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Introduction

● Consider the modeling of heterogeneous materials. 

● Material properties (microstructure, interfacial conditions, environments, 
etc.) cause variability in material response.

● Non-trivial to provide quantitative characterization for each sample. 

Figure: One-dimensional bar with periodic microstructure and disordered microstructure.
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Why use nonlocal model?
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Local model: 
● Characterized by differential

operators, 
● Interactions happen  at contact, 
● Regularity requirements on the 

solution. 

Nonlocal model: 
● Characterized by integral 

operators, 
● Long-range interactions of size 

𝛿 (horizon),
● No regularity requirements on 

the solution.

● Nonlocal Poisson’s equation [3]

● Local Poisson’s equation

−2#
! 𝐱,$
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−△ 𝐮 𝐱 = 𝐟 𝐱

[1] Du, Q., Gunzburger, M., Lehoucq, R. B., & Zhou, K. (2013). A nonlocal vector calculus, nonlocal volume-constrained 
problems, and nonlocal balance laws. Mathematical Models and Methods in Applied Sciences, 23(03), 493-540.



Introduction

● Objective: Develop a Bayesian framework to characterize the uncertainty 
in using a nonlocal model to describe material response. 

● Approach: Bayesian Nonlocal Operator Regression (BNOR) technique. To 
be specific, an MCMC Bayesian inference method, to identify the 
probability distribution of the nonlocal constitutive law that embeds the 
material properties. 

● Application: Wave propagation through a heterogeneous bar, with  
disordered microstructure layers.

• [2] You, H., Yu, Y., Silling, S., & D'Elia, M. (2020). Data-driven learning of nonlocal models: from high-fidelity simulations to
constitutive laws. AAAI Spring SymposiumMLPS 2021. 3



High-Fidelity Data

● Define a set of materials parameterized by the disorder parameter 
𝒟 ∈ [0,1] such that each layer material 1 or 2 has size 𝑤 ∼
𝒰( 1 − 𝒟 𝑤! , 1 + 𝒟 𝑤!), where 𝑖 = 1,2 and 𝑤" = 1 − 𝜙 𝜆, 𝑤# =
𝜙𝜆, where 𝜆 is the mean period of the microstructure. In our 
experiments we set 𝐿=0.2 (the bar length), 𝐸"=1, 𝐸#=0.25 (the 
Young’s Moduli), 𝜌=1 (the density), and Ω = (−b, b) (the spatial 
domain representing the bar).

Figure: One-dimensional bar with disordered microstructure.
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High-Fidelity Data

● Both training and validation datasets are generated via high-fidelity (HF)  
simulations of the propagation of stress wave through a one-
dimensional heterogeneous bar. The HF model is a classical wave 
equation: find 𝑢 𝑥, 𝑡 such that, for 𝑥, 𝑡 ∈ Ω× 0, 𝑇 ,

with force loading term 𝑓 𝑥, 𝑡 , provided some initial conditions at 𝑡 = 0
and boundary conditions on 𝜕Ω. 

● The HF-model is numerically solved using a Direct Numerical Solver 
(DNS) in [2], which guarantees that the wave velocity is computed 
exactly. 

• [3] Silling, S. A. (2021). Propagation of a Stress Pulse in a Heterogeneous Elastic Bar. Journal of Peridynamics and Nonlocal
Modeling, 1-21.

𝜕#𝑢$%
𝜕𝑡# − ℒ&' 𝑢$% 𝑥, 𝑡 = 𝑓 𝑥, 𝑡
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High-Fidelity Data

● Three types of data are generated where type 1 and type 2 are used 
for training, and type 3 is used for validation. In what follows, v
presents the velocity.

● Type 1: Oscillating source. We set 𝑏=50, T=2, 𝑣(𝑥,0)=𝑢(𝑥,0)=0,

● Type 2: Plane wave with ramp. For 𝑏=50, T=2, f(𝑥,𝑡)=0 and 𝑢(𝑥,0)=0, 

we prescribe 𝑣 −𝑏, 𝑡 = Dcos 𝜔𝑡 sin#(()
*+
) , if 𝑡 ≤ 15

cos 𝜔𝑡 , if 𝑡 > 15
, for 𝜔 =

0.35, 0.7, … , 3.85.
● Type 3: Wave packet. 𝑏=133.3, T=100 , f(𝑥,𝑡)=0 and 𝑣 −𝑏, 𝑡 =

sin 𝜔𝑡 e ,(!",*)^# , for 𝜔 = 1.0, 2.0, 3.0, 4.0.

f 𝑥, 𝑡 = e,
#$
"%&

#

e
, !'!(

!) cos# #01
23

, 𝑘 = 1,2, … , 20, 𝑡+ = 𝑡4 = 0.8.
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Nonlocal Operator Regression (NOR)
● Following the method in [1], we proposed a nonlocal model to 

approximate the HF-model at large scales: 

where

● We represent the kernel 𝐾 as a linear combination of Bernstein basis 
polynomials: 

where

for 0 ≤ 𝑥 ≤ 1 and 𝐶5 ∈ ℝ. 

𝐾 𝑥 − 𝑦 =\
56+

7 𝐶5
δ89# 𝐵5,7 _`

𝑥 − 𝑦
δ

𝜕#𝑢;3
𝜕𝑡#

− ℒ𝒦 𝑢;3 𝑥, 𝑡 = f 𝑥, 𝑡

𝐵5,7 𝑥 = 𝑀
𝑚 𝑥5 1 − 𝑥 7,5

• [2] You, H., Yu, Y., Silling, S., & D'Elia, M. (2020). Data-driven learning of nonlocal models: from high-fidelity simulations to
constitutive laws. AAAI Spring SymposiumMLPS 2021. 7

ℒ𝒦 𝑢 𝑥, 𝑡 = c
=>
𝐾 𝑥 − 𝑦 𝑢;3 𝑦, 𝑡 − 𝑢;3 𝑥, 𝑡 𝑑𝑦



Nonlocal Operator Regression (NOR)
● From now on, denote 𝐾? and 𝑢;3,? as the nonlocal kernel and nonlocal 

solution corresponding to a specific set of kernel parameters 𝐶 ≔
{𝐶5}56+7 .

