Thislpaperidescribeslobjectivetechnicallresultsfandlanalysis JAnvlisubijective views or opinions that might be expressed in SAND2022-11229C

helpaperfdojnotlnecessarilyfrepresentfthejviewsjofftheju.S | of Energy or the United States Government.

Sandia
National
Laboratories

Exceptional service in the national interest

Hydrolysis of uranium hexafluoride:

mechanism, spectroscopy, and thermochemical kinetics

Jesse | Lutz,

Daniel S Jensen, Judit Zador, and Joshua A Hubbard

American Chemical Society Fall National Meeting
August 2022

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S.

SandialNationalfLaboratoriesfislafmultimission laboratory managed and operated by National- Technologyi&-EngineeringrSolutions, of Sandia,,LLC,+a, whollyiowned, i - il
International,Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. 3tion under contract DE-NA0003525. Smm——



/,
/-

Project Overview
4

§ RH~2%

RH~100%
L]

Mmicroscopy
images [Z]

UF, cylinder operations [1]

UF; conditional reaction rate (mTorr/s)

0.1

ABSORBANCE

UOF, ur
¢ 172K (e

M e

1581 K fe)

SN
JJ

12 K (a)

L 1
1000 800 800

WAVENUMBER (em™")

IR spectra [3]

m=056+003 JEm=214
e T/ Mm=210
% = .- 'Y im=2.01
W m=052£0.02 v
T T
0.01 01

Initial Pressure (Torr) of UF, or H,O

Reaction rates [8]

Develop more unified theory
of UF, hydrolysis consistent with
experimental observations

Enable development of detailed
chemistry and physics models
(gaseous and particulates)

* Reaction mechanism, kinetics,
and thermodynamics

Facilitate design of experiments,
development of measurement
techniques and instrumentation

* Vibrational spectra, species
concentrations




We aim to answer

What?
Where?
& When?




7" Uranium hexafluoride hydrolysis: UF.(g) + 2H,0(g) > UO,F,(s) + 4HF(g)
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Goals:
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o What are we looking for?

o Investigate the gas-phase reaction mechanism and identify expected intermediates

o Where do we look for it?
o Predict characteristic features of intermediates detectable by infrared spectroscopy
o When will species appear?

o Develop a chemical kinetics model which describes existing kinetics measurements
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1 900-985 asymmetric stretching of molecular UO,F, solid UO,F,
2 1300-1600 P-branch of the v» mode of H,0 plus UFg .. H,O
3 1600-1900 R-branch of the v» mode of H,0 none
4 2290-2390 the vs mode of CO; none
5 3150-3640 unassigned; potentially UO,F, complexes 2777
6 3800-4200 P- and R-branches of the HF vibration none
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Gas phase mechanism: What are we looking for?
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Considering several possible initiation steps

NUF, + mH,0 > UFOH + HF + (n-1)UF + (m-1)H,0

Lutz, Byrd, et al. [10]
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Gas phase mechanism: What are we looking for?
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Reaction proceeds through several subsequent intermediates

UFs > UF;OH > UOF, & UF,(OH),
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In contrast with the hypothesis of Armstrong et al.,

the unassigned peak may be attributable to UF,(OH),







/" Spectroscopic properties: Where do we look for it?
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Quality anharmonic infrared spectra can be predicted from:

1) Harmonic vibrational frequencies
2) Dipole derivatives for harmonic vibrational states
3) Rotational constants for anharmonic vibrational states

Far-IR (i.e. van der Waals) spectroscopy is difficult to describe:

« Slow convergence with respect to method and basis set
« Special techniques negate basis set superposition error (BSSE)
« High accuracy required to distinguish isomers and

Start with a simple yet relevant system for benchmarking: H,O ... HF L
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Spectroscopic properties: Where do we look for it?

