

*Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned

subsidiary of Honeywell International, Inc., for the US Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525. SAND2022-

XXXX C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the

views of the U.S. Department of Energy or the United States Government.

Using Complexity Metrics with Hotspot Analysis to

Support Software Sustainability

James M. Willenbring

Software Engineering & Research Department

Sandia National Laboratories*

Albuquerque, New Mexico

jmwille@sandia.gov

james.willenbring@ndsu.edu

Gursimran Singh Walia

Department of Computer Science

Augusta University

Augusta, Georgia

 gwalia@augusta.edu

Abstract— Software sustainability is critical for

Computational Science and Engineering (CSE) software.

Measuring sustainability is challenging because

sustainability consists of many attributes. One factor that

impacts software sustainability is the complexity of the

source code. This paper introduces an approach for

utilizing complexity data, with a focus on hotspots of and

changes in complexity, to assist developers in performing

code reviews and inform project teams about longer-term

changes in sustainability and maintainability from the

perspective of cyclomatic complexity. We present an

analysis of data associated with four real-world pull

requests to demonstrate how the metrics may help guide

and inform the code review process and how the data can

be used to measure changes in complexity over time.

I. INTRODUCTION

Software sustainability is critical in the Computational

Science and Engineering (CSE) domain [4]. Prior work lists

several software sustainability attributes: extensibility,

interoperability, maintainability, portability, reusability,

scalability, and usability [8]. A complex code base is

detrimental to software maintainability [1] and software

sustainability.

While sometimes complex code is necessary, for example in

a performance-critical part of a CSE code, it should at a

minimum be well designed and clearly documented. In other

words, it is essential to actively manage, not simply limit

code complexity. This paper provides a practical guide to

using complexity metrics to guide and inform the code

review process, as well as help code teams measure and

understand code complexity changes over time. We use four

pull requests (PRs) from real-world CSE projects of varying

sizes to illustrate the many ways the metrics can help a

reviewer focus her efforts and better understand the impact a

pull request would have on the codebase.

II. MOTIVATION

Code reviews are a valuable part of the software development

lifecycle. Poorly reviewed code leads to decreases software

quality [6]. The process for conducting code reviews, as well as

the thoroughness and quality of code reviews are often inadequate

for code projects in the CSE domain. Inadequate code reviews

lead to less readable and understandable code, which increases the

maintenance burden [2].

In our previous work [10] we discussed a variety of metrics in the

context of software sustainability, including different measures of

size, the number of contributors, complexity, and the Metrix++

maintenance index, which is calculated based on the size and

complexity of the code base. We also briefly explored the hotspot

analysis features offered in Metrix++ version 1.7.0 [7] and noted

that these features can be helpful in the context of performing

code reviews.

The basic hotspot feature can be used to identify regions of code

with a supported metric value at or above a user-specified

threshold. Metrix++ code regions include classes, functions,

structs, namespaces, etc. Advanced features identify regions at or

above the threshold impacted or “touched” by changes between

two versions of a code, and regions of the code at or above the

threshold that experienced an increase in the metric value between

two code snapshots. We considered these features in the context

of measuring cyclomatic complexity.

While cyclomatic complexity does not capture all aspects of

maintainability, by definition, it does reflect the number of paths

through the code. Because cyclomatic complexity is not a perfect

measure of the complexity of a piece of code, it doesn’t make

sense to try to limit it blindly. Still, it can be helpful to quickly

SAND2022-11321CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

identify trends and point out regions of code that should receive

additional consideration. If cyclomatic complexity increases over

time, it can increase the maintenance burden. In this paper we

offer an analysis of how to effectively use the metrics presented

to inform code reviews and measure long-term changes in the

complexity of a code base.

The basis for our investigation was the observation that code

regions of higher complexity might require special consideration

during the code review process. In particular, code changes that

introduce significant complexity should be analyzed to see if a

simpler implementation would be preferable. If not, complex code

regions should be minimally understandable to a reviewer. This

understandability may be due to a good design, useful comments,

or both. Complex code that is not understandable to an expert

reviewer is a potential maintenance and sustainability concern. By

identifying code regions of high complexity, and especially areas

where complexity would increase after a proposed code change,

we believe we can support code maintainability and sustainability

for CSE software, and help code teams better measure and

understand complexity changes in their code base.

