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; ‘ Motivation: Image-based analysis

Johnson, et al., 2019, "Predicting the reliability of an additively-manufactured metal

part for the third Sandia fracture challenge by accounting for random material
strain f|e|d defects,” International Journal of Fracture, v. 218, pp. 231-243
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Typical geometric reconstructions require a smoothing
or decimation process before modeling can commence.



+ ' Motivation: Agile simulation of complex assemblies

hermetic electrical

connector chamfer

stress field in glass seal
after manufacturing

fillet

thread

« Domains typically contain many geometric features
that must be removed before analysis.

* Heuristics are often used to defeature geometry.

e Heuristics are used to construct finite element mesh.



s | Motivation: Agile simulation
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¢! Motivation: Agile simulation

FEA discretization is intimately tied
to domain geometry.
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7 ‘ Motivation: Separate domain discretization from
solution discretization

original domain
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defeature

O

defeature

Impact of domain defeaturing? depends on goals of simulation



. | Hybrid approach: fine-scale triangulation

AT AT

create an element-free
original domain basis using triangulation.

Q O : fine-scale triangulation




» | Element-free basis functions

e Element-free basis functions
automatically include geometric
features at all scales.

 Solution discretization is separate
from domain discretization.

« No need to defeature domain.

« PDE solution is insensitive to
quality of fine-scale triangulation.




10 ‘ Hybrid approach: fine-scale triangulation

Tet-meshing methods

« Delaunay

« advancing front
* background grid
« envelope

CDFEM

TetWild

A verified conformal decomposition finite element method for
implicit, many-material geometries

Scott A. Roberts *, Hector Mendoza, Victor E. Brunini, David R. Noble

(b) Electrolyte

(a) Particles

Fast Tetrahedral Meshing in the Wild

YIXIN HU, New York University, USA

TESEO SCHNEIDER, New York University, USA

BOLUN WANG, Beihang University, China and New York University, USA
DENIS ZORIN, New York University, USA

DANIELE PANOZZO, New York University, USA
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> ‘ Moving Least Squares (Reproducing Kernel)

The MLS shape functions ¢;(X)are defined as a
spatial modulation of the nodal weight functions.

¢1(X) = cr(X)wi(X)

where the modulation function ¢;(X) is found through a
least square minimization process resulting in

c/(X) =g (X)A™ (X)g(X))

where

AX) = Z wi(X)g(X;)gh(X;)  (sum over neighbors)
leV

g'(X)={1X; X} (linear reproducibility)

> ¢r(X) =1

I

ZXI ¢1(X) =X

I

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, VOL, 37, 229-256 (1994)

ELEMENT-FREE GALERKIN METHODS

T. BELYTSCHKO, Y. Y. LU AND L. GU

Department of Civil Engineering, Robert R. McCormick School of Engineering and Applied Science,
The Technological Institute, Northwestern University, Evanston 1L 60208-3109, U.S.A.
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12

Computational Mechanics 18 (1996) 225-235 -C' Springer-Verlag 1996

Continuous meshless approximations for nonconvex bodies by
diffraction and transparency

D. Organ, M. Fleming, T. Terry, T. Belytschko

visibility criterion visibility criterion
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Fig, 2a-d, Contours for weight and shape functions associated with

b node A constructed using the visibility criterion. a Weight
Fig, 1a,b. Domains of influence near nonconvex boundaries using the function near a crack Ti[’a b Sh3[3ﬁ function near a crack “P: C W'f-‘iﬂht
visibility criterion a Supporinear a hole, b Support near a crack tip function near a hole, d Shape function near a hole

All these methods (visibility, transparency, diffraction)
require use of computational geometry.
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Manifold geodesic

Geodesic: path that provides the shortest
distance along a manifold

(k<]

https://en.wikipedia.org/wiki/Geodesic

Euclidean manifold with boundary
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Geodesics in Heat: A New Approach to Computing Distance
Based on Heat Flow

KEENAN CRANE

Caltech

and

CLARISSE WEISCHEDEL and MAX WARDETZKY,
University of Géttingen

ACM Trans. Graph. 2013 Vol. 32 Issue 5 Pages Article 152

ALGORITHM 1: The Heat Method
I. Integrate the heat flow u = Au for some fixed time .

