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Introduction

e Consider the modeling of heterogeneous materials.

e Material properties (microstructure, interfacial conditions, environments,
etc.) cause variability in material response.

e Non-trivial to provide quantitative characterization for each sample.
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Figure: One-dimensional bar with periodic microstructure and disordered microstructure.




\X/hy use nonlocal model?

Local model:

e Characterized by differential e Local Poisson’s equation
operators, _A u(x) _ f(x)

e Interactions happen at contact,

e Regularity requirements on the
solution.

Nonlocal model:

e Characterized by integral
operators,

e Long-range interactions of size ) f K(xy) (u(y) — u(x))dy = f(x)
& (horizon), B(x,8)

e No regularity requirements on
the solution.

[1] Du, Q., Gunzburger, M., Lehoucq, R. B., & Zhou, K. (2013). A nonlocal vector calculus, nonlocal volume-constrained
problems, and nonlocal balance laws. Mathematical Models and Methods in Applied Sciences, 23(03), 493-540.

e Nonlocal Poisson’s equation [3]



Introduction

e Objective: Develop a Bayesian framework to characterize the uncertainty
in using a nonlocal model to describe material response.

e Approach: Bayesian Nonlocal Operator Regression (BNOR) technique. To
be specific,an MCMC Bayesian inference method, to identify the
probability distribution of the nonlocal constitutive law that embeds the
material properties.

e Application: Wave propagation through a heterogeneous bar, with
disordered microstructure layers.

* [2] You, H., Yu, Y., Siling, S., & D'Elia, M. (2020). Dato-driven learning of nonlocal models: from high-fidelity simulations to

constitutive laws. AAAI Spring Symposium MLPS 2021.



High-Fidelity Data

Define a set of materials parameterized by the disorder parameter
D € [0,1] such that each layer material 1 or 2 has size w ~

U@ -D)w;, (1 +D)w;),wherei=12andw; = (1 —p)A, w, =
¢A, where A is the mean period of the microstructure. In our
experiments we set L=0.2 (the bar length), E;=1, E,=0.25 (the
Young's Moduli), p=1 (the density), and Q = (=b, b) (the spatial
domain representing the bar).
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Figure: One-dimensional bar with disordered microstructure.




High-Fidelity Data

e Both training and validation datasets are generated via high-fidelity (HF)
simulations of the propagation of stress wave through a one-
dimensional heterogeneous bar. The HF model is a classical wave

equation: find u(x, t) such that, for (x,t) € Ox[0,T],

aZUHF

9tz Lyplugel(x,t) = f(x, 1)

with force loading term f(x, t), provided some initial conditions att = 0
and boundary conditions on 01).

e The HF-model is numerically solved using a Direct Numerical Solver
(DNS) in [2], which guarantees that the wave velocity is computed

exactly.

« [3] Silling, S. A. (2021). Propagation of a Stress Pulse in a Heterogeneous Elastic Bar. Journal of Peridynamics and Nonlocal
Modeling, 1-21.



High-Fidelity Data

e Three types of data are generated where type 1 and type 2 are used
for training, and type 3 is used for validation. In what follows, v
presents the velocity.

e Type 1: Oscillating source. We set b=50, T=2, v(x,0)=u(x,0)=0,

2x \2 _(t=to
f(x,t) = e_(m) e ( tp )cosz (%),k =12,..,20,t, = t, = 0.8.

e Type 2: Plane wave with ramp. For b=50, T=2, f(x,t)=0 and u(x,0)=0,

cos(wt) sin? (%), ift <15
cos(wt), ift > 15

we prescribe v(—=b,t) = ,for w =

0.35,0.7, ..., 3.85.
e Type 3: Wave packet. b=133.3, T=100, f(x,t)=0 and v(-b, t) =

t N
sin(wt) el-G® 2}, for w = 1.0, 2.0, 3.0, 4.0.



Nonlocal Operator Regression (NOR)

e Following the method in [1], we proposed a nonlocal model to
approximate the HF-model at large scales:

0%upy;
dt?

= Lyclun,[(x, ) = f(x, )

where
Lol (x, ) = fﬂxux — D) (s ) ©) — s (6, ) dy

e We represent the kernel K as a linear combination of Bernstein basis
polynomials: )

M C X—y
K(x=yD=) W%Bm,M<
m=0

&

where

M _
B () = () x™(1 =M=
for0<x<1and(,, € R

* [2] You, H., Yu, Y., Siling, S., & D'Elia, M. (2020). Dato-driven learning of nonlocal models: from high-fidelity simulations to

constitutive laws. AAAI Spring Symposium MLPS 2021.