III. APPROACH

Our hotspot analysis strategy was to consider four pull

requests, two from each of two projects chosen from among

the projects used in our previous work [10]. Both projects are

members of the Extreme-scale Scientific Software

Development Kit (xSDK). The xSDK [11] project was

created to improve the interoperability and sustainability of

scientific libraries that are common dependencies for

scientific software. The projects are also currently funded in

part under Math Libraries within the Exascale Computing

Project's (ECP) Software Technologies (ST) thrust [5]. The

PRs chosen are significantly different sizes to represent the

types of pull requests that reviewers might be asked to

review. Pull requests primarily or exclusively changing build

infrastructure or documentation were not considered because

the tool measures only the complexity of source code.

Below is a brief description of the two software projects

chosen for our metric collection activity. The project names

have been changed to guard against unintended conclusions

concerning the sustainability of any specific project.

Project 1 includes linear and non-linear solvers and

preconditioners for partial differential equation-based

systems of equations. Project 1 is written primarily in C and

contains more than 800,000 lines.

Project 2 is a collection of solvers and enabling technologies

used for large-scale, complex multi-physics engineering and

scientific problems. Project 2 is written primarily in C++ and

contains over 4,000,000 lines.

For each pull request, we gathered several pieces of data.

First was the number of lines added and deleted by the pull

request, as provided by GitHub and GitLab. (GitLab uses the

term merge request instead of pull request, but for simplicity,

we use pull request or PR throughout the paper.) Note that a

modified code line counts as one line added and one deleted.

Second, for each of the three thresholds chosen per project,

we used the Metrix++ hotspot feature to measure

1) The number of regions of code throughout the

project with a complexity equal to or greater than

the threshold value after applying the pull request to

the code base.

2) The number of code regions throughout the project

with a complexity equal to or greater than the

threshold value before applying the pull request to

the code base.

3) The number of regions of code throughout the

project that were “touched” (modified) by the pull

request with a complexity equal to or greater than

the threshold value after the PR is applied.

4) The number of touched regions of code with a

complexity equal to or greater than the threshold

value after the PR is applied for which the value

increased due to the changes in the pull request.

After generating database files for the git SHAs denoting the

state of the code before and after each pull request, the data

for 1 and 2 above was gathered using commands of the form:

metrix++ limit --db-file=proj1.after.complex.db

--max-limit=std.code.complexity:cyclomatic:50

The data for item 3 was gathered using commands of the

form:

metrix++ limit --db-file=proj1.after.complex.db

--db-file-prev=proj1.before.complex.db

--max-limit=std.code.complexity:cyclomatic:50

--warn-mode=touched

The data for item 4 was gathered by changing the warn-

mode option in the above command to “trend” instead of

“touched.” Note the touched and trend metrics require the

specification of a database file based on the previous state

of the code (using --db-file-prev) to compare against.

The thresholds chosen for each project were roughly ten

times (very high complexity), two times (high complexity),

and one time the average complexity of regions within the

code. The average complexity for Project 1 as computed by

Metrix++ is 4.58. The thresholds used for Project 1 were 50,

10, and 5. The average complexity for Project 2 was

calculated to be 2.30 and the thresholds were 25, 6, and 3.

These threshold levels were chosen because each may

represent a different level of interest for reviewers. Changes

near the current average complexity may not warrant intense

scrutiny if the team is satisfied with the current complexity

of the code, but might be of greater interest for a team trying

to significantly improve existing code. Regions of code with

a complexity greater than two or especially ten times the

average complexity should be considered more carefully.

That said, the basis for and number of thresholds should be

chosen considering project and organization preferences and

goals. For example, one team might find it useful to utilize

five or ten different thresholds, while others may find that

many to be more distracting than practically useful.