II. Evaluate the vector field X = —Vu/|Vu|.
III. Solve the Poisson equation A¢ =V - X.

r
Py p’

Ry e
N

X ¢

Fig. 5. Outline of the heat method. (I) Heat u is allowed to diffuse for a
brief period of time (left). (II) The temperature gradient Vu (center left) is
normalized and negated to get a unit vector field X (center right) pointing
along geodesics. (II) A function ¢ whose gradient follows X recovers the
final distance (right).

Fig.1. Geodesic distance from a single point on a surface. The heat method
allows distance to be rapidly updated for new source points or curves.



s ‘ Weight functions using heat flow
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* Solve local transient heat
conduction problem with
certain I.C. and B.C.

* Uses local tri-mesh within
support radius.




s ‘ Weight functions using heat flow

=
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Node placement

 uniform on boundary
« random close packing on interior (maximal
Poisson sampling)

packing size:

H =0.1
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Weight function support size

support size

encloses underlying tri mesh

packing size: H = 0.1

CD: .. .
R=2H —"

linear

R=3H
quadratic

[ R:4H

cubic






0 I Governing equations for solid mechanics (Lagrangian)

strong form

weak form

oP

G T = pyii
9X Po Tt

u=u on I§j and P-N=t; on I}

P is first Piola-Kirchhoff stress tensor

find the trial functions u € H'(Qg) such that

/ to-vdS — P: (0v/0X) dX =
r

t
0 o

for all test functions v € HE (o)

Qo

po U -

Q

L

«—
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Governing equations for linear elasticity

strong form g_a 14 f

X

0 u—u on I'y and on=t on I}

o = Ce, where € := sym (Vu) (linear elastic)

Jag, ay >0 suchthat oge:e < e€:(C(x)e) < ay€e:€ Ve (uniform ellipticity)

weak form find the trial functions u € H(Qg) such that

/a:(@v/@x)dQ:/f-de+f t-vdl
Q Q Iy

for all test functions v € H{(Q)

abstract variational problem a(u,v) =b(v) with bilinear form a(u,v) :/ Vu : CVvdQ
Qe



2 | How to do quadrature?

Too expensive to use fine-scale triangulation for quadrature!

Observe that partition-of-unity property allows us to approximate any continuous function
arbitrarily closely using only point evaluations as long as basis functions have local support.

Given ZgbK(X) =1 thenitfollowsthat f(x)~ Zf(XK)¢K(X) = fn(x)  non-interpolatory
% K

approximation

Theorem: For every ¢ > 0 and x € €, there exists h(e) > 0 such that | f,(x)—f(x) | < e.

It follows that /f(x)dQ%/fh(x)dQ

with ‘/fh ) dS) — /f dQ‘ /|fh |dQ</5dQ:V-€

Can obtain rates of convergence using Taylor's theorem.



Approximation property

function approximation

| f@) =120 -1z
fv = feer(e)
let f(z)=|2z—1]vx 08| =1

v = flex)éx(z)

0 0.2 0.4 0.6 0.8



24 ‘ Quadrature

/f(X)dQ%/fh(X) dQ:/Zf(XK)¢K(X) dQ:Zf(XK>/¢K(X) df}

K K

Define quadrature weightas| wx = | ¢x(x)dS)
Q

/ ) d2 ~ Y wie f(x)
K

Can show that ZWK —V and ZWK X = / <dO Now have a second-order integration scheme
% % Q that can integrate linear functions exactly.
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Quadrature example

f(x,y) = sin(mz/2) sin(my)

CeITor =

> wil k) - /Q d
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Quadrature example

H =0.05

Evaluate error for 10 realizations.




27 ‘ Quadrature weights
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s | Element-free approach to solve BVPs

Use two meshfree clouds: one for solution discretization (DoF) and
one for quadrature.

O DoF point
e quadrature point

o .. ‘Lo quad-to-dof ratio = 42

+ fine-scale tri-mesh

0}
(,o: .
()

What ratio of quad points to dof points is needed for stability
(coercivity of bilinear form)?



» | Patch test (linear consistency)

uniaxial tension

- —_—
E=1.0
1T «— —
v =20.3
-— —_—

error > 5%



* " Consistency of discrete form (integration)

* For convergence of discrete approximation, need to ensure consistency of discrete and
continuous bilinear forms.

