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Brief intro to trapped ions for QIP

Ion projects employing integrated photonics

Waveguides, gratings, and more

Single-Photon Avalanche Diode

Optical Modulators



Trapped Ions for Quantum Information and Sensing3

 What is a trapped ion?
 Neutral atom/molecule stripped of 

1+ e-

 Confined with RF/DC,  E/M potentials

Gabriel Machuca : PhD (2019)

Pros
Identical qubits*
Best fidelities
Can be fully connected
Scalability?

Cons
Slow operation (MHz)
Multiple lasers
Ion loss
Scalability?

*In identical environments

 Application
 Fundamental Physics
 Sensors (Clocks, inertial, EM)
 Computation

APS/Alan Stonebraker
Science 319, 5871,1808-1812 (2008)IONQ

Paul/
Surface trap



Ion Traps4

Paul Trap

 Static and dynamic electric 
fields

 Simple
 Deep trap depth
 Difficult to Scale

Surface Trap

 Static/dynamic E-fields
 Manufacturable, repeatable
 Integrate technologies
 Difficult to make
 Lower trap depth
 Scalable

Plasma Science and Technology 11, 5, 521 (2009)

Penning Trap

 Static electric and magnetic 
fields

 Simple
 Deep trap depth
 Difficult to Scale



Some of Sandia’s Surface Traps5

Ring trap:

Circulator trap Y-junction traps 

Microwave trap Stylus trap 

Switchable RF trap

High Optical Access (HOA) trap 

ᵱ� ᵅ� 1 ᵱ� ᵅ� 2



Two Common Ion Species: 171Yb+ and 40Ca+6



Trapped Ion Clock with photonic Technologies on Chip (TICTOC)7

Cross section of Ion trap

Light delivery with 
waveguides and 
grating couplers

200+ thru-vacuum 
electrical and optical I/O 
delivered via PIC

Solder-bonding 
vacuum cell

Comb system

435 nm laser + 
WGM resonator

Doubler system

369 nm, 399 nm, 
760 nm, 935 nm 
fiber array input

Detection: 
Avalanche 
photodiodes



TICTOC 28

 Final TICTOC trap out of fab soon, 171Yb+

 2 types of cells: “Clock” and “Load”
 369, 399, 435, 760, 935 nm light 
 Optimized electrode design, 50 µm height
 Focusing output gratings, ~ 4 µm UV spot size
 Loading sites also storage

Clock
cell

Loading
cell

38 µm

15
 µ

m

RF

DC

RF

DC



Modulators + Gratings : Malpais9

 40Ca+, modulators + gratings
 Multiple MZI designs
 Edge coupled (off screen)
 Designed for 729 nm
 High fidelity 1 and 2-qubit gates 

MZIs



Waveguides, Gratings, and More



Waveguides and Gratings: Coupling In11

 Requires coupling through vacuum chamber
 ~ 1E-11 Torr, UHV
 Room temperature/Cryo

 Mostly top-down grating couple (edge optional)
 Fiber attach in the works



Waveguides and Gratings: Coupling In 212

~ 50 µm on a side

200 µm

Input for 171Yb+: 
369 nm: “Doppler” cooling
399 nm: Neutral atoms → strip electron = ion 
435 nm: Clock/qubit 
760, 935 nm: “Repumps”

WG on-trap routing

Glass viewport



Waveguides and Gratings: Materials13

Aluminum Oxide Grating Silicon Nitride Grating

 Silicon Nitride WG material
 VIS/NIR wavelengths

 New-ish Aluminum Oxide WG material
 UV/VIS wavelengths
 ~ 3 dB/cm @ 369 nm
 Preliminary results at 355 nm: 4 dB/cm

 Angles highly accurate, < 1 µm horizontal error



Waveguides and Gratings + Ion Traps14

 Focusing Gratings:
 ~ 4 to 8 µm spot sizes

 Gratings for ion loading
 Need good overlap
 Overlap for quantum operations
 Doppler and Repump beams

MMI simulation



Phase Shifters15

 Thermo-optic phase shifter characterized 
and show excellent efficiency and range

 6.65 mW/π phase shift
 >5π total phase shift possible before damage
 ~30 dB extinction on Mach Zehnder test 

structures

Tuning a Mach-Zehnder Test Structure

13.3 mW

~30 dB Extinction

Measured
Simulated Power Deposited = 20 mW



Waveguides + Ions Results16

 Waveguide/grating integrated trap
 Large grating input, smaller output
 Record low ion height, 20 µm above surface
 Delivered 435 nm “clock” light via WGs

 Heating rate measurements
 No change in HR over length of the trap
 No ITO on waveguides!



Waveguides + Ions Results 217

PRX 11, 041033 (2021)

 Grating dielectric did have an effect 
 Significant shift of secular frequency
 Long term drifts
 Consistent with photoinduced charging models

 Reflector plate impact
 Meant to redirect downward diffraction to ion
 On the edge of fabrication resolution: double peak



Future Directions for WGs + traps18

>90% Directionality

150nm
100nm

0nm

 Highly direction output gratings
 Send most light towards the ion
 Enabled by multi-level fabrication
 Ridge waveguide design and polarization rotation possible

 More Traps
 Preliminary results for ps pulsed 355 in WGs good. 