IV. RESULTS

Tables 1-4 contain the results we gathered for the four pull

requests described above. The data can be understood as

follows. For the first pull request, featured in Table 1, the

number of lines added or modified is 112. The number of

lines removed or modified is 40. This means that if there were

30 lines of modified code, ten were removed and 82 were

modified. (Note that for monitoring the change in the size of

the code base over a longer period, it may be additionally

helpful to consider using a tool like SLOCCount [9] to see

the net change in lines of code, rather than the above metrics,

which blend lines added and modified into a single number.)

Before applying the PR to the code base there were 4067

regions of code with a cyclomatic complexity of at least 5.

After applying the PR, the number of such areas increased to

4069. Four regions were modified or “touched” by the PR.

Of those, the cyclomatic complexity of 3 of the regions

increased.

TABLE 1: Hotspot Complexity Data for Pull Request 1

Project 1 Lines + 112 Lines - 40

Threshold After Before Touched Trend

50 155 155 1 1

10 2117 2117 2 1

5 4069 4067 4 3

TABLE 2: Hotspot Complexity Data for Pull Request 2

Project 1 Lines + 5279 Lines - 448

Threshold After Before Touched Trend

50 157 155 4 2

10 2132 2118 20 15

5 4089 4070 28 20

TABLE 3: Hotspot Complexity Data for Pull Request 3

Project 2 Lines + 8 Lines - 3

Threshold After Before Touched Trend

25 2420 2420 0 0

6 14184 14184 1 0

3 24996 24996 1 0

TABLE 4: Hotspot Complexity Data for Pull Request 4

Project 2 Lines + 1339 Lines - 668

Threshold After Before Touched Trend

25 2362 2362 4 1

6 13071 13069 37 10

3 22614 22613 57 11

V. USING THE RESULTS DURING CODE REVIEWS

Regarding how the results can be used during code reviews,

we will begin by looking at how a reviewer may use the

data from Table 1 as part of a code review process. First, the

line addition and removal statistics inform the reviewer

about the pull request size. This information is available

from both GitHub and GitLab and it provides additional

context for interpreting the Metrix++ metrics.

On average, more minor pull requests in terms of lines

added should be expected to introduce less complexity than

larger pull requests. A more significant pull request will

introduce some complexity, which should be viewed

proportionally to the size of the PR. A pull request that

removes many lines of code, for example, a PR that

removes large blocks of previously deprecated code, can

potential decrease the code’s complexity metrics. A

refactoring PR may cause an increase or decrease in

complexity.

After the size metrics, we consider the metrics counting the

number of code regions above each threshold before and

after the PR is applied to the code base. These metrics can

be used to understand, at a high level, the impact on the

PR’s complexity. The before and after counts are the only

metrics collected that can help to see if the number of

regions above the threshold complexity decreased. This is

because areas of code with a complexity level above one of

the thresholds before the changes, but below after the

changes will not appear in the touched or trend metrics.

At a glance it is clear how many additional regions of

complexity at or above the threshold are added by the PR. If

this number is high relative to the size of the commit, it may

indicate that the implementation of the features in the PR

should be scrutinized to see if a simpler approach would be

possible. It is also a reminder to make sure that the changes

are understandable as code with a high complexity that is

not written in an understandable way, or does not have

sufficient documentation, is often a maintenance challenge.

The final metrics to consider are the touched and trend

metrics. First, the number of touched regions provides a

sense of the general complexity of the code near the

changes. It might be that the changes are not introducing a

lot of new complexity. Still, if the changes are touching

complex code, it represents an opportunity for the PR to

improve the understandability of the code through

refactoring, improved design, documentation, etc. Such

improvements would be consistent with a team that adopts

the legacy code change algorithm [3]. If the PR is not

touching many higher complexity regions of the code, even

if the code base overall is complex, complexity may not be

a significant concern for the PR in question.

Finally, the number of regions exhibiting an upward trend

above the given thresholds provides excellent insight into

the amount of complexity introduced by the pull request.

Introducing complexity may be necessary for a particular

situation, either for functionality or performance. Still,

ensuring that the complexity is understandable to the

reviewer in those cases is crucial. When considering the

very high complexity code regions (those above the highest

of the three thresholds) that exhibit an upward trend in

complexity, we recommend reviewing the Metrix++ output

for each of these regions individually.