 Requires polynomial consistency of shape-function gradients (including quadrature).

* To obtain quadrature consistency, project the DoF shape function gradients to the
subspace of quadrature shape functions.

* Only performed once in a pre-processing step.

{¢r,1=1,...,N} DoF basis (shape functions)
{®d,K=1,...,M} Quadrature basis (shape functions)

v 2
<V¢I — Z aKCDK) dS} (L,projection)

K=1

Vor = argmin/

Q
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The projection can be written in terms of the dual or conjugate basis {®”}

(®g,®’) =06; bi-orthogonal

Vor=Y (Vor, @) =) (Vor, o)k
K K | |
\ J
Y |
covariant contravariant
components components

Can prove polynomial consistency up to the order of the precision of {®x}

Theorem: /quSIdQ:/pngIdQ forall p€Pr(Q)
Q Q

This ensures satisfaction
of the patch test.
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Replace the original bilinear form

with this modified bilinear form

a(u,v)—/ﬁ[

a(u,v) =/Vu:(CV'UdQ
Q

E(u, v) — YVu:CVoudQ Note: Thi's modified bi/inea.r form is still
O symmetric (Bubnov-Galerkin).

C ds

Z(VU, (I)[)(I)I

I

Z(V?}, (I)J)(I)J

J

a(u,v) = Z(VU,CI)I)C(VU,CI)J)/ P o7 d0

1,J

Qe
)

|

GIJ inverse of the
Gram matrix
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Can show that G/ = (Grs)™*

where Gipj :/ ®;P;dQ isthe Gram matrix for the basis {®x}
Qe

Can show that & = GI7®, and &; =G’ “raising” and

“lowering” of indices

a(u,v) = ZG”(Vu, ¢;)C(Vu, @) = Z(Vu, dF)C (Vu, dg)
1,J K

\ )
|

Looks like a sum over
quadrature points.




1 Since G'7 = (Gy;)~! isdense:

Replace Gy with row-sum lumped version: Gf; =) Gy = diag{wk}
J

where recall WKZ/ch(X) ds2
Q

1 1
Then a(u,v) = a*(u,v) = Z E(VU, D) C(Vo,®x) where (GF,)™! = diag {E}
K
Can write @ (u,v) as | @"(u,v) = ZWK (Vu)g : C (Vo)
K
where | (Vu)x := b (V) B dO which has the form of a discrete derivative at a
WK Jo quadrature point K.

Our discrete bilinear form is now “sparse.”



» 1 Patch test (linear consistency)

pure shear

uniaxial tension

no projection

with projection

error < 1013



36 ‘ Example: plate with hole

uniaxial tension

«— —
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E=1.0

v=20.3

exact




v ! Example: plate with hole
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Example
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Example: hyperelastic, hole-in-plate

uniaxial extension

— — quad mesh

mapped hexagon mesh

4+— B e N N N N N N N N N W W WV W . |
“— —
«— —

* plane strain
* quarter symmetry model used

::::::

\\\\\

compressible neo-Hookean material
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« 1 Example: hyperelastic, hole-in-plate

load vs. extension

600 + —FEA
O meshfree

500

load 490

300 1

200

100

0 50 100 150

extension




” ‘ Example: elastic-plastic, hole-in-plate

yield surface  f(0,¢") = ¢(0) — 0y(&") =0 .
load vs. extension

1/2
1
¢(0):{§(|01—02|2+101—03|2+|02—03|2)} o

O meshfree

plastic strain field

load

T
“\y;\lliﬁl;llll
W

0 5 10 15 20 25 30
extension
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Summary

1. Separate domain discretization from solution discretization (fine-scale domain
triangulation with coarse-scale solution discretization).

. Example of discretization-based reduced order model.
. Generation of meshfree weight functions using manifold geodesics.
. New approach to quadrature for meshfree methods based on secondary basis.

. Projected shape-function gradients using dual basis for polynomial consistency.

. Applicable to nonlinear solid mechanics too (plasticity).
. Examples here were in H', also can be extended to H(div) and H(curl).

2

3

4

5

6. Observed optimal convergence rates for 2D elasticity.
7

8

9. Use VMS (LoD) for material interfaces and multiscale.

1

0.Adaptivity framework