Nonlocal Operator Regression (NOR)

From now on, denote K. and uy,  as the nonlocal kernel and nonlocal
solution corresponding to a specific set of kernel parameters C :=

{Cm}m=o-

Using central-difference scheme in time

Unpc (X the1) = 2unp (X, tn) — unp o (2, t — 1) + dt? (L?Cc,h[uNL,C](xi; tn) + f(x;, tn))

Learning procedure: minimize the following cost function with

regularization
st L, (Qx[0,t])

Uy, ¢ satisfies the central difference equation and K satisfies physical-
based constraints[1].

|uNL C uDNSl

12 ([0, t])

+Allcl],

|uNLC|

* [2] You, H., Yu, Y., Siling, S., & D'Elia, M. (2020). Data-driven learning of nonlocal models: from high-fidelity simulations to
constitutive laws. arXiv preprint arXiv:2012.04157.



Notel: NOR is a purely deterministic approach. It cannot quantify the
uncertainty in using a nonlocal model to describe material response.

Note2: We can use this preliminary result as prior knowledge in
Bayesian inference.



Bayesian Inference: likelihood

e In this work, we take ground truth uyr as the numerical solution
upys generated from the DNS solver.
e Denote the nonlocal solution corresponding to a specific set of kernel

parameters {C,,} as ug_3(x, t), model the error between the nonlocal
solution and the ground truth as a Gaussian variable

upns(x, t) = uiy c(x, t) + e(x, t), e ~ N(o, 6¢)

2

, 0 is a constant independent of s.
1,(Qx[0,t])

where o, = o ||u,5vL,C|

e The negative log-likelihood reads

2
S
s=1

||uISVL,C — Upns| 2

+ Nlog(o | |uISVL,C| |12(Q><[0,t]))

1, (Qx[0,T])

S
| |uNL,C| L x[0])

10



Bayesian Inference: prior

e Assume C = {C,,} has a Gaussian prior, i.e. C,,, m =0, ..., M are

2
independent Gaussian variables with C,,, ~ N (CO,mr %) . Here {Cy 1} is

the set of parameters of the kernel learnt from the deterministic NOR,
and o, is the standard deviation calculated using the current nonlocal
solution associated with {C,,}.
e The negative log-prior reads
2
1€ = Gol|
)\ 2
20,
e Combining the negative log-likelihood and the negative log-prior, we

have the negative log posterior
2

S

S S
Z ||uNL,C - uDNSl

S
s=1 ||uNL'C| 1,(Qx[0,t])

2 1c = Coll,

+ A
1, (Qx[0,t]) 205

1,(Qx[0,T]

) + Nlog(o ||u,‘°§,LC|

11



MCMC: algorithm and evaluation

e We adopt the adaptive MCMC algorithm proposed in [4]. In practice,
we couple PyUQTk [5] with our nonlocal model to apply the MCMC
algorithm.

e Inspect the trace plot visually and evaluate the acceptance rate (the
percentage of the accepted proposal states) of MCMC.

e Effective sample size (ESS) is a guidance on sub-sampling, also a
criterion which could tell us how long an MCMC chain we need. In
this work, the ESS is computed following the multivariate extension
defined in [6].

e Plot the probability density function (PDF) based on equally spaced
samples of the chain, where the number of the subsamples is
determined by the ESS.

* [4] Haario, H., Saksman, E., & Tamminen, J. (1999). Adaptive proposal distribution for random walk Metropolis

algorithm. Computational statistics, 14(3), 375-395.

« [5] Sargsyan, K., Safta, C., Ball, L., Johnston, K., Khalil, M., Chowdhary, K., ... & Debusschere, B. (2022). UQTk Version 3.1. 2 User

Manual (No. SAND2022-0377). Sandia National Lab.(SNL-NM), Albuguerque, NM (United States).

« [6] Vats, D., Flegal, J. M., & Jones, G. L. (2019). Multivariate output analysis for Markov chain Monte Carlo. Biometrika, 106(2),

321-337.
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Results on Disordered Material

MCMC Trace Plot
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Results on Disor

Density Plot

dered Material
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Kernel

Results on Disordered Material
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e Positive dispersion curves indicate physically stable material models
e The group velocity matches the one computed with DNS both at low
frequencies and at the band stop.
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Validation on wave packet through a disordered material

Validation on the wave packet with w=2.0 at t=20.0s (short time
prediction) and t=100.0s (long time prediction). 4 different
frequencies (w=1.0,2.0,3.0,4.0) are considered. For each sample in
ESS, we calculate the nonlocal kernel C and the corresponding
nonlocal solution uy; . Then plot the 68%-95%-99.7%
confidence region for uy; ¢ + €, where

eE~N (0, 0? ||uNL’C(x, t)|

2
lz([—b,b]x[O,T])>

16
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Conclusion

We proposed a Bayesian nonlocal operator regression technique, which

captures the nonlocal constitutive law that embeds the material
properties,

characterizes the uncertainty in using a nonlocal model for predicting
wave propagation through heterogeneous materials,

Provides models that reproduce high-fidelity data that are
substantially different from the training data

Future work

Noisy data,
More sophisticated error model, etc.
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