Example output for an upward trending region is shown in

Figure 1. This output provides a couple of pieces of helpful

information. First is the region name. We recommend

“tapping the brake” when reviewing code in regions of very

high complexity with an upward complexity trend. A

reviewer should take special note of these regions when

conducting the review and should minimally consider if the

added complexity is necessary and if it is if the code in the

region is understandable. This can also be done for code

regions of very high complexity that are only touched, but

do not trend upward in complexity. The second piece of

important information from Figure 1 is the Change trend. In

Figure 1, the complexity of the code region nearly doubled

from 39 to 74. More significant Change trends mean more

complexity was introduced. A very complex code region

with a small Change trend indicates that the PR introduces

only a small amount of additional complexity to an already

complex region.

310: warning: Metric 'std.code.complexity:cyclomatic' for region

'buildEntityMaps' exceeds the limit.

Metric name : std.code.complexity:cyclomatic

Region name : buildEntityMaps

Metric value : 74

Modified : True

Change trend : +35

Limit : 25.0

Suppressed : False

Figure 1: Metrix++ hotspot trend feature example output

For all the complexity metrics in Section IV, it is important

to consider the size of the pull request. The pull requests

considered in Section IV are of four significantly different

sizes.

VI. DISCUSSION OF RESULTS

We discuss significant results concerning metrics reported

above focused on key themes and contributions to

understanding how the results may contribute to improving

CSE software sustainability. We focus primarily on how the

data can benefit code reviewers, and secondarily on how the

data may be of use in a longer-term analysis of code

sustainability.

Table 1 considers a pull request that adds or changes 112

lines and removes or changes 40 lines. The PR is not

trivially small but is also very manageable to review. Our

metrics show that the number of regions at or above our

threshold complexity increases by 2 for only the smallest

complexity threshold. Further, the total number of regions

touched or trending up in complexity is only 4. One of these

regions is a very high complexity region that is trending up.

This region should receive careful consideration during the

code review. The other areas can also be considered during

the review based on team objectives and reviewer

preference. For a PR of this size, specifically one for which

it is feasible thoroughly review of all changes, one of the

most significant advantages of these metrics is ensuring that

added complexity does not go unnoticed.

The data for Table 2 is based on a PR that impacts more

than 5000 lines of code. Depending on the nature of the

changes, PRs of this size can be challenging to review. The

metrics for Table 2 can help to navigate the changes in this

large PR. Still, it is advisable to break larger PRs into

smaller incremental pieces in many cases. If the hotspot

metrics indicate many regions of increased complexity,

those metrics may be used to support a request to break the

PR into more manageable pieces for review.

If proceeding to review the PR in Table 2 as-is, the most

critical regions of code to note are the two regions of very

high complexity that are trending up in complexity. It is also

worthwhile noting how much the complexity in these

regions is increasing. In this case, these two regions are

newly created. That can be determined based on the fact that

there are two new regions of very high complexity, and

precisely two regions of very high complexity are trending

up. The other two touched regions cannot be the two new

regions of very high complexity because regions not

trending up cannot have reached the very high complexity

threshold without increasing. These two newly created

regions with a cyclomatic complexity of 50 or greater

deserve special consideration during the code review.

Knowing that there are two regions among more than 5000

lines of changes before starting a code review is helpful,

especially if the reviewer is not deeply familiar with the

code or its design.

Beyond those two regions, the metrics point to other areas

of possible consideration. There are two regions of very

high complexity that the PR touches but does not increase

the complexity of. These could be looked at to see if there is

an opportunity to do some refactoring, or minimally make

sure those complex regions are understandable. The next

regions to consider would be the high complexity regions

with an upward complexity trend, particularly those that

trended significantly upward. Exactly how many of the 28

regions identified by the metrics deserve special

consideration will depend on the reviewer and the policies

of the software team.

The pull request associated with Table 3 is a very small pull

request, adding or modifying only eight lines and removing

or modifying only three. No regions of code are added

above any thresholds, none within the thresholds trend up in

complexity, and only one region of high complexity is

touched. In the case of a small PR such as this, the most

valuable role for the metrics might be to confirm that

complexity was not added to the code base, and to indicate

if a high complexity region of code was touched, which

might indicate an opportunity to do some refactoring or

improve understandability.