Harmonic frequency survey:
Reference values are

CCSD(T) / aug-cc-pVDZ

mean unsigned Y error

?I.It.'thmfrgoz] far-IR  mid-IR  far-IR  NPE
MP2 1.11 1..39 .73 2 H2
PAPT 1.12 (.60 1.98 4.61
MP3 1.37 .67 1,00 487
MP4{SDO)) 1.95 L.47 0.85 1.53
SCOS-MP2 1.87 149 0.21 38T
LMP2 .54 .08 1,50 7.449
LEPA #.80 T.008 3.41 16.5
SCS-LiP2 0,61 8,46 0.53 1353
DSDPBEPSG 1.84 1.35 0.73 1.73
B2PLYP 216 1.21 12.91 4.65
BIZPLYFP+D3(BI) 2.26 141 .92 5.29
mPW2PLYP 2,30 1.62 087 5.03
mPWaPLYPD2 335 203 1.06 510
DSDPBEPsG+D2 378 2.7h .52 7.19
PEEQIDH 3.43 388 1.94 3.88
PEEODH R 1.27 1.74 Sl
PEED .27 4.54 1.63 9.38
PRBEO+DE(BI) 5,03 4.72 1.64 9.47
PBE 527 n.15 4.62 18.1
PEE+D3(BI) HGT h.42 4.64 1900
MP2-F12 1.50 .75 0.57 2.090
LMP2-F12 1.66 [1.G% .65 a1l
DSDPBEPSsG-F12 1.84 1.35 0.73 T.64
LOCSDT)-F12 2,35 1.45 .48 466
B2PLYP-F12 2,40 1.26 0,98 6.97

Basis set convergence:

Reference values are
CCSD(T) / aug-cc-pV5Z

[Sexton et al., J. Phys. Chem. A 2018, 122,
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Take aways:

- Harmonic frequencies are
not straightforward with the
far-IR region a special challenge

- MP2 is closest to CCSD(T)

PBEO/SARC (Lutz et al.)

- The local (LMP2)
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— MP2
----- MP2--CPC methods are
MP-F12 uniguely suited for
— LMP2 .
—— LMP2F12 treating weakly-
B2PLYP bound clusters
—— DSDPBEPS86

Basis set superposition error (BSSE)
can be treated w/ explicitly-correlated
local correlation methods instead of
conventional counterpoise corrections!
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Dipole derivative survey: Basis set convergence:
Reference values are Reference values are
CCSD(T)-F12/aug-cc-pVDZ CCSD(T)-F12/aug-cc-pvVQZ
harmonic frequencies MUEs dipole derivative MUEs g
[°S (1L e — b — T
SCS-LMP2 A < 10-! 4 i 4 .
I A N SR N S
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g W {=— Je—————| —— PBE0+D3(BJ)
i ~ . —_———
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e 10 e g o _—
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I I I- near IR I IDQQ/\/ ,DQ&/\/ IDAO,'\/ ’DAQ/\/ ,DA&/\/ ,bAQ/'\/ 'DAQ/\/ ,ég/\/ ’DA/\/
N " g 2 & o " r6 8 1 basis set level basis set level basis set level

Take aways:
- MP2-F12 and LMP2-F12 provide dipole derivatives to within 10 % of CCSD(T)-F12
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4 Anharmonic frequencies and properties
Reference values: CCSD(T)-F12/aug-cc-pvVDZ

anharmonic frequencies MUEs rotational constant MUEs

B far IR
B mid IR
BN near IR

B far IR
B mid IR

BN near IR

LMP2-F12 4

MP2-F12 -

T T T
25 20 15

Take aways:
- Even MP2-F12 and LMP2-F12 struggle to describe anharmonic frequencies and properties
- Transfer learning is a promising alternative (S. Kaser et al., /. Chem. Theory Comput. 2021, 17, 6, 3687)
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Spectroscopic properties: Where do we look for it?

We can generate simulated spectra which closely resemble measurements
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We can predict relative absorbances of isomers and isotopes
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D,'%0
(e}
(b)
H.'%0
H, %0
(a}
| | i | L
860 820

WAVENUMBER {cm ")

nef

04

Marmalized Intensity [ cm-1

ook

Mormalized Intensity { em-1

1.

06—

ozl

Marmalized Intensity | em-1

0.8

0.7

08

0.5

0.4

03

oz

0

Spectroscopic properties: Where do we look for it?
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Part Ill;

When will it appear?
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Gas Phase Initiation Kinetics: When will it appear?

Reaction rates from Richards et al. (2020)

UFg conditional reaction rate (mTorr/s)
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is consistent with published initiation rate data

Fully ab initio simulation of initiation rates
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P Summary

Developing more unified theory of UF,
hydrolysis consistent with observations

Employing Density Functional Theory
and higher order quantum methods to
determine reaction pathways,
thermodynamics, and kinetics.

Enabling development of detailed
chemistry and physics models (gaseous
aggregation and particulate physics)

Facilitating design of experiments,
development of measurement
techniques and instrumentation

Developed UF, + nH,O pathways and
reconciled our simulations with IR
spectroscopy reported in the literature.

Proposed a previously unappreciated
intermediate species and hypothesized a
feasible route to the observed product.

Preliminary kinetic modeling shows
good agreement with Richards et al
(2020).

Good progress toward automation of
complex quantum chemistry workflows.
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