This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in

SAND2022-11321C

the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Using Complexity Metrics with Hotspot Analysis to
Support Software Sustainability

James M. Willenbring
Software Engineering & Research Department
Sandia National Laboratories*
Albuquerque, New Mexico
jmwille@sandia.gov
james.willenbring@ndsu.edu

Abstract— Software sustainability is critical for
Computational Science and Engineering (CSE) software.
Measuring sustainability is challenging because
sustainability consists of many attributes. One factor that
impacts software sustainability is the complexity of the
source code. This paper introduces an approach for
utilizing complexity data, with a focus on hotspots of and
changes in complexity, to assist developers in performing
code reviews and inform project teams about longer-term
changes in sustainability and maintainability from the
perspective of cyclomatic complexity. We present an
analysis of data associated with four real-world pull
requests to demonstrate how the metrics may help guide
and inform the code review process and how the data can
be used to measure changes in complexity over time.

[. INTRODUCTION

Software sustainability is critical in the Computational
Science and Engineering (CSE) domain [4]. Prior work lists
several software sustainability attributes: extensibility,
interoperability, maintainability, portability, reusability,
scalability, and usability [8]. A complex code base is
detrimental to software maintainability [1] and software
sustainability.

While sometimes complex code is necessary, for example in
a performance-critical part of a CSE code, it should at a
minimum be well designed and clearly documented. In other
words, it is essential to actively manage, not simply limit
code complexity. This paper provides a practical guide to
using complexity metrics to guide and inform the code
review process, as well as help code teams measure and
understand code complexity changes over time. We use four
pull requests (PRs) from real-world CSE projects of varying
sizes to illustrate the many ways the metrics can help a

Gursimran Singh Walia
Department of Computer Science
Augusta University
Augusta, Georgia
gwalia@augusta.edu

reviewer focus her efforts and better understand the impact a
pull request would have on the codebase.

II. MOTIVATION

Code reviews are a valuable part of the software development
lifecycle. Poorly reviewed code leads to decreases software
quality [6]. The process for conducting code reviews, as well as
the thoroughness and quality of code reviews are often inadequate
for code projects in the CSE domain. Inadequate code reviews
lead to less readable and understandable code, which increases the
maintenance burden [2].

In our previous work [10] we discussed a variety of metrics in the
context of software sustainability, including different measures of
size, the number of contributors, complexity, and the Metrix++
maintenance index, which is calculated based on the size and
complexity of the code base. We also briefly explored the hotspot
analysis features offered in Metrix++ version 1.7.0 [7] and noted
that these features can be helpful in the context of performing
code reviews.

The basic hotspot feature can be used to identify regions of code
with a supported metric value at or above a user-specified
threshold. Metrix++ code regions include classes, functions,
structs, namespaces, etc. Advanced features identify regions at or
above the threshold impacted or “touched” by changes between
two versions of a code, and regions of the code at or above the
threshold that experienced an increase in the metric value between
two code snapshots. We considered these features in the context
of measuring cyclomatic complexity.

While cyclomatic complexity does not capture all aspects of
maintainability, by definition, it does reflect the number of paths
through the code. Because cyclomatic complexity is not a perfect
measure of the complexity of a piece of code, it doesn’t make
sense to try to limit it blindly. Still, it can be helpful to quickly

*Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the US Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525. SAND2022-

XXXX C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the

views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

identify trends and point out regions of code that should receive
additional consideration. If cyclomatic complexity increases over
time, it can increase the maintenance burden. In this paper we
offer an analysis of how to effectively use the metrics presented
to inform code reviews and measure long-term changes in the
complexity of a code base.

The basis for our investigation was the observation that code
regions of higher complexity might require special consideration
during the code review process. In particular, code changes that
introduce significant complexity should be analyzed to see if a
simpler implementation would be preferable. If not, complex code
regions should be minimally understandable to a reviewer. This
understandability may be due to a good design, useful comments,
or both. Complex code that is not understandable to an expert
reviewer is a potential maintenance and sustainability concern. By
identifying code regions of high complexity, and especially areas
where complexity would increase after a proposed code change,
we believe we can support code maintainability and sustainability
for CSE software, and help code teams better measure and
understand complexity changes in their code base.