The data for the fourth PR in Table 4 is somewhat similar to

the second PR. The PR is the second largest of the four,

although it adds and modifies only about 1/4 as many lines

as the second PR and removes or modifies about 50% more

lines than PR 2. Based on this and the minimal number of

code regions at or above threshold values before and after

the changes, it seems that the fourth PR is more focused on

code modification and the second on adding new code. Per

line of code added, removed, or modified, the number of

regions of code touched or trending up in complexity for the

4th PR is much higher; however, that PR modifies several

regions of code, rather than primarily adding regions of

code, and the complexity thresholds are lower for project 2,

and thus easier to reach.

For this PR, it would make sense to focus attention on the

very high complexity region of code that trended up in

complexity, as well as consider the other three touched

areas of high complexity and potentially give some

consideration to the regions of code above the two lower

thresholds that trended up in complexity.

While there is no concrete set of rules for utilizing the

metrics in Tables 1-4, the metrics can be used to better

understand the impact of pull requests and help guide the

reviewer’s attention during the PR review process.

The metrics included in this study can also be used in

attaining a longer-term view of software sustainability.

While complexity does not provide a complete picture of

software sustainability for a code project, trends in

complexity offer one aspect of sustainability that can be

combined with others for a more holistic analysis.

To illustrate this more clearly, consider the before and after

metrics for Project 2 in Tables 3 and 4. The two pull

requests analyzed for Project 2 took place about 25 months

apart. Over 2000 regions of average complexity, 1000

regions of high complexity and 50 regions of very high

complexity were added to the code between the two PRs.

Whether or not that is a lot or an acceptable amount depends

on several other factors. How actively was the code being

developed? This could be measured by a combination of the

number of PRs or commits merged, or the change in the size

of the code base. What is the ratio of lines of code to the

number of very high/high/average complexity regions of

code?

While we would not recommend using this data in isolation

to determine if a code base is becoming more or less

maintainable or sustainable, this information can be used in

multiple practical ways. These include monitoring code

complexity over time and helping to evaluate the

effectiveness of a refactoring effort. Such metrics can also

be used to help train and coach individual developers if it is

determined that PRs from particular individuals tend to

introduce disproportionate amounts of complexity into the

code base.

VII. RELEVANCE TO INDUSTRY

The metrics and related discussion presented in this paper

have exciting potential for use in industry. As outlined

above, this data can be used to guide and improve PR

review efforts. The hotspot metrics measure how much

complexity is introduced by a pull request, how much

complexity is present in the regions of code associated with

a pull request and where the regions of most significant

concern are. The data can be used to identify regions of

code that should be refactored while working on

surrounding code, and support requests that PRs be broken

into smaller pieces.

The metrics and discussion can also be used for monitoring

changes in complexity over time, and for helping identify

individual developers who might benefit from training in

code design. We have provided an analysis of how these

metrics can be used, but we recommend customizing the

approach to the organization’s or project’s needs. These

needs determine how aggressively to limit new or reduce

existing complexity. Another critical area of customization

is in choosing complexity thresholds. Our examples used

three thresholds, and set the threshold values to roughly one,

two, and ten times the project’s average code region

complexity. Based on experience, teams may choose

different thresholds, or an organization might set different

complexity targets across projects.

The data collection for our analysis is easy to automate using

a continuous integration capability such as GitHub Actions

or GitLab CI. The process would simply need access to

Metrix++, and then the git SHAs associated with the current

state of the branch the PR is being proposed to be added to,

as well as the git SHA for the state of the branch that includes

the PR.

Given the usefulness of the metrics collected for the code

review process, the longer-term analysis of code

maintainability and sustainability, and the fact that the

collection of the needed data can be easily automated, the

approach described above has excellent potential to impact

the sustainability of CSE software positively.

VIII. FUTURE WORK AND CONCLUSION

In the future, we plan to study more carefully pull requests

focused primarily on code removal and cleanup in addition to

our current efforts to look at code additions and

modifications. We also plan to gather more data on tracking

changes in complexity over time, while concurrently looking

at changes in the overall codebase size. The Metrix++

maintenance index metric can be used for this analysis. A

Jupyter Notebook might be the right medium for presenting

this information.