● Using central-difference scheme in time 

● Learning procedure: minimize the following cost function with 
regularization

● 𝑢;3,? satisfies the central difference equation and 𝐾? satisfies physical-
based constraints[1].

𝑢;3,? 𝑥! , 𝑡@9" = 2𝑢;3,? 𝑥! , 𝑡@ − 𝑢;3,? 𝑥! , 𝑡@ − 1 + d𝑡# ℒ𝒦𝒞,𝒽 𝑢BC,D 𝑥! , 𝑡@ + 𝑓 𝑥! , 𝑡@
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• [2] You, H., Yu, Y., Silling, S., & D'Elia, M. (2020). Data-driven learning of nonlocal models: from high-fidelity simulations to
constitutive laws. arXiv preprint arXiv:2012.04157.



● Note1: NOR is a purely deterministic approach. It cannot quantify the 
uncertainty in using a nonlocal model to describe material response.

● Note2: We can use this preliminary result as prior knowledge in 
Bayesian inference. 
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Bayesian Inference: likelihood

● In this work, we take ground truth 𝑢&' as the numerical solution 
𝑢G;F generated from the DNS solver. 

● Denote the nonlocal solution corresponding to a specific set of kernel 
parameters {𝐶5} as 𝑢{?+} 𝑥, 𝑡 , model the error between the nonlocal 
solution and the ground truth as a Gaussian variable

where σE = σ 𝑢;3,?E
H# >× +,)

#
, σ is a constant independent of s.	

● The negative log-likelihood reads

𝑢G;FE 𝑥, 𝑡 = 𝑢;3,?E 𝑥, 𝑡 + ϵ 𝑥, 𝑡 , ϵ ∼ 𝑁 𝑜, σL#

10

!
!"#

$ 𝑢%&,() − 𝑢*%+)
,! -× /,0

1

𝑢%&,()
,! -× /,2

+ 𝑁log(𝜎 𝑢%&,()
,! -× /,3

1
)



Bayesian Inference: prior

● Assume 𝐶 = {𝐶5} has a Gaussian prior, i.e. 𝐶5, 𝑚 = 0,… ,𝑀 are 

independent Gaussian variables with 𝐶5 ∼ 𝑁 𝐶+,5,
M(#

N
. Here {𝐶+,5} is 

the set of parameters of the kernel learnt from the deterministic NOR, 
and 𝜎+ is the standard deviation calculated using the current nonlocal 
solution associated with {𝐶5}. 

● The negative log-prior reads

● Combining the negative log-likelihood and the negative log-prior, we 
have the negative log posterior

λ
𝐶 − 𝐶+

#

2σ+#
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MCMC: algorithm and evaluation
● We adopt the adaptive MCMC algorithm proposed in [4]. In practice, 

we couple PyUQTk [5] with our nonlocal model to apply the MCMC 
algorithm. 

● Inspect the trace plot visually and evaluate the acceptance rate (the 
percentage of the accepted proposal states) of MCMC.

● Effective sample size (ESS) is a guidance on sub-sampling, also a 
criterion which could tell us how long an MCMC chain we need. In 
this work, the ESS is computed following the multivariate extension 
defined in [6].

● Plot the probability density function (PDF) based on equally spaced 
samples of the chain, where the number of the subsamples is 
determined by the ESS. 

• [4] Haario, H., Saksman, E., & Tamminen, J. (1999). Adaptive proposal distribution for random walk Metropolis
algorithm. Computational statistics, 14(3), 375-395.

• [5] Sargsyan, K., Safta, C., Boll, L., Johnston, K., Khalil, M., Chowdhary, K., ... & Debusschere, B. (2022). UQTk Version 3.1. 2 User
Manual (No. SAND2022-0377). Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).

• [6] Vats, D., Flegal, J. M., & Jones, G. L. (2019). Multivariate output analysis for Markov chain Monte Carlo. Biometrika, 106(2),
321-337.
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Results on Disordered Material

MCMC Trace Plot

● Chain length = 300,000, acceptance rate = 0.31, ESS=4212. 
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Results on Disordered Material

Density Plot
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Results on Disordered Material
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● Positive dispersion curves indicate physically stable material models
● The group velocity matches the one computed with DNS both at low 

frequencies and at the band stop.



Validation on wave packet through a disordered material

● Validation on the wave packet with ω=2.0 at 𝑡=20.0s (short time 
prediction) and 𝑡=100.0s (long time prediction).  4 different 
frequencies (𝜔=1.0,2.0,3.0,4.0) are considered. For each sample in 
ESS, we calculate the nonlocal kernel 𝐶 and the corresponding 
nonlocal solution 𝑢;3,? . Then plot the 68%-95%-99.7% 
confidence region for 𝑢;3,? + ϵ, where 

16
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Conclusion

We proposed a Bayesian nonlocal operator regression technique, which
● captures the nonlocal constitutive law that embeds the material 

properties, 
● characterizes the uncertainty in using a nonlocal model for predicting 

wave propagation through heterogeneous materials, 
● Provides models that reproduce high-fidelity data that are 

substantially different from the training data

Future work
● Noisy data, 
● More sophisticated error model, etc.
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