x) = max(1− |x|, 0) (10)

and define the locations of the knots to be xi = i/M for i = 0, 1, ...M , with M + 1
total spline functions.

I For any set of spline basis coefficients ξi, the function representation is given by

f(x) =
M∑
i=0

ξih(M(x− xi)) =

M∑
i=0

ξihi(x). (11)

This function representation gives a C0 piecewise linear interpolant of the point
values (xi, ξi) for all i = 0, 1, ...,M .

I a ≤ f(x) ≤ b if a ≤ ξi ≤ b – a finite-dimensional constraint.

I Suppose we are given a set of N data points at unique locations (xj , yj). Define the
matrix A such that

Aij = hi(xj). (12)
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Bound constraints via spline expansions

I Then any set of spline coefficients ξ that satisfy the equation

Aξ = y (13)

will interpolate the data exactly. Solutions to this system of equations will exist only
if the rank of A is greater than N .

I We now assume the knot values ξ to be governed by a Gaussian process with
covariance function K.

I Because a linear function of a GP is also a GP, the values of ξ and y are
governed jointly by a GP prior in the form[

y
ξ

]
∼ N

([
0
0

]
,

[
AKA> KA>

AK K

])
(14)

where each entry of the covariance matrix is understood to be a matrix.
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Linear PDE Constraints via co-kriging or block covariance approach

I Gaussian processes may be constrained to satisfy linear operator constraints of the form

Lu = f (15)

given data on f and u. When L is a linear partial differential operator of the form

L =
∑
α

Cα(x)
∂α

∂xα
, α = (α1, ..., αd),

∂α

∂xα
=

∂α1

∂xα1
1

∂α2

∂xα2
2

...
∂αd

∂x
αd
3

, (16)

the equation (15) can be used to constrain GP predictions to satisfy known physical laws
expressed as linear partial differential equations.

I If u(x) is a GP with mean function m(x) and covariance kernel k(x,x′),

u ∼ GP(m(x), k(x,x′)) (17)

and if m(·) and k(·,x′) belong to the domain of L, then LxLx′k(x,x′) defines a valid
covariance kernel for a GP with mean function Lxm(x). This Gaussian process is denoted
Lu:

Lu ∼ GP(Lxm(x),LxLx′k(x,x′)). (18)
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Linear PDE Constraints via co-kriging or block covariance approach

I The notation “Lu” for the GP GP(Lxm(x),LxLx′k(x,x′)) is suggested by noting
that if one could apply L to the samples of the GP u, then the mean of the resulting
stochastic process L[u] would indeed be given by

mean (L[u](x)) = E [L[u](x)] = LE [u(x)] = Lm(x). (19)

I The covariance would be given by

cov (L[u](x),L[u](x′)) = E [Lx[u(x)]Lx′ [u(x′)]]

= E [LxLx′ [u(x)u(x′)]]

= LxE [Lx′ [u(x)u(x′)]]

= LxLx′E [u(x)u(x′)]

= LxLx′ [cov (u(x), u(x′))]

= LxLx′k(x,x′).

(20)

I This justification is formal, as in general the samples of the process
Lu ∼ GP(Lxm(x),LxLx′k(x,x′)) cannot be identified as L applied to the samples of
u.
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Linear PDE Constraints via co-kriging or block covariance approach

I If scattered measurements yf on the source term f in (15) are available at domain
points Xf , then this can be used to train and obtain predictions for Lu in the
standard way.

I If, in addition, measurements yu of u are available at domain points Xu a GP
co-kriging procedure can be used, forming the joint Gaussian process [u; f ].

