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Impact on Power Electronics: Baliga® Figure of Merit

There are two main parameters of importance for power electronics, the breakdown voltage
(related to the critical field, E, for impact ionization), and the specific on-resistance
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Impact on Power Electronics: Baliga® Figure of Merit

The unipolar FOM is widely used to compare materials of power electronic applications, based on two important

quantities: the reverse breakdown voltage, Vg, and the forward specific on-resistance, R,y sp:
' evices, Circuits and Architectures
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For Ohmic conduction, R,,, s, is connected to the semiconductor material through the electron

(hole) density, n(p), the carrier mobility, Un,p, @and the drift region width, Wj:
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The breakdown voltage depends on the breakdown (critical) field, Vg = n&€.,-Wy, which varies as the square of the

bandgap
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Narrow Wide ULTRAs — New class of materials

‘“ GaN - DIET T

Bandgap (eV) 3.26 3.4 5.5 6.2
Breakdown Field (MV/cm) 0.3 2.5 3.8 10 16 12
» Baliga’s figure of merit (FOM) 1 183 535 9000 9797 1678
Traditional New Emerging Technology

From M. Kuball, EFRC highlight 2020




Breakdown in Diamond SPIN Diodes
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Forward Characteristics of Diamond SPIN Diodes

Record forward current (116 kA/cm?) measured in Schottky PIN diodes. o Y e e ot oS

Strong evidence of Mott-Gurney space charge limited current regime in
forward bias including trap effects.
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Power Electronic Figure of Merit (FOM) Revisited
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Comparison Between Materials and to Experimental
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Data points taken from A. J. Green, J. Speck, G. Xing, et al., “B-Gallium Oxide Power Electronics,” APL Mater. 10, 029201
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Other FOMs Under Investigation
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PIN and SBD Diode Power Loss Optimization

For a given set of operating parameters, the doping level and
drift thickness are optimized to minimize power loss:

Piotar = P forward + Preverse + P dynamic + P displacement
The temperature- and doping-dependent mobilities are

1 3
calculated theoretically or with empirical models fit to l'
The temperature-, doping-, and drift thickness-dependent

critical fields are calculated from the ionization integral” iterate

UWBG-specific effects such as incomplete ionization and
space-charge limited current are included




PIN and SBD Diode Power Loss Optimization

The UWBG material and diode type (PIN or Schottky) that produces the lowest power loss for

each reverse bias and frequency is plotted in a color-map
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Summary

» Ultra-materials (E, > 5 eV) hold promise for achieving high Figure of Merit (FOM) for
power electronics applications
» Current materials are still immature in terms of unwanted defects (premature
breakdown, low mobility) and challenges in doping (incomplete ionization)
» Figure of Merit is one (incomplete) way to relate semiconductor material properties to
device performance
* Conventional approach to calculating FOM (e.g. Baliga FOM) has been over-
simplified, and only address particular applications of power electronics
* Current work through the co-design thrust of the ULTRA EFRC attempts to correct
some of the shortcomings of particular importance for UWBGs
* New performance metrics in terms of power dissipation in switching power
converter applications are currently being developed
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