III. APPROACH

Our hotspot analysis strategy was to consider four pull
requests, two from each of two projects chosen from among
the projects used in our previous work [10]. Both projects are
members of the Extreme-scale Scientific Software
Development Kit (xSDK). The xSDK [11] project was
created to improve the interoperability and sustainability of
scientific libraries that are common dependencies for
scientific software. The projects are also currently funded in
part under Math Libraries within the Exascale Computing
Project's (ECP) Software Technologies (ST) thrust [5]. The
PRs chosen are significantly different sizes to represent the
types of pull requests that reviewers might be asked to
review. Pull requests primarily or exclusively changing build
infrastructure or documentation were not considered because
the tool measures only the complexity of source code.

Below is a brief description of the two software projects
chosen for our metric collection activity. The project names
have been changed to guard against unintended conclusions
concerning the sustainability of any specific project.

Project 1 includes linear and non-linear solvers and
preconditioners for partial differential equation-based
systems of equations. Project 1 is written primarily in C and
contains more than 800,000 lines.

Project 2 is a collection of solvers and enabling technologies
used for large-scale, complex multi-physics engineering and
scientific problems. Project 2 is written primarily in C++ and
contains over 4,000,000 lines.

For each pull request, we gathered several pieces of data.
First was the number of lines added and deleted by the pull

request, as provided by GitHub and GitLab. (GitLab uses the
term merge request instead of pull request, but for simplicity,
we use pull request or PR throughout the paper.) Note that a
modified code line counts as one line added and one deleted.
Second, for each of the three thresholds chosen per project,
we used the Metrix++ hotspot feature to measure

1) The number of regions of code throughout the
project with a complexity equal to or greater than
the threshold value after applying the pull request to
the code base.

2) The number of code regions throughout the project
with a complexity equal to or greater than the
threshold value before applying the pull request to
the code base.

3) The number of regions of code throughout the
project that were “touched” (modified) by the pull
request with a complexity equal to or greater than
the threshold value after the PR is applied.

4) The number of touched regions of code with a
complexity equal to or greater than the threshold
value after the PR is applied for which the value
increased due to the changes in the pull request.

After generating database files for the git SHAs denoting the
state of the code before and after each pull request, the data
for 1 and 2 above was gathered using commands of the form:

metrix++ limit --db-file=proj1.after.complex.db
--max-limit=std.code.complexity.:cyclomatic: 50

The data for item 3 was gathered using commands of the
form:

metrix++ limit --db-file=projl.after.complex.db
--db-file-prev=projl.before.complex.db
--max-limit=std.code.complexity:cyclomatic:50
--warn-mode=touched

The data for item 4 was gathered by changing the warn-
mode option in the above command to “trend” instead of
“touched.” Note the touched and trend metrics require the
specification of a database file based on the previous state
of the code (using --db-file-prev) to compare against.

The thresholds chosen for each project were roughly ten
times (very high complexity), two times (high complexity),
and one time the average complexity of regions within the
code. The average complexity for Project 1 as computed by
Metrix++ is 4.58. The thresholds used for Project 1 were 50,
10, and 5. The average complexity for Project 2 was
calculated to be 2.30 and the thresholds were 25, 6, and 3.

These threshold levels were chosen because each may
represent a different level of interest for reviewers. Changes
near the current average complexity may not warrant intense
scrutiny if the team is satisfied with the current complexity

of the code, but might be of greater interest for a team trying
to significantly improve existing code. Regions of code with
a complexity greater than two or especially ten times the
average complexity should be considered more carefully.

That said, the basis for and number of thresholds should be
chosen considering project and organization preferences and
goals. For example, one team might find it useful to utilize
five or ten different thresholds, while others may find that
many to be more distracting than practically useful.