Future Directions for WGs + Traps: Fiber Attach19

 Outside chamber v-groove/Trap attachment
 26 UV, Visible, NIR channels
 Trap surface is part of the vacuum chamber
 369, 399, 435, 760, 935 nm beams

Bond
pads

Annulus

Optical inputs

21 mm



Trap-Integrated Single Photon 
Avalanche Diodes



Single Photon Avalanche Diodes (SPADs) + Traps 21

Appl. Phys. Lett. 119, 1540222 (2021)

 First demonstration of trap-integrated SPAD
 Room temperature operation
 Average efficiency ~ 24% at 369 nm 
 ~ 40 µm diameter

 Not problem free
 High Dark Count Rates (DCRs, ~ few kHz): defection 

creation?
 SPAD firing significantly disrupts ions, couldn’t hold ion 

directly over trap. RF

DC



SPAD Composition and Design22

 SPADs Monolithically integrated into surface trap
 Process flow could be carried out in most CMOS fabs
 ARC reduces reflections @ 369 nm from ~ 30% to ~ 10%
 Quartered and halved active area, reduce DCR
 Active area of quartered area ~ 60 µm2 



Results with Ions23

 SPADs Pulses longer than wanted
 Likely extra capacitance from long leads

 With 174Yb+ only ion/no ion

 “Traditional” threshold vs. Bayesian detection
 Bayesian much faster, but more complex

Source Counts (kcps)

Ion 
fluorescence 4.8(1)

935 nm 
repump 4.0(1)

370 nm 
Doppler 1.4(1)

Dark counts 1.2(1)

Rf pickup 0.3(1)



“Enhanced” SPAD/Waveguide Trap24

 Version of trap with SPAD covering/waveguides
 SPADs from previous design, new metal layers
 “Inner” DC electrodes, much higher trap depth
 Easier to transport over gratings
 SPADs or WGs, not SPADs + WGs 

Source ~ Counts (kcps)

Ion fluorescence 7

935 nm repump 4

370 nm Doppler 2

Dark counts 0.45

Rf pickup 0.3

RF

DC

DC

RF

 Metal mesh to reduce SPAD firing effect
 Estimated ~ 56% transmission
 Simulations show ~ 40x reduction in SPAD E-field
 ITO in future for SPADs and WGs



Future Directions: Final Trap!25

 Final trap near completion
 32 “clock” sites, 4 “loading” sites
 SPADs + WGs, simultaneous operation
 ITO coverings over SPADS and WGs
 “Full” SPADs, allows fast (~ 100 µs) detection
 New SPAD Process flow
 Initial DCR rates show good performance

 Baffles for simultaneous SPAD + WG operation 
 Significantly reduce noise at SPADs
 Affects beam quality at ion

SPAD

435nm Grating

SPAD

435nm Grating



Traps and Modulators



Integrated Modulators Overview27

 Integrated modulators co-fabed with traps (soon)
 Mach-Zehnder Interferometers, piezo actuated
 Two in serial for better extinction (38 dB total)
 Wide wavelength range, used at 729 nm

340 µm

APL Photonics 7, 051304 (2022)



General Performance Characteristics28

 SiNx waveguides on piezo platform
 Release holes allow removal of α-Si

 Splitting ratio of couplers changes mapping
 Observed roughly 55/45 splitting 

50/50 Splitters 60/40 Splitters

Observed



Pulse Timings and Stability29

 Compare MZIs to “traditional” AOM switch
 Single-pass/Double Pass AOMs vs. double MZIs
 Imperfect electronic switching, but long-ish pulses
 Integrated pulse intensity similar, detection electronics 

limited?



Modulators + Ions30

 MZI switch inline with 40Ca+ quad. beam (729 nm)
 Rabi flops similar to AOMs
 Extinction ratio ~ 38 dB, measured via flop duration
 GST results: Somewhat worse than AOM
 Identity gate the worst: leakage.
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The National Security Photonics Center32

 III-V photonic integrated 
circuits (PICs)
 InP, GaAs, GaN
 Elements:  Waveguides, 

lasers, amplifiers, 
modulators, detectors, 
phase shifters

 MPW runs available

 More information on photonics MPW opportunities:
 National Security Photonics Center:  sandia.gov/mesa/nspc

 Contact photonics@sandia.gov

 Integrated photonics for 
quantum communications

 Sandia’s silicon, III-V, alumina, 
lithium niobate heterogeneously 
integrated photonic platforms:  
compact microsystems for 
telecom and visible 
wavelengths

 Cryogenic optical interconnects
 High-speed low-power resonant modulator operating 
at cryogenic temperatures (≤ 4 K)

Optica  4,  
374-382 (2017) 

 Silicon photonics integrated 
circuits
 Leverage CMOS (200 mm 

SOI)
 22 passive devices, 20 active 

devices, design guide and 
library

MPW runs available, up to 
passive+active+Ge devices



DiVincenso Criteria and Trapped Ions33

1) A scalable physical system with well-characterized qubit : ? / YES

2) The ability to initialize the state of the qubits to a simple fiducial state: YES

3) Long relevant decoherence times : ? / YES

4) A "universal" set of quantum gates : YES

5) A qubit-specific measurement capability: YES

https://en.wikipedia.org/wiki/Qubit
https://en.wikipedia.org/wiki/Quantum_decoherence
https://en.wikipedia.org/wiki/Relaxation_(NMR)
https://en.wikipedia.org/wiki/Quantum_logic_gate#Universal_quantum_gates
https://en.wikipedia.org/wiki/Quantum_gate
https://en.wikipedia.org/wiki/Measurement_in_quantum_mechanics

