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Interactive Visualization for Fostering Trust in ML

Some questions to consider:
• What kinds of factors consistently foster appropriate levels of trust 

in ML?

• What are the pros and cons of visualizing different types of 
information that might be relevant to users?

• Which types of visual cues are most appropriate for supporting 
comprehension and decision making?

• When is interactivity helpful, and when is it confusing or 
overwhelming?

• What types of interactions are helpful for increasing 
understanding? For supporting appropriate trust?



Interactive Visualization for Fostering Trust in ML

Some aspects of cognition to consider:
• Domain expertise

• People with different levels of expertise will differ in their ability to evaluate ML 
outputs and may trust (or not trust) them for different reasons

• Individual differences in cognition and prior experience
• Different people have different strengths and preferences. They are influenced by 

their prior training, experiences, and expectations.

• Working memory and cognitive load
• The amount of information we can hold in mind and manipulate at one time is very 

limited. Interpreting or interacting with visualizations may impact cognitive load.

• Visual cognition
• People can have visual and perceptual illusions and biases that impact their 

comprehension and decision making.

• Cognitive biases
• People often seek confirmation of what they already believe rather than testing 

alternative hypotheses.



Factors that Impact Decision Making
A few examples:
• Visual search aided by (mock) ML outputs

• People get complacent as the overall accuracy of the 
outputs goes up

• Novices are more likely to go along with what the ML says

• Visualizations of uncertain information
• Differences between visual and numerical representations
• The specificity of the information can impact judgments of 

risk
• The same information visualized in different ways can lead 

to different patterns of decisions
• Individual differences also impact decisions
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Nuclear safeguards:
Detect the diversion of 

nuclear materials

Detect the misuse of 
nuclear facilities

Detect the development of 
unknown nuclear facilities

Context for our visual search experiments:
The increasing use of AI/ML tools in the international nuclear safeguards domain



AI/ML models are being explored for multiple 
safeguards tasks

• Review of surveillance camera 
footage (Smith et al., 2021)

• Automated pre-processing of 
overhead imagery (Rutkowski et. al., 2018)

• Image matching for indoor 
localization (Belenguer et. al., 2020) 

• Multi-modal information retrieval 
(Feldman, et. al., 2018)



AI/ML model performance continues to improve…



…but will always make at least some errors.



Key Research Questions

 For the implementation of ML models to be effective, we need a 
better understanding of the impact of AI/ML errors on human users
◦ When and how do errors in AI/ML outputs lead to errors in human 

assessments?
◦ What factors make it easier or harder for people to recognize errors?
◦ How do people develop appropriate levels of trust in the outputs?
◦ What level of accuracy in the model outputs is necessary to support 

acceptable levels of human/system performance?



Experiments focused on object detection in imagery



Experiments focused on object detection in imagery

Hit (True Positive)

False Alarm (False Positive)

Correct Rejection (True Negative)

Miss (False Negative)

Hit (True Positive)
Correct Rejection 
(True Negative)

False Alarm (False Positive) Miss (False Negative)



• Domain general (T&L Task):
• Error Rate - How accurate is the model?
• Error Type - What are the most prevalent types of errors?
• Error Importance - Which types of ML errors are most important?

•Domain specific (Cooling Tower Task):
• Expertise – Domain experts versus novices

Experiments focused on object detection in imagery



Error Rate Experimental Manipulations

◦Model outputs are 50%, 60%, 70%, 80%, 90% or 95% 
accurate

◦Equal numbers of three error types: Misses, False Alarms, 
and Miss/FAs

◦210 participants



Error Rate Experiment Results

 Having a more accurate model is good!

50% Correct 60% Correct 70% Correct 80% Correct 90% Correct 95% Correct
0.5

0.6

0.7

0.8

0.9

1

Mean Accuracy

50% Correct 60% Correct 70% Correct 80% Correct 90% Correct 95% Correct
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Mean Response Times (ms)



Error Rate Experiment Results

 Having a more accurate model is good!

 …except when the model makes errors
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Error Type Experiment Results

 Again, having a more accurate model is good!

t for when there are errors



Error Type Experiment Results
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 Again, having a more accurate model is good!

 …but as the model gets better, people become less likely to notice model errors



Experiments focused on object detection in imagery
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False Alarm (False Positive) Miss (False Negative)

Model output was accurate 80% of the time



Domain Specific Experiment Results
◦ Incorrect model outputs don’t hurt expert performance (just like in T&L task)
◦ Novices were more likely to comply with incorrect model outputs
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Factors that Impact Decision Making
A few examples:
• Visual search aided by (mock) ML outputs

• People get complacent as the overall accuracy of the 
outputs goes up

• Novices are more likely to go along with what the ML says

• Visualizations of uncertain information
• Differences between visual and numerical representations
• The specificity of the information can impact judgments of 

risk
• The same information visualized in different ways can lead 

to different patterns of decisions
• Individual differences also impact decisions



Visualizations of Uncertain Information

State uncertainty is uncertainty about the 
current or future state of some 
phenomenon
• Very common in AI and ML outputs!