I Given the covariance kernel k(x,x′) for u, the covariance kernel of this joint GP is

k

([
x1

x2

]
,

[
x′1
x′2

])
=

[
k(x1,x

′
1) Lx′k(x1,x

′
2)

Lxk(x2,x
′
1) LxLx′k(x2,x

′
2)

]
=

[
K11 K12

K21 K22

]
. (21)

I In this notation, the joint Gaussian process for [u; f ] is then[
u(X1)
f(X2)

]
∼ GP

([
m(X1)
Lm(X2)

]
,

[
K11(X1, X1) K12(X1, X2)
K21(X2, X1) K22(X2, X2)

])
, (22)
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Linear PDE Example

Comparison of unconstrained and PDE constrained GP. The PDE is −1 = d2u/dx2 on the
interval [0, 1]. Data is generated from sampling the solution u = 1

8 [(2x− 1)2 − 1].
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Figure: Left: Reconstruction of u (red line) with an unconstrained GP (black line) using
10 data points (red dots) in [0.2, 0.8]. Center: Reconstruction of u (red line) with a PDE
constrained GP (black line) using the same 10 data points (red dots) in [0.2, 0.8]. Right:
Right-hand side f of the PDE, with 10 additional data points in [0, 1] used for the PDE
constraint. Note the improved accuracy of the constrained GP outside [0.2, 0.8] due to this
constraint data.
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Monotonicity and convexity: exploiting linearity and bound constraints

I Roughly speaking, given a method to enforce bound constraints, monotonicity
constraints can be enforced by utilizing this method to enforce f ′ ≥ 0 on the
derivative of the Gaussian process in a “co-kriging” setup for the joint GP [f ; f ′].

I Since monotonicity constraints are positivity (bound) constraints on the derivative
part of such a joint GP, the “co-kriging” setup can be combined with methods for
bound constraints to implement monotonicity constraints.

I The spline approach and truncated multivariate normal approach we reviewed for
bound constraints have both been applied to monotonicity constraints.

I The story is similar for convexity constraints in one dimension, which can be
expressed as f ′′ ≥ 0, but more complicated in higher dimensions, where convexity
becomes a nonlinear constraint between the second partials of a GP.
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Curl-free and div-free constraints for vector-valued GPs: exploting linearity again

I Curl-free and divergence-free vector-valued GPR was developed by Narcowich &
Ward and Fusilier Jr.

I Curl-free constraint Lxf = ∇× f = 0 for f : R3 → R3; f can be written f = ∇g.

I Divergence-free constraint ∇ · f = 0 for f ; f can be written f = ∇× g.

I Putting a GP prior on g with a square-exponential covariance kernel, curl-free and
div-free covariance kernels for the GP f can be derived analytically.

Figure: Curl-free (left) and div-free (right) GP vector field regression, from Macedo and Castro.
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Boundary Value Constraints

I In many experimental setups, measurements can be taken at the boundaries of a
system in a cheap and non-invasive way that permits nearly complete knowledge of
the boundary values.

I The work of Solin et al. introduced a method based on the spectral expansion of a
desired stationary isotropic covariance kernel k(x,x′) = k(|x− x′|) in eigenfunctions
of the Laplacian.

I For enforcing zero Dirichlet boundary values on a domain Ω, we use the spectral
density (Fourier transform) of the kernel,

s(ω) =

∫
Rd

e−iω·xk(|x|)dx. (23)

I This enters into the approximation of the kernel:

k(x,x′) ≈
m∑
`=1

s(λ`)φ`(x)φ`(x
′), (24)

where λj and φj are the Dirichlet eigenvalues and eigenfunctions, respectively, of the
Laplacian on the domain Ω.
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Samples drawn from GPs with zero Dirichelt boundary values based on Matérn kernels

Figure: From Solin and Kok, “Know your boundaries” (2019).
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Boundary Value Constraints

I s is available in closed form for many stationary kernels, such as the squared
exponential (SE) and Matérn (Mν) kernels.

I Given n data points {(xi, yi)}ni=1, the covariance matrix is approximated using (24) as

Kij = k(xi,xj) ≈
m∑
`=1

φ`(xi)s(λ`)φ`(xj). (25)

I Introducing the n×m matrix Φ,

Φi` = φ`(xi), 1 ≤ i ≤ n, 1 ≤ ` ≤ m, (26)

and the m×m matrix Λ = diag(s(λ`)), 1 ≤ ` ≤ m, this can be written

K ≈ ΦΛΦ>. (27)
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Boundary Value Constraints

I Thus, the covariance matrix K is diagonalized and, for a point x∗, we can write the
n× 1 vector

k∗ = [k(x∗,xi)]
n
i=1 ≈

[
m∑
`=1

φ`(xi)s(λ`)φ`(x
∗)