IV.RESULTS

Tables 1-4 contain the results we gathered for the four pull
requests described above. The data can be understood as
follows. For the first pull request, featured in Table 1, the
number of lines added or modified is 112. The number of
lines removed or modified is 40. This means that if there were
30 lines of modified code, ten were removed and 82 were
modified. (Note that for monitoring the change in the size of
the code base over a longer period, it may be additionally
helpful to consider using a tool like SLOCCount [9] to see
the net change in lines of code, rather than the above metrics,
which blend lines added and modified into a single number.)
Before applying the PR to the code base there were 4067
regions of code with a cyclomatic complexity of at least 5.
After applying the PR, the number of such areas increased to
4069. Four regions were modified or “touched” by the PR.
Of those, the cyclomatic complexity of 3 of the regions
increased.

TABLE 1: Hotspot Complexity Data for Pull Request 1

TABLE 4: Hotspot Complexity Data for Pull Request 4

Project2 | Lines + 1339 | Lines - 668

Threshold | After Before | Touched | Trend
25 2362 2362 4 1
6 13071 | 13069 37 10
3 22614 | 22613 57 11

Project 1 | Lines + 112 | Lines - 40
Threshold | After | Before | Touched | Trend
50 155 155 1 1
10 2117 2117 2 1
5 4069 4067 4 3

TABLE 2: Hotspot Complexity Data for Pull Request 2

Project 1 | Lines + 5279 | Lines - 448

Threshold | After | Before | Touched | Trend
50 157 155 4 2
10 2132 2118 20 15
5 4089 4070 28 20

TABLE 3: Hotspot Complexity Data for Pull Request 3

Project 2 | Lines + 8 [Lines - 3

Threshold | After Before | Touched | Trend
25 2420 2420 0 0
6 14184 | 14184 1 0
3 24996 | 24996 1 0

V. USING THE RESULTS DURING CODE REVIEWS

Regarding how the results can be used during code reviews,
we will begin by looking at how a reviewer may use the
data from Table 1 as part of a code review process. First, the
line addition and removal statistics inform the reviewer
about the pull request size. This information is available
from both GitHub and GitLab and it provides additional
context for interpreting the Metrix++ metrics.

On average, more minor pull requests in terms of lines
added should be expected to introduce less complexity than
larger pull requests. A more significant pull request will
introduce some complexity, which should be viewed
proportionally to the size of the PR. A pull request that
removes many lines of code, for example, a PR that
removes large blocks of previously deprecated code, can
potential decrease the code’s complexity metrics. A
refactoring PR may cause an increase or decrease in
complexity.

After the size metrics, we consider the metrics counting the
number of code regions above each threshold before and
after the PR is applied to the code base. These metrics can
be used to understand, at a high level, the impact on the
PR’s complexity. The before and after counts are the only
metrics collected that can help to see if the number of
regions above the threshold complexity decreased. This is
because areas of code with a complexity level above one of
the thresholds before the changes, but below after the
changes will not appear in the touched or trend metrics.

At a glance it is clear how many additional regions of
complexity at or above the threshold are added by the PR. If
this number is high relative to the size of the commit, it may
indicate that the implementation of the features in the PR
should be scrutinized to see if a simpler approach would be
possible. It is also a reminder to make sure that the changes
are understandable as code with a high complexity that is
not written in an understandable way, or does not have
sufficient documentation, is often a maintenance challenge.

The final metrics to consider are the touched and trend
metrics. First, the number of touched regions provides a
sense of the general complexity of the code near the
changes. It might be that the changes are not introducing a
lot of new complexity. Still, if the changes are touching
complex code, it represents an opportunity for the PR to

improve the understandability of the code through
refactoring, improved design, documentation, etc. Such
improvements would be consistent with a team that adopts
the legacy code change algorithm [3]. If the PR is not
touching many higher complexity regions of the code, even
if the code base overall is complex, complexity may not be
a significant concern for the PR in question.

Finally, the number of regions exhibiting an upward trend
above the given thresholds provides excellent insight into
the amount of complexity introduced by the pull request.
Introducing complexity may be necessary for a particular
situation, either for functionality or performance. Still,
ensuring that the complexity is understandable to the
reviewer in those cases is crucial. When considering the
very high complexity code regions (those above the highest
of the three thresholds) that exhibit an upward trend in
complexity, we recommend reviewing the Metrix++ output
for each of these regions individually.