Another area of interest is to look at the complexity metrics

on a per-contributor level, which may help to identify

opportunities to train and coach software developers. We

may also consider different approaches for choosing

complexity thresholds for our analysis. A final area of future

work would be to automate the collection of complexity

metrics and make the information available to code

reviewers, which would allow us to quantify the metric’s

utility more precisely.

We analyzed pull requests from two representative code

projects that are part of the xSDK and the US DOE Exascale

Computing Project. The findings and analysis based on this

real-world data can be generalized beyond the CSE domain

as the data simply reflected the amount of complexity

existing in the code before a pull request as well as the

amount of complexity that would be added or removed by the

pull request. While this data varies from PR to PR and project

to project, measuring and understanding complexity is

helpful regardless of whether the amounts of existing and

newly proposed complexity is high or low.

Highly complex code makes software more difficult to

maintain, and less sustainable. However, writing complex

code is sometimes necessary due to feature or performance

requirements. For these reasons it is essential to manage

complexity, not simply limit it. The ideas in this paper can

help code teams be very intentional about managing

complexity in the codebase. Specifically, the metrics and

techniques presented provide opportunities to eliminate

complexity at code review time before the complexity enters

the codebase or alternatively ensure that complexity is well

documented and well designed to minimize the negative

impact on maintainability. Further, the metrics point to

regions of existing complexity that a team may choose to

refactor when modifying nearby code. By managing

complexity on a PR-by-PR basis and monitoring complexity

trends over time, a code team can improve the sustainability

of their code base.

Bibliography

[1] Boehm, B. Software Engineering Economics, Englewood Cliffs,
New Jersey: Prentice-Hall, 1981.
[2] Eisty, N.U., Carver, J.C. Developers perception of peer code

review in research software development. Empir Software Eng 27, 13
(2022). https://doi.org/10.1007/s10664-021-10053-x

[3] Feathers, M. Working Effectively with Legacy Code. Prentice

Hall, 2005.
[4] Heroux, M. A., & Allen, G. (2016, Sept). Computational Science

and Engineering Software Sustainability and Productivity (CSESSP)

Challenges Workshop Report. Networking and Information Technology
Research and Development (NITRD) Program.

https://www.nitrd.gov/PUBS/CSESSPWorkshopReport.pdf

[5] Heroux, M. A., Carter, J., Thakur, R., McInnes, L., Ahrens, J.,
Munson, T., & Neeley, J. R. (2020, February 1). ECP Software Technology

Capability Assessment Report. 10.2172/1606665

[6] McIntosh, S., Kamei, Y., Adams, B., & Hassan, A. E. (2014).
The impact of code review coverage and code review participation on

Software quality: A case study of the Qt, VTK, and ITK projects. In 11th

Working Conference on Mining Software Repositories, MSR 2014 -
Proceedings (pp. 192-201). Association for Computing Machinery, Inc.

https://doi.org/10.1145/2597073.2597076
[7] Metrix++ Web Page. (n.d.).

https://metrixplusplus.github.io/metrixplusplus/

[8] Venters, C. C., Lau, L., Griffiths, M. K., Holmes, V., Ward, R.

R., Jay, C., & J, X. (2014). The Blind Men and the Elephant: Towards an
Empirical Evaluation Framework for Software Sustainability. Journal of

Open Research Software, 2(1)(8). http://doi.org/10.5334/jors.ao

[9] Wheeler, D. A. (n.d.). SLOCCount.
https://dwheeler.com/sloccount/

[10] Willenbring, J., Walia, G. Evaluating the Sustainability of

Computational Science and Engineering Software: Empirical

Observations. In 34th International Conference on Software

Engineering & Knowledge Engineering, SEKE 2022 – Proceedings (pp

453-456). KSI Research.
[11] xSDK Web Page. (n.d.). xSDK: Extreme-scale Scientific

Software Development Kit. Retrieved 12 01, 2020, from http://xsdk.info