]n
i=1

= ΦΛΦ∗, (28)

where the m× 1 vector Φ∗ is defined by

[Φ∗]` = φ`(x
∗), 1 ≤ ` ≤ m. (29)

I The Woodbury formula can be used to obtain the following expressions for the
posterior mean and variance over a point x∗ given a Gaussian likelihood
yi = f(xi) + εi, εi ∼ N (0, σ2):

E[f(x∗)] = k>∗ (K + σ2I)−1y

= Φ>∗ (Φ>Φ + σ2Λ−1)−1Φ>y.

V[f(x∗)] = k(x∗,x∗)− k>∗ (K + σ2I)−1k∗

= σ2Φ>∗ (Φ>Φ + σ2Λ−1)−1Φ∗.

(30)
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Background

I The work of Raissi et al. studied linear differential equation constraints of the form
Lu(x) = f(x) for GPR of a function u(x) through a “co-kriging” setup when
scattered observations of u(x) and the forcing term f(x) were available, extending the
approach of Graepel which considered the case of observations of f only.

I Solin and Kok demonstrated that zero Dirichlet boundary values can be enforced in
GPR by using a covariance kernel expanded in the Dirichlet eigenfunctions of the
Laplacian. Rather than merely adding scattered observations of the boundary values,
they obtained a noiseless, global enforcement of the boundary condition over ∂Ω.

I We combine such covariance kernels for boundary conditions with the differential
equation constraints of Raissi et al. within Ω to obtain a GPR model constrained by
a full, well-posed BVP.

I We also considering general mixed boundary conditions, such as Dirichlet conditions
in certain regions of ∂Ω and Neumann conditions in other regions.
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PDE-constrained GPR

I If u ∼ GP(m(x), k(x, x′)) and Lu = f for a linear operator L, and if
m(·), k(·, x′) ∈ dom(L) then LxLx′k(x, x′) defines a valid covariance kernel for a GP
with mean function Lxm(x). This Gaussian process is denoted Lu:

Lu ∼ GP(Lxm(x), LxLx′k(x, x′)). (31)

I The PDE-constrained co-kriging procedure requires forming the joint Gaussian
process [u(x1); f(x2)]. The covariance kernel of this joint GP is

k

([
x1
x2

]
,

[
x′1
x′2

])
=

[
k(x1, x

′
1) Lx′k(x1, x

′
2)

Lxk(x2, x
′
1) LxLx′k(x2, x

′
2)

]
=

[
K11 K12

K21 K22

]
. (32)

I The joint Gaussian process for [u; f ] is then[
u(x1)
f(x2)

]
∼ GP

([
m(x1)

Lm(x2)

]
,

[
K11(x1, x1) K12(x1, x2)
K21(x2, x1) K22(x2, x2)

])
, (33)

where K12(x1, x2) = [K21(x2, x1)]
>

. Given Nu observations (Xu, yu) of u and Nf
observations (Xf , yf ) of f , GPR for [u; f ] can be performed to improve accuracy of
predictions for u.
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GPR with boundary conditions: spectral expansion covariance kernels

I The posterior mean prediction (8) for u, given data (X, y) = {(xi, yi)}Ni=1, can be written as

E[u(x)] =

N∑
i=1

cik(x, xi), (34)

for coefficients ci ∈ Rd that depend on k, the hyperparameters, and the data (X, y).

I The spectral theory of elliptic operators provides a variety of conditions under which the
solution of an elliptic BVP can be expanded in orthonormal eigenfunctions defined by{

Lφn(x) = λnφn(x), x ∈ Ω,

aiφn(x) + bi∇φn(x) · n̂(x) = 0, x ∈ Γi, i = 1, ..., n,
(35)

for some eigenvalues λn and orthonormal eigenfunctions φn.

I Any convergent expansion in φn(x)φn′(x′) will then satisfy the boundary conditions. Solin
et. al proposed that the covariance function be given by the specific expansion

k(x, x′) =
M∑
n=1

S
(√

λn
)
φn(x)φn(x′), (36)

where S
(√
λn
)

is the spectral power density (Fourier transform) of an “original” covariance
function of interest.