Example output for an upward trending region is shown in
Figure 1. This output provides a couple of pieces of helpful
information. First is the region name. We recommend
“tapping the brake” when reviewing code in regions of very
high complexity with an upward complexity trend. A
reviewer should take special note of these regions when
conducting the review and should minimally consider if the
added complexity is necessary and if it is if the code in the
region is understandable. This can also be done for code
regions of very high complexity that are only touched, but
do not trend upward in complexity. The second piece of
important information from Figure 1 is the Change trend. In
Figure 1, the complexity of the code region nearly doubled
from 39 to 74. More significant Change trends mean more
complexity was introduced. A very complex code region
with a small Change trend indicates that the PR introduces
only a small amount of additional complexity to an already
complex region.

310: warning: Metric 'std.code.complexity:cyclomatic' for region
'buildEntityMaps' exceeds the limit.

Metric name : std.code.complexity:cyclomatic
Region name : buildEntityMaps

Metric value : 74

Modified : True

Change trend : +35

Limit :25.0

Suppressed : False

Figure 1: Metrix++ hotspot trend feature example output

For all the complexity metrics in Section IV, it is important
to consider the size of the pull request. The pull requests
considered in Section IV are of four significantly different
sizes.

VI. DISCUSSION OF RESULTS

We discuss significant results concerning metrics reported
above focused on key themes and contributions to
understanding how the results may contribute to improving
CSE software sustainability. We focus primarily on how the
data can benefit code reviewers, and secondarily on how the
data may be of use in a longer-term analysis of code
sustainability.

Table 1 considers a pull request that adds or changes 112
lines and removes or changes 40 lines. The PR is not
trivially small but is also very manageable to review. Our
metrics show that the number of regions at or above our
threshold complexity increases by 2 for only the smallest
complexity threshold. Further, the total number of regions
touched or trending up in complexity is only 4. One of these
regions is a very high complexity region that is trending up.
This region should receive careful consideration during the
code review. The other areas can also be considered during
the review based on team objectives and reviewer
preference. For a PR of this size, specifically one for which
it is feasible thoroughly review of all changes, one of the
most significant advantages of these metrics is ensuring that
added complexity does not go unnoticed.

The data for Table 2 is based on a PR that impacts more
than 5000 lines of code. Depending on the nature of the
changes, PRs of this size can be challenging to review. The
metrics for Table 2 can help to navigate the changes in this
large PR. Still, it is advisable to break larger PRs into
smaller incremental pieces in many cases. If the hotspot
metrics indicate many regions of increased complexity,
those metrics may be used to support a request to break the
PR into more manageable pieces for review.

If proceeding to review the PR in Table 2 as-is, the most
critical regions of code to note are the two regions of very
high complexity that are trending up in complexity. It is also
worthwhile noting how much the complexity in these
regions is increasing. In this case, these two regions are
newly created. That can be determined based on the fact that
there are two new regions of very high complexity, and
precisely two regions of very high complexity are trending
up. The other two touched regions cannot be the two new
regions of very high complexity because regions not
trending up cannot have reached the very high complexity
threshold without increasing. These two newly created
regions with a cyclomatic complexity of 50 or greater
deserve special consideration during the code review.
Knowing that there are two regions among more than 5000
lines of changes before starting a code review is helpful,

especially if the reviewer is not deeply familiar with the
code or its design.

Beyond those two regions, the metrics point to other areas
of possible consideration. There are two regions of very
high complexity that the PR touches but does not increase
the complexity of. These could be looked at to see if there is
an opportunity to do some refactoring, or minimally make
sure those complex regions are understandable. The next
regions to consider would be the high complexity regions
with an upward complexity trend, particularly those that
trended significantly upward. Exactly how many of the 28
regions identified by the metrics deserve special
consideration will depend on the reviewer and the policies
of the software team.

The pull request associated with Table 3 is a very small pull
request, adding or modifying only eight lines and removing
or modifying only three. No regions of code are added
above any thresholds, none within the thresholds trend up in
complexity, and only one region of high complexity is
touched. In the case of a small PR such as this, the most
valuable role for the metrics might be to confirm that
complexity was not added to the code base, and to indicate
if a high complexity region of code was touched, which
might indicate an opportunity to do some refactoring or
improve understandability.