Humans are notoriously bad at 
understanding state uncertainty and 
probability
• Different representations of the same 

information may push people to make 
different decisions

https://ai.googleblog.com/2022/04/locked-image-tuning-adding-language.html



Specificity and Perceptions of Risk
• Three prior studies (Bisantz et al., 2005; Bisantz et al., 2011; Cheong et al., 2016) 

suggest that more specific information about uncertainty can produce more risk
-averse decisions
• e.g., 60-70% chance vs. 40-70% chance

• Patterns of decision making changed when people saw visualizations of 
uncertainty instead of numeric or linguistic expressions
• People seem to treat visual cues as having higher levels of specificity than 

numeric or linguistic expressions
• They make more risk-averse decisions when given visualizations

• Why would that happen?
• Do people treat visualizations of uncertainty as if they are deterministic?
• Does a visualization make it easier to imagine the risks?
• Do different visual cues make a difference?



Wildfire Evacuation Task



Wildfire Evacuation Task
• Show people the probability that their house will burn down in a wildfire. Ask them if 

they will stay or evacuate. Evacuation costs money, staying in a house that burns down 
costs money, participants receive a real money based on their decisions

• Does increasing specificity of the representation change their decision threshold (does it make 
them more risk-averse?)

• Do we get the same effect when we compare visual representations to numeric ones?
• Does visualizing the info increase the apparent specificity?
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Icon Array Experiment

• Widely used to support risk communication in medical decision making
• Useful for helping people understand probability, especially people with lower 

numeracy skills

• Increasing the specificity of icon arrays:
• Increase the number of icons (10 vs 100) to give more precise percentages

• Manipulations that might increase the perceived specificity of icon 
arrays:

• Iconicity
• Randomization of icons
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• Results:
• People were more likely to evacuate when 

shown icon arrays than when shown natural 
frequencies

• People more likely to evacuate when shown 
houses than when shown squares

• People more likely to evacuate when shown 
randomized icons than when shown ordered 
icons

• No differences for different numbers of icons



Individual Differences

• Objective Numeracy Scale
• Subjective Numeracy Scale
• Short Graph Literacy Scale
• Risk Propensity Scale
• Need for Cognition



• The way in which state uncertainty is represented impacts decision 
making
• More specific representations (i.e. “61 out of 100” instead of “6 out of 

10”) tend to produce more risk-averse decisions

• Visualizing uncertain information produces more risk-averse decisions 
than numerical representations with the same level of specificity
• People seem to interpret visualizations as if they are more specific 

than other types of representations

• The specifics of the visual encoding also matter
• Visual design choices can increase the perceived specificity of the 

visualization, which makes people even more risk averse

Results



Spatial Uncertainty – Maps
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Map Experiment Results
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Map Experiment Results
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Map Experiment Results
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Summary
 It’s complicated. Even before we look at 

interactivity!

 We need to be aware of the various factors 
that impact the effectiveness of different 
representations of ML outputs.

 Different representations may not be 
equivalent from the perspective of human 
comprehension and decision making

 What’s going to happen when people interact 
with the visualizations?



Factors that Impact Decision Making
A few examples:
• Visual search aided by (mock) ML outputs

• People get complacent as the overall accuracy of the 
outputs goes up

• Novices are more likely to go along with what the ML says

• Visualizations of uncertain information
• Differences between visual and numerical representations
• The specificity of the information can impact judgments of 

risk
• The same information visualized in different ways can lead 

to different patterns of decisions
• Individual differences also impact decisions
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Project Summary
Our goal is to advance the scientific understanding of how people develop appropriate levels of trust 

in artificial intelligence (AI). 
Key Questions:
• Can we develop descriptive and predictive models of how characteristics of the algorithm, the task, 

and the user interact across different phases of human-AI interaction?
• Can we use those models to tailor an algorithm to optimize task performance and trust for:

• Specific groups of users (i.e., domain experts)? Specific individuals?
• Specific phases of an analytical process?
• Specific individuals during specific phases of an analytical process?

• And if we can do it, is it worth the effort?

T4T: Tailoring for Appropriate Trust

Algorithm 
transparency and 

interactivity

Task
Difficulty

User’s 
experience level

User’s cognitive 
characteristics

Learning how to 
work with the AI

Steady state of 
performance Adjustment to 

new task 
parameters

Steady state of 
performance



• Task, prior experience, familiarity, low-level visual features, and visual-
spatial biases all interact with one another when viewers interpret 
visualizations
• Yet carefully controlled experiments can identify systematic patterns in how 

viewers interpret visual cues
• Identifying these patterns can help us to understand and mitigate perceptual and 

cognitive baises

Visualization Cognition



Error Importance Experiment Results
 Did emphasizing certain types of errors make a difference?
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Error Importance Experiment Results
 Did emphasizing certain types of errors make a difference?



Error Importance Experiment Results
 Did emphasizing certain types of errors make a difference?
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Error Importance Experiment Results
 Did emphasizing certain types of errors make a difference?
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Wildfire Evacuation Task
• Participants are asked to pretend that they live in this cabin in the woods, but 

there is a wildfire in the area. On each trial, they see the probability that their 
house will be in the burn zone. They must decide whether to stay or evacuate.

Probability of 
the house 

being in the 
burn zone

Decision:
Stay

Evacuate
Outcome
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What if we actually make the 100 icon arrays 
more specific?