I Solin et. al also demonstrated a reduced-rank property provided by such kernels.
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Illustration of covariance kernels satisfying boundary conditions

I For example, for the squared-exponential covariance kernel (4), the spectral power density is

S(ω) = s2(2π`2)d/2 exp

(
−1

2
`2ω2

)
. (37)
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Figure: Comparison of the squared-exponential kernel k(x, x′ = 0.5) with the corresponding
spectral expansion kernel (36) at x′ = 0.5 for x ∈ Ω = (0, 1), defined using homogeneous
Dirichlet (left) and Neumann (right) spectrum for different M . The squared-exponential
kernel satisfies neither zero Dirichlet nor zero Neumann boundary conditions.
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The reduced rank advantage to spectral expansion covariance kernels

I Using a spectral expansion covariance kernel with M terms, the covariance matrix
augmented with a Gaussian likelihood (white noise) is given by

K̃ = K + σ2IN = ΦΛΦ> + σ2IN , (38)

where Φ is the N ×M matrix of eigenfunctions at the point locations,

[Φ]i,j = φj(xi), 1 ≤ i ≤ N, 1 ≤ j ≤M, (39)

and Λ is the M ×M diagonal matrix of the spectral power density evaluated at the
eigenvalues λj corresponding to the φj ,

Λ = diag
(
S
(√

[λ1 λ2 ... λM ]
))

. (40)

I The inverse of the N ×N covariance matrix (38) can be calculated as

K̃−1 =
1

σ2
(IN − ΦZ−1Φ>), (41)

where we have defined the M ×M matrix Z = σ2Λ−1 + Φ>Φ.

I Solin and Sarkka showed that posterior prediction and likelihood estimation can expressed in
terms of Z−1, which no longer scales as N3.

25



Combining Boundary Value and Linear PDE Constraints

I Given: observations of both the function u and f at potentially disjoint locations Xu and Xf .

I We also assume that a kernel function of the form (36) is used in which the eigenfunctions
and eigenvalues are consistent with the BVP defining the constraint.

I We compute the covariance between the solution u and forcing term f as

Cov(u(x), f(x′)) = Cov(u(x), Lu(x′)) =
M∑
j=1

S
(√

λj
)
φj(x)Lφj(x

′) =

M∑
j=1

S
(√

λj
)
λjφj(x)φj(x

′),

Cov(f(x), f(x′)) = Cov(Lu(x), Lu(x′)) =
M∑
j=1

S
(√

λj
)
λ2
jφj(x)φj(x

′).

I The covariance matrix between the solution and forcing observations can therefore be
constructed in a block-matrix form as[

u(Xu)
f(Xf )

]
∼ GP

([
m(Xu)

Lm(Xf )

]
,Kjoint

)
, (42)

where

Kjoint =

[ ∑M
j=1 S(

√
λj)φj(Xu)φj(Xu)>

∑M
j=1 S(

√
λj)λjφj(Xu)φj(Xf )>∑M

j=1 S(
√
λj)λjφj(Xf )φj(Xu)>

∑M
j=1 S(

√
λj)λ

2
jφj(Xf )φj(Xf )>

]
. (43)
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Combining Boundary Value and Linear PDE Constraints

I Defining the Nu ×M matrix Φu and the Nf ×M matrix Φf as

[Φu]i,j =φj(xi), 1 ≤ i ≤ Nu, xi ∈ Xu, 1 ≤ j ≤M, (44)

[Φf ]i,j = λiφj(xi), 1 ≤ i ≤ Nf , xi ∈ Xf , 1 ≤ j ≤M, (45)

and the block matrix

Φjoint =

[
Φu
Φf

]
, (46)

the covariance matrix (43) augmented by the Gaussian likelihood can be written as

K̃joint = Kjoint + σ2INu+Nf = ΦjointΛΦ>joint + σ2INu+Nf . (47)

I The form of this kernel mimics that of (38). Defining Z with Φjoint in place of Φ allows the
entire reduced-rank framework to be utilized, with the matrix Φjoint in place of Φ throughout.