The data for the fourth PR in Table 4 is somewhat similar to
the second PR. The PR is the second largest of the four,
although it adds and modifies only about 1/4 as many lines
as the second PR and removes or modifies about 50% more
lines than PR 2. Based on this and the minimal number of
code regions at or above threshold values before and after
the changes, it seems that the fourth PR is more focused on
code modification and the second on adding new code. Per
line of code added, removed, or modified, the number of
regions of code touched or trending up in complexity for the
4th PR is much higher; however, that PR modifies several
regions of code, rather than primarily adding regions of
code, and the complexity thresholds are lower for project 2,
and thus easier to reach.

For this PR, it would make sense to focus attention on the
very high complexity region of code that trended up in
complexity, as well as consider the other three touched
areas of high complexity and potentially give some
consideration to the regions of code above the two lower
thresholds that trended up in complexity.

While there is no concrete set of rules for utilizing the
metrics in Tables 1-4, the metrics can be used to better
understand the impact of pull requests and help guide the
reviewer’s attention during the PR review process.

The metrics included in this study can also be used in
attaining a longer-term view of software sustainability.

While complexity does not provide a complete picture of
software sustainability for a code project, trends in
complexity offer one aspect of sustainability that can be
combined with others for a more holistic analysis.

To illustrate this more clearly, consider the before and after
metrics for Project 2 in Tables 3 and 4. The two pull
requests analyzed for Project 2 took place about 25 months
apart. Over 2000 regions of average complexity, 1000
regions of high complexity and 50 regions of very high
complexity were added to the code between the two PRs.
Whether or not that is a lot or an acceptable amount depends
on several other factors. How actively was the code being
developed? This could be measured by a combination of the
number of PRs or commits merged, or the change in the size
of the code base. What is the ratio of lines of code to the
number of very high/high/average complexity regions of
code?

While we would not recommend using this data in isolation
to determine if a code base is becoming more or less
maintainable or sustainable, this information can be used in
multiple practical ways. These include monitoring code
complexity over time and helping to evaluate the
effectiveness of a refactoring effort. Such metrics can also
be used to help train and coach individual developers if it is
determined that PRs from particular individuals tend to
introduce disproportionate amounts of complexity into the
code base.

VII. RELEVANCE TO INDUSTRY

The metrics and related discussion presented in this paper
have exciting potential for use in industry. As outlined
above, this data can be used to guide and improve PR
review efforts. The hotspot metrics measure how much
complexity is introduced by a pull request, how much
complexity is present in the regions of code associated with
a pull request and where the regions of most significant
concern are. The data can be used to identify regions of
code that should be refactored while working on
surrounding code, and support requests that PRs be broken
into smaller pieces.

The metrics and discussion can also be used for monitoring
changes in complexity over time, and for helping identify
individual developers who might benefit from training in
code design. We have provided an analysis of how these
metrics can be used, but we recommend customizing the
approach to the organization’s or project’s needs. These
needs determine how aggressively to limit new or reduce
existing complexity. Another critical area of customization
is in choosing complexity thresholds. Our examples used
three thresholds, and set the threshold values to roughly one,
two, and ten times the project’s average code region
complexity. Based on experience, teams may choose

different thresholds, or an organization might set different
complexity targets across projects.

The data collection for our analysis is easy to automate using
a continuous integration capability such as GitHub Actions
or GitLab CI. The process would simply need access to
Metrix++, and then the git SHAs associated with the current
state of the branch the PR is being proposed to be added to,
as well as the git SHA for the state of the branch that includes
the PR.

Given the usefulness of the metrics collected for the code
review process, the longer-term analysis of code
maintainability and sustainability, and the fact that the
collection of the needed data can be easily automated, the
approach described above has excellent potential to impact
the sustainability of CSE software positively.

VIII. FUTURE WORK AND CONCLUSION

In the future, we plan to study more carefully pull requests
focused primarily on code removal and cleanup in addition to
our current efforts to look at code additions and
modifications. We also plan to gather more data on tracking
changes in complexity over time, while concurrently looking
at changes in the overall codebase size. The Metrix++
maintenance index metric can be used for this analysis. A
Jupyter Notebook might be the right medium for presenting
this information.

