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I: Introduction



Motivation: Unshielded Radiofrequency (RF) Sensing 

Many potential applications for high sensitivity RF sensing in very low 
frequency (VLF) and low frequency (LF) ranges:

• Remote sensing 
• A. N. Garroway, M. L. Buess, J. B. Miller, B. H. Suits, A. D. Hibb, G. A. Barrall, R. Matthews, and L. J. Burnett,Remote 

sensing by nuclear quadrupole resonance (2001).
• C. Deans, L. Marmugi, and F. Renzoni, Active underwater detection with an array of atomic magnetometers, Appl. 

Opt. 57, 2346 (2018).

• Electromagnetic induction imaging and defect imaging
• A. Wickenbrock, F. Tricot, and F. Renzoni, Magnetic induction measurements using an all-optical 87rb atomic 

magnetometer, Applied Physics Letters 103, 243503 (2013), https://doi.org/10.1063/1.4848196.
• A. Wickenbrock, S. Jurgilas, A. Dow, L. Marmugi, and F. Renzoni, Magnetic induction tomography using an 

alloptical 87rb atomic magnetometer, Opt. Lett. 39, 6367 (2014).
• A. Wickenbrock, N. Leefer, J. W. Blanchard, and D. Budker, Eddy current imaging with an atomic radiofrequency 

magnetometer, Applied Physics Letters 108,183507 (2016), https://doi.org/10.1063/1.4948534
• C. Deans, L. Marmugi, S. Hussain, and F. Renzoni, Electromagnetic induction imaging with a radio-frequency 

atomic magnetometer, Applied Physics Letters 108,103503 (2016), https://doi.org/10.1063/1.4943659.
• P. Bevington, R. Gartman, and W. Chalupczak, Enhanced material defect imaging with a radio-frequency atomic 

magnetometer, Journal of Applied Physics 125, 094503 (2019), https://doi.org/10.1063/1.5083039.
• C. Deans, Y. Cohen, H. Yao, B. Maddox, A. Vigilante,and F. Renzoni, Electromagnetic induction imaging with a 

scanning radio frequency atomic magnetometer, Applied Physics Letters 119, 014001 (2021), 
https://doi.org/10.1063/5.0056876.
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Radiofrequency (RF) magnetometry.5



The Problem of Unshielded Operation6
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Above: Problem of unshielded operation. 
Earth’s magnetic field is typically much 
larger than the required bias field, and not 
generally in the correct direction.
Something must be done to control 
external fields, establish the correct bias 
for RF sensing.



The Solution: Another Magnetometer

• Need another magnetometer! Use to 
provide feedback that can cancel out 
external field

• Must be vector magnetometer, provide 
signals for three independent directions.

• Must operate in Earth’s field.

• Set of control coils provides feedback to 
cancel external fields.

• Easily controlled by applied voltage.
• Proportional-integral-differential (PID) 

servo to derive feedback voltages. 

• Either another OPM or different type (e.g. 
fluxgate).
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Above: The solution-apply feedback via 
control coils to cancel external Earth’s field.
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II: Our Platform



Potential of Duel Isotopes for Comagnetometry9



Feedback Variometer with 87Rb10
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Variometer in Action11

Red = Earth field
Black = Applied rotating field
Blue = Total field

Animation by Neil Claussen
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Basic Layout12
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• DDS: direct digital 
synthesizer.

• HWP: half-wave plate

• QWP: quarter-wave plate

• PDZ: z photodiode

• PDT
(1,2): transverse 

photodiode 1 & 2.



Miniaturization

• Final optical layout for 
miniaturized package 
shown at right

• Collimated via acylindrical 
and cylindrical lenses.

• Fits entire optical layout 
into a <600 cm3 volume.

• Oven windows and vapour 
cell intentionally tilted to 
address optical feedback

• Vapor cell volume ≈ 1 cm3.
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Miniaturized Layout

• Right: Annotated 
SolidWorks design 
of the 3D printed 
miniaturized 
physics package. 

• 3D printed from 
ABS and Ultem (for 
cell oven).
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Field Control PCBs15

BCoil

Above: The PCB’s assembled around the 
natural Rb+N2 cell and heater.

Left: Current distribution over 6 faces for a single 
field direction. Blue is clockwise about the 
outward surface normal, red is counter-
clockwise.



Miniaturized Layout in Real Life

Above: The actual physics package, assembled without its protective cover.
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Ins ide and out .

III: Results



Feedback Performance

• Right: normalized feedback 
response of each channel to a 
square wave input.

• Decaying exponential fit used to 
extract feedback bandwidth.

• Maximum slew rate tested by 
applying 1 Hz linear ramp and 
increasing amplitude until the 
system became unstable.

• Validated by doubling the ramp 
rate and halving the amplitude.
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Feedback Performance: The Numbers19

Above: Table showing the feedback performance numbers determined by the methods outlined 
on previous slide.

Direction Feedback 
Bandwidth (Hz)

Maximum Slew 
Rate (μT/s)

Variometer 
Sensitivity (pT/√Hz)

z 96 33 5.8
x 67 8 1,000
y 60 8 1,300



Results in the Lab-Noise Floor Limit20



Results in the Lab-Completely Unshielded21



Feedback During Rotation22



Results Outdoors-Mobile Test Platform

Right: Outdoor testing 
arrangement. Power provided 
by a Yeti® Goal Zero 3000x 
portable power station, not 
shown. Cables connecting the 
physics package to the 
electronics are 3 m long.
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Results Outdoors-RF Sensitivity24



IV: Summary



Summary26
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