I Allows for reduced-rank GPR with noisy data enhanced by PDE and BC prior knowledge.

I Also allows for a new application: inference of solution u to a BVP with only IC and BC
conditions, and scattered observations of f rather than u.
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Comparison of unconstrained and constrained GPR for −u′′ = f, u(0) = u(1) = 0
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Figure: Top Left: Unconstrained
GPR using a standard Sq.Exp. kernel;
rel. `2 error of 42.5%.
Top Right: BC-constrained GPR
using the spectral expansion kernel;
rel. `2 error of 14.6%.
Bottom Left: PDE-constrained GPR
using a squared-exponential kernel; rel.
`2 error of 25.9%.
Bottom Right: BVP-constrained
GPR; rel. `2 error of 9.3%.

5 observations (black dots) of the function u at randomly sampled points in [0, 1], obtained by
sampling u and adding white noise with σ = 0.01. PDE and BVP constrained problems use 5
observations of f sampled at the black “x” marks. The relative errors are between the posterior
mean of the GPR (dashed blue curve) and the exact solution u (solid black curve).
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Inferring the solution to −u′′ = f, u(0) = u(1) = 0 with BVP data only (no interior observations)
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Figure: Effect of enforcing the boundary conditions when inferring u from 5 observations of f .

I When using the PDE-GP method (left), inference fails without observations of u, as even
with complete knowledge of f , u is only determined up to an arbitrary linear function.

I When BCs are treated in the PDE-GP method as point observations of u (center), accurate
inference is possible although uncertainty is nonzero in contrast to the BVP-GP method.

I In the BVP-GP method (right), the boundary conditions are enforced with certainty via the
covariance kernel, not as discrete observations, which is advantageous in higher dimensions.
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Error w.r.t. number of observations and noise in observations
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Figure: Plot of the error between the posterior mean prediction u∗ and the true
solution u, measured in the relative `2 norm over 100 uniformly spaced test points in
[0, 1]. For the relatively large value of white noise standard deviation σ = 0.1 (applied
to observations of f), the trend is less consistent, but for σ = 0.01 and σ = 0.001 the
error trends more consistently and saturates around 1% for both observations at LHC
sampled locations and on the uniform grid.
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Error w.r.t. number of observations and kernel expansion order
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I Left: Convergence in log-log scale of the error between the posterior mean prediction u∗ and
the true solution u, trained with noiseless observations, measured in the relative `2 norm
over 100 uniformly spaced test points in [0, 1].

I The noise/likelihood hyperparameter σ is fixed to 10−17. For fixed number M of
eigenfunctions defining the covariance kernel, the error decreases with the number nf of
observations. As M increases, the error decreases.

I Right: Plotting the spectral expansion covariance kernel k(x, x′ = 0.5) for various M reveals
that artifacts are present when the correlation length hyperparameter ` (width of the parent
squared exponential kernel) is small, and increasing M reduces these artifacts.
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Figure: Comparison of PDE
constrained GPR (top) and BVP
constrained GPR (bottom). The left
column shows observations of u (red
dots) and locations of the observations
of the source f (black crosses) and the
resulting mean prediction surface u∗

(blue). The xy-plane is plotted in
orange as a reference for observing the
boundary behavior of u∗. The right
column plots the absolute error
between the mean prediction u∗ and
the true solution u. The BVP
constrained GPR demonstrates a lower
relative `2 error over the uniform
100× 100 test grid: 2.88% vs 5.25%.
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Conclusion & Acknowledgements

I We have developed a framework that combines the use of spectral decomposition
covariance kernels with differential equation constraints in a co-kriging setup to
perform Gaussian process regression constrained by boundary value problems.

I Novel application of Gaussian process regression to BVPs with Neumann boundary
conditions and to inference of the solution u of BVP from knowledge of the boundary
condition and scattered observations of the source term alone.

I The lower-dimensional representation inherent to the spectral covariance kernel
yielded an efficient training and inference process.

I The BVP-GP method can be seamlessly used in a spectrum of applications from
small datasets with high noise to large, noiseless datasets. In more complex domains,
numerically computed eigenfunctions may be substituted.
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