Another area of interest is to look at the complexity metrics
on a per-contributor level, which may help to identify
opportunities to train and coach software developers. We
may also consider different approaches for choosing
complexity thresholds for our analysis. A final area of future
work would be to automate the collection of complexity
metrics and make the information available to code
reviewers, which would allow us to quantify the metric’s
utility more precisely.

We analyzed pull requests from two representative code
projects that are part of the xSDK and the US DOE Exascale
Computing Project. The findings and analysis based on this
real-world data can be generalized beyond the CSE domain
as the data simply reflected the amount of complexity
existing in the code before a pull request as well as the
amount of complexity that would be added or removed by the
pull request. While this data varies from PR to PR and project
to project, measuring and understanding complexity is
helpful regardless of whether the amounts of existing and
newly proposed complexity is high or low.

Highly complex code makes software more difficult to
maintain, and less sustainable. However, writing complex
code is sometimes necessary due to feature or performance
requirements. For these reasons it is essential to manage
complexity, not simply limit it. The ideas in this paper can

help code teams be very intentional about managing
complexity in the codebase. Specifically, the metrics and
techniques presented provide opportunities to eliminate
complexity at code review time before the complexity enters
the codebase or alternatively ensure that complexity is well
documented and well designed to minimize the negative
impact on maintainability. Further, the metrics point to
regions of existing complexity that a team may choose to
refactor when modifying nearby code. By managing
complexity on a PR-by-PR basis and monitoring complexity
trends over time, a code team can improve the sustainability
of their code base.

Bibliography
[1] Boehm, B. Software Engineering Economics, Englewood Cliffs,
New Jersey: Prentice-Hall, 1981.
[2] Eisty, N.U., Carver, J.C. Developers perception of peer code

review in research software development. Empir Software Eng 27, 13
(2022). https://doi.org/10.1007/s10664-021-10053-x

[3] Feathers, M. Working Effectively with Legacy Code. Prentice
Hall, 2005.
[4] Heroux, M. A., & Allen, G. (2016, Sept). Computational Science

and Engineering Software Sustainability and Productivity (CSESSP)
Challenges Workshop Report. Networking and Information Technology

Research and Development (NITRD) Program.
https://www.nitrd.gov/PUBS/CSESSPWorkshopReport.pdf
[5] Heroux, M. A., Carter, J., Thakur, R., McInnes, L., Ahrens, J.,

Munson, T., & Neeley, J. R. (2020, February 1). ECP Software Technology
Capability Assessment Report. 10.2172/1606665

[6] Mclntosh, S., Kamei, Y., Adams, B., & Hassan, A. E. (2014).
The impact of code review coverage and code review participation on
Software quality: A case study of the Qt, VTK, and ITK projects. In //th
Working Conference on Mining Software Repositories, MSR 2014 -
Proceedings (pp. 192-201). Association for Computing Machinery, Inc.
https://doi.org/10.1145/2597073.2597076

[7] Metrix++ Web Page. (n.d.).
https://metrixplusplus.github.io/metrixplusplus/
[8] Venters, C. C., Lau, L., Griffiths, M. K., Holmes, V., Ward, R.

R., Jay, C., & J, X. (2014). The Blind Men and the Elephant: Towards an
Empirical Evaluation Framework for Software Sustainability. Journal of
Open Research Software, 2(1)(8). http://doi.org/10.5334/jors.ao
9] Wheeler, D. A. (n.d.). SLOCCount.
https://dwheeler.com/sloccount/

[10] Willenbring, J., Walia, G. Evaluating the Sustainability of
Computational Science and Engineering Software: Empirical
Observations. In 34th International Conference on Software
Engineering & Knowledge Engineering, SEKE 2022 — Proceedings (pp
453-456). KSI Research.

[11] xSDK Web Page. (n.d.). xSDK: Extreme-scale Scientific
Software Development Kit. Retrieved 12 01, 2020, from http://xsdk.info

